можно выразить суммой следующих компонент (зависимость от здесь и далее опускается в связи с цилиндрической симметрией задачи): (1)

Размер: px
Начинать показ со страницы:

Download "можно выразить суммой следующих компонент (зависимость от здесь и далее опускается в связи с цилиндрической симметрией задачи): (1)"

Транскрипт

1 Моисеев А.Н., Климанов В.А. НИЯУ МИФИ РАСПРЕДЕЛЕНИЯ ПОГЛОЩЁННОЙ ДОЗЫ ОТ ЯДЕР ОТДАЧИ ПРИ ОБЛУЧЕНИИ БИОЛОГИЧЕСКОЙ ТКАНИ НЕЙТРОНАМИ Введение В предыдущей публикации [1] авторы отмечали, что для нейтронной терапии существенным моментом является проблема распределения дозы от вторичных плотноионизирующих частиц ядер отдачи, образующихся преимущественно в результате рассеяния нейтронов на ядрах среды. Для тонкого луча нейтронов дозу в точке с цилиндрическими координатами ( можно выразить суммой следующих компонент (зависимость от здесь и далее опускается в связи с цилиндрической симметрией задачи): K ( K ( K ( K (, (1) ТЛ P S G где K P (, вклад в поглощенную дозу, создаваемый вблизи точки ( первичными нейтронами; K S (, вклад в поглощенную дозу, создаваемый вблизи точки ( рассеянными нейтронами; K G (, вклад в поглощенную дозу вблизи той же точки от вторичного гамма излучения, образующегося при взаимодействии нейтронов с биологической тканью. Дозу от первичного излучения можно представить следующей зависимостью K K ( C( * f ( ) C * exp( * * f ( ), (2) P, ТЛ P где f ( ) нормированная функция, задающая профиль дозового ядра, полное макроскопическое сечение взаимодействия нейтронов с ядрами среды, C константа нормировки. В ряде задач допущение о локальном поглощении ядер отдачи (математический эквивалент представлен формулой (2 )) из-за относительно малых пробегов является неприемлемым. Особенно это важно для пучков нейтронов (рис. 1, формула (3)), генерируемых на ускорителях. f ( ) 2 ( ), (2 ) где ( ) - дельта-функция Дирака.

2 Рис. 1 Зависимость пробега заряженных частиц в воде от энергии по разным источникам данных [2] Из рис. 1 видно, что протоны с энергией 1 МэВ (энергия ядра отдачи при упругом рассеянии описывается формулой (3)), обладают пробегом в воде порядка 5*10-3 см, что сравнимо с размерами клетки человека. A 2 EA 4 n * *cos ( ) 2 (1 ) (3) A E cos 2 ( ) (3 ) p n где A - масса ядра в а.е.м., - угол рассеяния; n энергия налетающего нейтрона; E A энергия ядра отдачи; E р энергия протона отдачи. При увеличении энергии до 10 МэВ пробег увеличивается до 1 мм, что является достаточно значимым при расчете дозовых распределений в новых направлениях лучевой терапии, поэтому в настоящей работе была исследована эта задача, т.е. изучен возможный вид функции f ( ) в формуле (2). Материалы и методы В работе рассматривались два метода расчёта формы распределений аналитический метод и метод Монте-Карло. Второй является признанным эталоном для такого рода вычислений, однако обладает существенным недостатком недостаточным быстродействием, что, в конечном счёте, приводит к необходимости поиска приближённых аналитических методов. При получении аналитического выражения был сделан ряд допущений: рассматривалось только упругое рассеяние на ядрах; не учитывались флюктуации при определении направления движения и длины пробега частиц. Эти допущения, как показали результаты расчета, не приводят к существенной ошибке в результатах. Из физических соображений (с учётом вышеописанных допущений) можно получить следующее выражение для пространственно-углового распределения дозы, создаваемого ядром отдачи при упругом рассеянии нейтрона на ядре, в сферических координатах: 1 d 1 D( r, ) * ( r, ) *, (4) 2 2 r sin

3 - линейные потери энергии ядра отдачи в среде (ЛПЭ), - угол рассеяния (полярный угол). Данные для ЛПЭ протонов в воде (признанный ссылочный материал для биологической ткани) взяты из отчёта МКРЕ 49 [3], из которых математическими преобразованиями, аналогичными (3), получены ЛПЭ как функция от координат (r, ) : (r, ) ( E ( r, )) ( E p ( ) E (r )), r rmax, (5) где rmax - средний пробег протонов отдачи в воде для данной энергии протонов, E p ( ) определяется формулой (2); E(r) функция, обратная к функции зависимости среднего пробега в воде от энергии протонов. Полученные таким образом данные сравнивались с результатами работы [4], расчёты в которой выполнялись методом Монте-Карло. К сожалению, в статье [4] авторы привели только графическую иллюстрацию полученных результатов, поэтому возможно лишь графическое, визуальное сравнение результатов (рис.2 и 3). где r - расстояние от точки рассеяния до точки детектирования дозы, Рис. 2 Распределение поглощённой энергии от протонов отдачи при однократном рассеянии нейтронов с энергией 5,25 МэВ на ядре водорода, полученное методом Монте-Карло в работе[4]

4 Рис. 3 Распределение поглощённой энергии от протона отдачи при рассеянии на нём 5,25 МэВ нейтрона (аналитический метод) Как видим из рис. 2 и 3, форма распределений и размеры области с ненулевым значением поглощённой дозы находятся в хорошем согласии. Вместе с тем, графические данные, очевидно, не позволяют провести сравнение численных значений дозовых ядер. Чтобы провести такое сравнение авторы провели расчеты первичной компоненты дозового ядра тонкого луча нейтронов методом Монте-Карло по программе MCNP4x. Формула (4) определяет вид дозового распределения от единичного рассеяния нейтрона на ядре в сферических координатах. Чтобы выполнить сравнение следует преобразовать (4) к форме дозового ядра тонкого луча в цилиндрической системе координат. Для этого необходимо преобразовать D( r, ) в функцию цилиндрических координат и проинтегрировать по оси первичного распространения нейтронов. 0 D(, A* ( z z') * D( r( r z'), ( r z')) dz', (6) r max max где A - нормировочный коэффициент, ( - флюенс первичного нейтронного излучения на глубине z, rmax - средний протонов отдачи в воде для данной энергии нейтронов, расстояние от точки детектирования до оси тонкого луча. На рис.4 и 5 приведены нормированные дозовые ядра, рассчитанные по формулам (3-6) и по данным MCNP4x в дифференциальной и интегральной формах. max

5 Рис. 4 Нормированный график зависимости дозы протонов отдачи от расстояния до оси первичного распространения нейтронов; пунктир аналитический метод, сплошная данные Монте-Карло Рис. 5 Нормированный график зависимости дозы протонов отдачи от размеров пучка нейтронов; пунктир аналитический метод, сплошная данные Монте-Карло Из рис.4 и 5 видно, что различие в форме дозовых распределений незначительно и связанно в основном с допущениями, принятыми при создании аналитической модели. Выводы В первую очередь стоит отметить, что при энергиях нейтронов больше 10 МэВ (такие энергии часто используются в ускорительных источниках нейтронов) область ионизации протонами отдачи становится существенной, и не учитывать её в

6 прецизионных вычислениях нельзя. Вместе с тем, аналитический подход в расчёте дозовых распределений от ядер отдачи имеет ряд существенных преимуществ. В первую очередь это скорость вычислений, которая на несколько порядков выше скорости вычислений методом Монте-Карло. Другими немаловажными преимуществами являются возможность вычисления аналогичных дозовых ядер для элементов, отличных от водорода (что недоступно в MCNP4x, к примеру) и лёгкость преобразования дозовых ядер для сред, отличных от воды. Конечно, нельзя не отметить и главный недостаток такого подхода это точность. Она лежит в разумных пределах, но при дальнейшем росте требований к точности вычислений может потребоваться усложнение модели, ввод дополнительных уточняющих параметров или кардинальное изменение концепции и переход на вычисления методом Монте-Карло. Список литературы: 1) Моисеев А.Н., Климанов В.А. Дозовое распределение в цилиндрическом водном фантоме от тонкого луча нейтронов для 28 групп энергий в диапазоне 0 14,5 МэВ // «Медицинская физика», 2008, 38, 2, C ) H. IWASE, K. NIITA, T. NAKAMURA Development of general-purpose particle and heavy ion transport Monte-Carlo code // Journal of NUCLEAR SIENCE and TECHNOLOGY, 2002, 39, 11, pp ) Stopping powers and ranges for proton and alpha particles // ICRU Report 49

7 4) E. Bourhis-Martin, P. Meissner, J. Rassow et al. Empirical description and Monte Carlo simulation of fast neutron pencil beams as basis of a treatment planning system // Medical Physics, 29, 8, pp , AAPM, August 2002.

Дозовое распределение в цилиндрическом водном фантоме от тонкого луча нейтронов для 28 групп энергий из диапазона 0 14,5 МэВ

Дозовое распределение в цилиндрическом водном фантоме от тонкого луча нейтронов для 28 групп энергий из диапазона 0 14,5 МэВ Моисеев А.Н., Климанов В.А. МИФИ (ГУ) Дозовое распределение в цилиндрическом водном фантоме от тонкого луча нейтронов для 28 групп энергий из диапазона 0 14,5 МэВ Введение На сегодняшний день есть все

Подробнее

4. ДОЗА ОТ НЕЙТРОНОВ 4.1. Преобразование энергии нейтронов в веществе

4. ДОЗА ОТ НЕЙТРОНОВ 4.1. Преобразование энергии нейтронов в веществе 4. ДОЗА ОТ НЕЙТРОНОВ Как было показано выше, в случае γ-излучения одинаковым поглощенным дозам соответствуют практически одинаковые эффекты в широком диапазоне энергий γ-квантов. Для нейтронов это не так.

Подробнее

Моисеев Алексей Николаевич ОПРЕДЕЛЕНИЕ ДОЗОВЫХ РАСПРЕДЕЛЕНИЙ В БИОЛОГИЧЕСКИХ ТКАНЯХ ДЛЯ ПОЛЕЙ НЕЙТРОНОВ НА ОСНОВЕ МЕТОДА ТОНКОГО ЛУЧА

Моисеев Алексей Николаевич ОПРЕДЕЛЕНИЕ ДОЗОВЫХ РАСПРЕДЕЛЕНИЙ В БИОЛОГИЧЕСКИХ ТКАНЯХ ДЛЯ ПОЛЕЙ НЕЙТРОНОВ НА ОСНОВЕ МЕТОДА ТОНКОГО ЛУЧА На правах рукописи Моисеев Алексей Николаевич ОПРЕДЕЛЕНИЕ ДОЗОВЫХ РАСПРЕДЕЛЕНИЙ В БИОЛОГИЧЕСКИХ ТКАНЯХ ДЛЯ ПОЛЕЙ НЕЙТРОНОВ НА ОСНОВЕ МЕТОДА ТОНКОГО ЛУЧА 01.04.01 приборы и методы экспериментальной физики

Подробнее

Физический факультет

Физический факультет Московский Государственный Университет им. М.В. Ломоносова Физический факультет Кафедра Общей ядерной физики Москва 005 г. Взаимодействие гамма-излучения с веществом Аспирант Руководитель : Чжо Чжо Тун

Подробнее

Приложение 4. Взаимодействие частиц с веществом

Приложение 4. Взаимодействие частиц с веществом Приложение 4. Взаимодействие частиц с веществом Взаимодействие частиц с веществом зависит от их типа, заряда, массы и энергии. Заряженные частицы ионизуют атомы вещества, взаимодействуя с атомными электронами.

Подробнее

ВИРТУАЛЬНЫЕ ЛАБОРАТОРИИ ПРОЕКТ

ВИРТУАЛЬНЫЕ ЛАБОРАТОРИИ ПРОЕКТ (Computer Simulation) CS-01-008 В.В. Дьячков и др. ВИРТУАЛЬНЫЕ ЛАБОРАТОРИИ ПРОЕКТ КОМПЬЮТЕРНЫЙ ЛАБОРАТОРНЫЙ ПРАКТИКУМ «УПРАВЛЯЕМЫЙ ТЕРМОЯДЕРНЫЙ СИНТЕЗ» НА БАЗЕ НЯЦ РК II Исследование спектров ПВА в конструкционных

Подробнее

ТЕОРЕТИЧЕСКАЯ СПРАВКА ДЛЯ ВИРТУАЛЬНЫХ ЭКСПЕРИМЕНТОВ НА ПОДКРИТИЧЕСКИХ СБОРКАХ НИЯУ МИФИ 2014

ТЕОРЕТИЧЕСКАЯ СПРАВКА ДЛЯ ВИРТУАЛЬНЫХ ЭКСПЕРИМЕНТОВ НА ПОДКРИТИЧЕСКИХ СБОРКАХ НИЯУ МИФИ 2014 ТЕОРЕТИЧЕСКАЯ СПРАВКА ДЛЯ ВИРТУАЛЬНЫХ ЭКСПЕРИМЕНТОВ НА ПОДКРИТИЧЕСКИХ СБОРКАХ НИЯУ МИФИ 014 http://vlr.mephi.ru 1. Установившийся спектр нейтронов в подкритической и критической сборках Рассмотрим стационарное

Подробнее

упорядочены по возрастанию номеров МТ. Энергетические распределения, p( нормируются следующим образом:

упорядочены по возрастанию номеров МТ. Энергетические распределения, p( нормируются следующим образом: 5.ФАЙЛ 5. ЭНЕРГЕТИЧЕСКИЕ РАСПРЕДЕЛЕНИЯ ВТОРИЧНЫХ НЕЙТРОНОВ 1 5.1.ОБЩЕЕ ОПИСАНИЕ Файл 5 содержит данные для энергетических распределений вторичных нейтронов, представленных в виде распределений нормированных

Подробнее

4. ВЗАИМОДЕЙСТВИЕ ИЗЛУЧЕНИЯ С ВЕЩЕСТВОМ

4. ВЗАИМОДЕЙСТВИЕ ИЗЛУЧЕНИЯ С ВЕЩЕСТВОМ 4. ВЗАИМОДЕЙСТВИЕ ИЗЛУЧЕНИЯ С ВЕЩЕСТВОМ По роду взаимодействия с веществом радиоактивное излучение можно разделить на три группы: 1.Заряженные частицы: -излучение, -излучение, протоны, дейтроны, различные

Подробнее

Лекция 3. Дифференциальное сечение рассеяния. Формула Резерфорда. Неустойчивость классического атома

Лекция 3. Дифференциальное сечение рассеяния. Формула Резерфорда. Неустойчивость классического атома Лекция 3. Дифференциальное сечение рассеяния. Формула Резерфорда. Неустойчивость классического атома 1 Дифференциальное сечение рассеяния Когда быстрая частица налетает на частицу-мишень, то для того,

Подробнее

Ю.Н.Копач Объединенный Институт Ядерных Исследований

Ю.Н.Копач Объединенный Институт Ядерных Исследований Применение метода меченых нейтронов для измерения сечений реакций неупругого рассеяния Угловые корреляции вылета гамма-квантов в неупругом рассеянии быстрых нейтронов на углероде Ю.Н.Копач Объединенный

Подробнее

Гуржий В.В., Кривовичев С.В. Введение в КРИСТАЛЛОХИМИЮ и РЕНТГЕНОСТРУКТУРНЫЙ АНАЛИЗ. Лекция 4

Гуржий В.В., Кривовичев С.В. Введение в КРИСТАЛЛОХИМИЮ и РЕНТГЕНОСТРУКТУРНЫЙ АНАЛИЗ. Лекция 4 Гуржий В.В., Кривовичев С.В. Введение в КРИСТАЛЛОХИМИЮ и РЕНТГЕНОСТРУКТУРНЫЙ АНАЛИЗ Лекция 4 электроном Фотоны электромагнитного излучения обладают свойствами как волны, так и частицы. как частицы Фотоны

Подробнее

МОЛЕКУЛЯРНАЯ ФИЗИКА. Глава 5. Явления переноса. R d. Sin d 2

МОЛЕКУЛЯРНАЯ ФИЗИКА. Глава 5. Явления переноса. R d. Sin d 2 Глава 5. Явления переноса. МОЛЕКУЛЯРНАЯ ФИЗИКА Наука, изучающая процессы при нарушенном равновесии, называется физическая кинетика. Эта наука изучает необратимые процессы. Сущность процессов переноса:

Подробнее

БЕЛОУСОВ Александр Витальевич

БЕЛОУСОВ Александр Витальевич МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ им. М. В. ЛОМОНОСОВА НАУЧНО-ИССЛЕДОВАТЕЛЬСКИЙ ИНСТИТУТ ЯДЕРНОЙ ФИЗИКИ им. Д.В. СКОБЕЛЬЦЫНА На правах рукописи БЕЛОУСОВ Александр Витальевич РАСЧЕТ ЭКВИВАЛЕНТНОЙ ДОЗЫ

Подробнее

ДОМАШНЕЕ ЗАДАНИЕ ПО ФИЗИКЕ ДЛЯ СТУДЕНТОВ II КУРСА IV СЕМЕСТРА ВСЕХ ФАКУЛЬТЕТОВ. для студентов II курса IV семестра всех факультетов

ДОМАШНЕЕ ЗАДАНИЕ ПО ФИЗИКЕ ДЛЯ СТУДЕНТОВ II КУРСА IV СЕМЕСТРА ВСЕХ ФАКУЛЬТЕТОВ. для студентов II курса IV семестра всех факультетов 1 ДОМАШНЕЕ ЗАДАНИЕ ПО ФИЗИКЕ ДЛЯ СТУДЕНТОВ II КУРСА IV СЕМЕСТРА ВСЕХ ФАКУЛЬТЕТОВ Варианты домашнего задания по физике для студентов II курса IV семестра всех факультетов Вариант Номера задач 1 1 13 5 37

Подробнее

Глава 2. Методы расчета характеристик рассеяния объектов

Глава 2. Методы расчета характеристик рассеяния объектов Глава. Методы расчета характеристик рассеяния объектов ческих размеров (каковым является, например, самолет весьма сложно провести достаточно мелкое разбиение поверхности. В этом случае приходится удовлетворяться

Подробнее

является первым, оценочным приближением для гомогенных реакторов больших размеров ряд результатов интегральные и качественные

является первым, оценочным приближением для гомогенных реакторов больших размеров ряд результатов интегральные и качественные Метод многих групп До настоящего времени для решения задач физики ядерных реакторов мы использовали одногогрупповой метод. Мы полагали что в реакторе присутствуют нейтроны только одной энергии то есть

Подробнее

Пробеги тяжелых ионов низких и средних энергий в аморфном веществе

Пробеги тяжелых ионов низких и средних энергий в аморфном веществе 1;5;1;11 Пробеги тяжелых ионов низких и средних энергий в аморфном веществе Е.Г. Шейкин Научно-исследовательское предприятие гиперзвуковых систем, 19666 Санкт-Петербург, Россия (Поступило в Редакцию 28

Подробнее

4.1.ОБЩЕЕ ОПИСАНИЕ. где

4.1.ОБЩЕЕ ОПИСАНИЕ. где 1 4. ФАЙЛ 4. УГЛОВЫЕ РАСПРЕДЕЛЕНИЯ ВТОРИЧНЫХ НЕЙТРОНОВ 4.1.ОБЩЕЕ ОПИСАНИЕ Файл 4 содержит представления угловых распределений вторичных нейтронов. Он используется только для нейтронных реакций, реакции

Подробнее

ЛАБОРАТОРНАЯ РАБОТА 51 ОПРЕДЕЛЕНИЕ ЭНЕРГИИ АЛЬФА-ЧАСТИЦ ПО ДЛИНЕ ИХ ПРОБЕГА В ВОЗДУХЕ

ЛАБОРАТОРНАЯ РАБОТА 51 ОПРЕДЕЛЕНИЕ ЭНЕРГИИ АЛЬФА-ЧАСТИЦ ПО ДЛИНЕ ИХ ПРОБЕГА В ВОЗДУХЕ ЛАБОРАТОРНАЯ РАБОТА 51 ОПРЕДЕЛЕНИЕ ЭНЕРГИИ АЛЬФА-ЧАСТИЦ ПО ДЛИНЕ ИХ ПРОБЕГА В ВОЗДУХЕ 1. ЦЕЛЬ РАБОТЫ Целью работы является изучение нергетических характеристик альфа( )-частиц и механизмов их взаимодействия

Подробнее

Èçìåíåíèå ñâîéñòâ ìàòåðèàëîâ, îáëó àåìûõ áûñòðûìè òÿæåëûìè çàðÿæåííûìè àñòèöàìè

Èçìåíåíèå ñâîéñòâ ìàòåðèàëîâ, îáëó àåìûõ áûñòðûìè òÿæåëûìè çàðÿæåííûìè àñòèöàìè ТЕХНОГЕННАЯ БЕЗОПАСНОСТЬ И ОХРАНА ТРУДА Е. В. Метелкин Èçìåíåíèå ñâîéñòâ ìàòåðèàëîâ, îáëó àåìûõ áûñòðûìè òÿæåëûìè çàðÿæåííûìè àñòèöàìè Аннотация: В работе на основе решения кинетического уравнения определяется

Подробнее

Лекция 7. Столкновение нерелятивистских частиц.

Лекция 7. Столкновение нерелятивистских частиц. Лекция 7 Столкновение нерелятивистских частиц 1 Упругое столкновение Задача состоит в следующем Пусть какая-то частица пролетает мимо другой частицы Это могут быть два протона один из ускорителя, другой

Подробнее

α е = 75 г/см 2 г/см 2.

α е = 75 г/см 2 г/см 2. Современное представление о нестабильном нейтроне сформировалось на основе интерпретаций опытных данных с позиций законов механики, электродинамики и квантовой теории. Анализ показывает, что записи этих

Подробнее

Прохождение γ излучения через вещество

Прохождение γ излучения через вещество Прохождение γ излучения через вещество Каждый фотон выбывает из падающего пучка в результате единичного акта ΔI= -τ I Δx = - N σ I Δx I число γ-квантов, падающих на слой Δх ΔI число фотонов, выбывших из

Подробнее

Факультет естественных и инженерных наук Кафедра Биофизики П Р О Г Р А М М А Д И С Ц И П Л И Н Ы

Факультет естественных и инженерных наук Кафедра Биофизики П Р О Г Р А М М А Д И С Ц И П Л И Н Ы Государственное образовательное учреждение высшего профессионального образования Московской области «Международный университет природы, общества и человека «Дубна» (университет «Дубна») Факультет естественных

Подробнее

Ядерные реакции. e 1/2. p n n

Ядерные реакции. e 1/2. p n n Ядерные реакции 197 Au 197 79 79 14 N 17 7 8 O 9 Be 1 4 6 C 7 Al 30 13 15 30 P e 30 15 T.5мин 14 1/ P p n n Si Au Ядерные реакции ВХОДНОЙ И ВЫХОДНОЙ КАНАЛЫ РЕАКЦИИ Сечение реакции и число событий N dn(,

Подробнее

Ионизация атомов гелия под действием магнитного момента антинейтрино. В.Г. Циноев НИЦ КИ

Ионизация атомов гелия под действием магнитного момента антинейтрино. В.Г. Циноев НИЦ КИ Ионизация атомов гелия под действием магнитного момента антинейтрино В.Г. Циноев НИЦ КИ Результаты экспериментов на многих детекторах убедительно подтверждают гипотезу нейтринных осцилляций, а это означает,

Подробнее

Форма промежуточной аттестации аспиранта по дисциплине зачет. Структура дисциплины:

Форма промежуточной аттестации аспиранта по дисциплине зачет. Структура дисциплины: Аннотация Рабочей программы дисциплины «Взаимодействие излучений с веществом» по направлению подготовки 12.06.01 Фотоника, приборостроение, оптические и биотехнические системы и технологии (уровень подготовки

Подробнее

Вестник науки Сибири (7)

Вестник науки Сибири (7) Капранов Борис Иванович, д-р техн. наук, профессор кафедры физических методов и приборов контроля качества Института неразрушающего контроля ТПУ. E-mail: murov@tpu.ru Область научных интересов: радиационный

Подробнее

МОДЕЛИРОВАНИЕ ЯДЕРНЫХ РЕАКЦИЙ ПО ЯДРАМ ОТДАЧИ

МОДЕЛИРОВАНИЕ ЯДЕРНЫХ РЕАКЦИЙ ПО ЯДРАМ ОТДАЧИ (Computer Simulation) CS-01-00 В.В. Дьячков и др. ВИРТУАЛЬНЫЕ ЛАБОРАТОРИИ ПРОЕКТ КОМПЬЮТЕРНЫЙ ЛАБОРАТОРНЫЙ ПРАКТИКУМ «МОДЕЛИРОВАНИЕ ЯДЕРНЫХ ФИЗИЧЕСКИХ ПРОЦЕССОВ МЕТОДОМ ДИНАМИКИ ЧАСТИЦ» НА БАЗЕ НЯЦ РК

Подробнее

Свойства атомных ядер. N Z диаграмма атомных ядер

Свойства атомных ядер. N Z диаграмма атомных ядер Лабораторная работа 1 Свойства атомных ядер Цель работы: научиться пользоваться современными базами данных в научно-исследовательской работе, получить более углубленное представление о материале, изучаемом

Подробнее

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ «ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ» Д. И. Вайсбурд А. В. Макиенко ЛАБОРАТОРНЫЙ ПРАКТИКУМ ПО АТОМНОЙ ФИЗИКЕ

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ «ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ» Д. И. Вайсбурд А. В. Макиенко ЛАБОРАТОРНЫЙ ПРАКТИКУМ ПО АТОМНОЙ ФИЗИКЕ ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ Государственное образовательное учреждение высшего профессионального образования «ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ» Д. И. Вайсбурд А. В. Макиенко ЛАБОРАТОРНЫЙ ПРАКТИКУМ

Подробнее

Физика атомного ядра и элементарных частиц (наименование дисциплины) Направление подготовки физика

Физика атомного ядра и элементарных частиц (наименование дисциплины) Направление подготовки физика Аннотация рабочей программы дисциплины Физика атомного ядра и элементарных частиц (наименование дисциплины) Направление подготовки 03.03.02 физика Профиль подготовки «Фундаментальная физика», «Физика атомного

Подробнее

Моделирование методом Монте-Карло взаимодействия атомных частиц с конденсированной средой в приближении последовательных парных соударений

Моделирование методом Монте-Карло взаимодействия атомных частиц с конденсированной средой в приближении последовательных парных соударений Моделирование методом Монте-Карло взаимодействия атомных частиц с конденсированной средой в приближении последовательных парных соударений В.А.Курнаев Н.Н.Трифонов (Московский государственный инженерно-физический

Подробнее

Федеральное агентство по образованию САНКТ ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

Федеральное агентство по образованию САНКТ ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ Федеральное агентство по образованию САНКТ ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ВВЕДЕНИЕ В ДОЗИМЕТРИЮ И ЗАЩИТА ОТ ИОНИЗИРУЮЩИХ ИЗЛУЧЕНИЙ ПОСОБИЕ ДЛЯ СТУДЕНТОВ ЭНЕРГОМАШИНОСТРОИТЕЛЬНОГО

Подробнее

Репозиторий БНТУ КОНТРОЛЬНЫЕ ЗАДАНИЯ

Репозиторий БНТУ КОНТРОЛЬНЫЕ ЗАДАНИЯ КОНТРОЛЬНЫЕ ЗАДАНИЯ В данном разделе приведены контрольные задания в форме тестов, выполнение которых способствует закреплению знаний по курсу. Каждое задание состоит из задач, решение которых, как правило,

Подробнее

13. Теория Хаузера-Фешбаха.

13. Теория Хаузера-Фешбаха. 3. Теория Хаузера-Фешбаха.. Следуя Хаузеру и Фешбаху выразим сечения компаунд-процессов через средние значения ширин. Будем исходить из формализма Брейта-Вигнера. Для элемента S-матрицы при наличии прямого

Подробнее

Изучение возможности регистрации широких атмосферных ливней на установке РУСАЛКА.

Изучение возможности регистрации широких атмосферных ливней на установке РУСАЛКА. Изучение возможности регистрации широких атмосферных ливней на установке РУСАЛКА. Гуськов А., ОИЯИ (Дубна) avg@nusun.jinr.ru 2..20 Методы математического моделирования применяются в физике для предсказания

Подробнее

dt x (скобки означают усреднение по квантовому состоянию). 10. Состояние частицы описывается нормированной волновой функцией ψ ( x)

dt x (скобки означают усреднение по квантовому состоянию). 10. Состояние частицы описывается нормированной волновой функцией ψ ( x) Первые модели атомов 1. Считая, что энергия ионизации атома водорода E=13.6 эв, найдите его радиус, согласно модели Томсона.. Найти относительное число частиц рассеянных в интервале углов от θ 1 до θ в

Подробнее

Лабораторная работа 18 Опыт Резерфорда

Лабораторная работа 18 Опыт Резерфорда I II III Лабораторная работа 18 Опыт Резерфорда Цель работы Теоретическая часть 1 Введение 2 Рассеяние α -частиц 3 Дифференциальное сечение рассеяния 4 Формула Резерфорда Экспериментальная часть 1 Методика

Подробнее

2.1 Физическая доза Доза излучения Доза Экспозиционная доза Экспозиционная доза

2.1 Физическая доза Доза излучения Доза Экспозиционная доза Экспозиционная доза 2.1 Физическая доза Действие ионизирующих излучений на вещество представляет собой сложный процесс. Поглощенная энергия расходуется на нагрев вещества, а также на его химические и физические превращения.

Подробнее

Экспериментальная ядерная физика

Экспериментальная ядерная физика Национальный исследовательский ядерный университет «МИФИ» Кафедра 7 экспериментальной ядерной физики и космофизики А.И. Болоздыня Экспериментальная ядерная физика Лекция 16 Общие закономерности ядерных

Подробнее

ЛАБОРАТОРНАЯ РАБОТА 1 ИЗМЕРЕНИЕ МИКРОТВЕРДОСТИ ПРИБОРОМ ПМТ-3

ЛАБОРАТОРНАЯ РАБОТА 1 ИЗМЕРЕНИЕ МИКРОТВЕРДОСТИ ПРИБОРОМ ПМТ-3 Министерство образования и науки РФ Федеральное государственное бюджетное образовательное учреждение высшего образования «Омский государственный технический университет» ЛАБОРАТОРНАЯ РАБОТА ИЗМЕРЕНИЕ МИКРОТВЕРДОСТИ

Подробнее

ПРАКТИЧЕСКАЯ РАБОТА 5 Цель работы: Теоретическое введение Основные свойства радиоактивного излучения Активность источника Единица измерений:

ПРАКТИЧЕСКАЯ РАБОТА 5 Цель работы: Теоретическое введение Основные свойства радиоактивного излучения Активность источника Единица измерений: ПРАКТИЧЕСКАЯ РАБОТА 5 Оценка влияния ионных излучений на состояния здоровья работника. Цель работы: знакомство с видами радиоактивного излучения и основами дозиметрического контроля. Теоретическое введение

Подробнее

ЗАМЕДЛЕНИЕ НЕЙТРОНОВ В РЕАКТОРЕ

ЗАМЕДЛЕНИЕ НЕЙТРОНОВ В РЕАКТОРЕ ЗАМЕДЛЕНИЕ НЕЙТРОНОВ В РЕАКТОРЕ Общие положения замедления k эфф p з p т Непосредственно с процессом замедления нейтронов в реакторе связана величина p з вероятность избежать утечки замедляющихся нейтронов.

Подробнее

Атомная физика. Предмет и порядки величин атомной физики. Первые модели атома

Атомная физика. Предмет и порядки величин атомной физики. Первые модели атома Атомная физика Предмет и порядки величин атомной физики Первые модели атома Фундаментальные взаимодействия http://www.cpepweb.org/ Предмет и порядки величин атомной физики. Строение атома http://www.cpepweb.org/

Подробнее

Белорусский государственный университет. Взаимодействие ионизирующих излучений с веществом

Белорусский государственный университет. Взаимодействие ионизирующих излучений с веществом Белорусский государственный университет УТВЕРЖДАЮ Декан химического факультета Д.В. Свиридов 2012г. Регистрационный УД- /баз. Взаимодействие ионизирующих излучений с веществом Учебная программа для специальностей:

Подробнее

ФОРМУЛА ОБРАЩЕНИЯ ТРЕХМЕРНОЙ ТОМОГРАФИЧЕСКОЙ РЕКОНСТРУКЦИИ ДЛЯ ОДНОЙ СХЕМЫ ПОЛУЧЕНИЯ ДАННЫХ

ФОРМУЛА ОБРАЩЕНИЯ ТРЕХМЕРНОЙ ТОМОГРАФИЧЕСКОЙ РЕКОНСТРУКЦИИ ДЛЯ ОДНОЙ СХЕМЫ ПОЛУЧЕНИЯ ДАННЫХ СБОРНИК НАУЧНЫХ ТРУДОВ НГТУ. 006. 3(45) 37 4 УДК 59.64 ФОРМУЛА ОБРАЩЕНИЯ ТРЕХМЕРНОЙ ТОМОГРАФИЧЕСКОЙ РЕКОНСТРУКЦИИ ДЛЯ ОДНОЙ СХЕМЫ ПОЛУЧЕНИЯ ДАННЫХ Е. В. ШАПОШНИКОВА Получены формулы обращения для трехмерной

Подробнее

электрона. Упругое рассеяние может быть разделено на следующие виды: однократное рассеяние ( х << 1/(σ N))

электрона. Упругое рассеяние может быть разделено на следующие виды: однократное рассеяние ( х << 1/(σ N)) Лабораторная работа 2. Обратное рассеяние β- излучения Цель работы: выявить закономерности отражения β-частиц, испускаемых радионуклидами. Теоретическая часть Основные закономерности процесса обратного

Подробнее

Решение многогруппового уравнения для эквивалентного реактора

Решение многогруппового уравнения для эквивалентного реактора Решение многогруппового уравнения для эквивалентного реактора Q D k k k з з a Запишем многогрупповое уравнение в следующем виде где m k k f k f v k Q Рассмотрим критический эквивалентный реактор, для которого

Подробнее

Применение рентгеновской дифракции для исследования тонких пленок. Рефлектометрия. Малоугловое рассеяние рентгеновских лучей.

Применение рентгеновской дифракции для исследования тонких пленок. Рефлектометрия. Малоугловое рассеяние рентгеновских лучей. Лаборатория Неорганической Кристаллохимии Кафедра Неорганической Химии, Химический Факультет МГУ Применение рентгеновской дифракции для исследования тонких пленок. Рефлектометрия. Малоугловое рассеяние

Подробнее

КОМПТОНОВСКАЯ ГАЗОВАЯ ГАММА-КАМЕРА ДЛЯ МЕДИЦИНСКОЙ РАДИОНУКЛИДНОЙ ИНТРОСКОПИИ

КОМПТОНОВСКАЯ ГАЗОВАЯ ГАММА-КАМЕРА ДЛЯ МЕДИЦИНСКОЙ РАДИОНУКЛИДНОЙ ИНТРОСКОПИИ Национальный Исследовательский Ядерный Университет «МИФИ» Беляев В.Н., Болоздыня А.И., Бортко Л.Ю., Дубов Л.Ю., Канцеров В.А., Сосновцев В.В., Цхай В.С., Штоцкий Ю.В. КОМПТОНОВСКАЯ ГАЗОВАЯ ГАММА-КАМЕРА

Подробнее

Инспекционно досмотровые комплексы.

Инспекционно досмотровые комплексы. Инспекционно досмотровые комплексы. Все указанные комплексы обеспечивают: получение теневого изображения содержимого большегрузных автомобилей, контейнеров и идентификацию находящихся в них различных грузов

Подробнее

Московский государственный технический университет им. Н. Э. Баумана. Л. К. Мартинсон, Е. В. Смирнов

Московский государственный технический университет им. Н. Э. Баумана. Л. К. Мартинсон, Е. В. Смирнов Московский государственный технический университет им Н Э Баумана Л К Мартинсон Е В Смирнов МЕТОДИЧЕСКИЕ УКАЗАНИЯ К РЕШЕНИЮ ЗАДАЧ ПО КУРСУ ОБЩЕЙ ФИЗИКИ РАЗДЕЛ «ИЗМЕРЕНИЕ ФИЗИЧЕСКИХ ВЕЛИЧИН В КВАНТОВЫХ

Подробнее

Методы расчета и исследование первичной хроматической аберрации RGRIN-линз. А.Л. Сушков. МГТУ им. Н.Э. Баумана, Москва, , Россия

Методы расчета и исследование первичной хроматической аберрации RGRIN-линз. А.Л. Сушков. МГТУ им. Н.Э. Баумана, Москва, , Россия Методы расчета и исследование первичной хроматической аберрации RGRIN-линз УДК 535.7 Методы расчета и исследование первичной хроматической аберрации RGRIN-линз А.Л. Сушков МГТУ им. Н.Э. Баумана, Москва,

Подробнее

НЕЙТРОННЫЙ РЕФЛЕКТОМЕТР- МАЛОУГЛОВОЙ СПЕКТРОМЕТР «ГОРИЗОНТ» НА ИМПУЛЬСНОМ ИСТОЧНИКЕ «ИН-06» ИЯИ РАН

НЕЙТРОННЫЙ РЕФЛЕКТОМЕТР- МАЛОУГЛОВОЙ СПЕКТРОМЕТР «ГОРИЗОНТ» НА ИМПУЛЬСНОМ ИСТОЧНИКЕ «ИН-06» ИЯИ РАН НЕЙТРОННЫЙ РЕФЛЕКТОМЕТР- МАЛОУГЛОВОЙ СПЕКТРОМЕТР «ГОРИЗОНТ» НА ИМПУЛЬСНОМ ИСТОЧНИКЕ «ИН-06» ИЯИ РАН В.С. Литвин 1, А.А. Столяров 1, А.А. Афонин 1, В.А. Трунов 2, В.А. Ульянов 2, А.П. Булкин 2, С.И. Калинин

Подробнее

5. ПОТЕНЦИАЛЬНАЯ ЯМА И ПОТЕНЦИАЛЬНЫЙ БАРЬЕР

5. ПОТЕНЦИАЛЬНАЯ ЯМА И ПОТЕНЦИАЛЬНЫЙ БАРЬЕР 5. ПОТЕНЦИАЛЬНАЯ ЯМА И ПОТЕНЦИАЛЬНЫЙ БАРЬЕР Решение уравнения Шредингера для частицы в прямоугольной бесконечно глубокой потенциальной яме (рис.4) шириной дает для энергии лишь дискретные значения n n

Подробнее

Раздел физики: Ионизирующие излучения. Дозиметрия. Тема: Рентгеновское излучение (РИ)

Раздел физики: Ионизирующие излучения. Дозиметрия. Тема: Рентгеновское излучение (РИ) Раздел физики: Ионизирующие излучения. Дозиметрия Тема: Рентгеновское излучение (РИ) Авторы: А.А. Кягова, А.Я. Потапенко I. Понятие ионизирующего излучения. Определение РИ. Устройство рентгеновской трубки

Подробнее

АНАЛИТИЧЕСКОЕ РЕШЕНИЕ ЗАДАЧИ О ПОЛЕ ТЕМПЕРАТУР ПРИ ОБТЕКАНИИ ОДНОРОДНЫМ ПОТОКОМ КРИВОЛИНЕЙНОГО ИСТОЧНИКА ТЕПЛА ПРОИЗВОЛЬНОЙ ФОРМЫ

АНАЛИТИЧЕСКОЕ РЕШЕНИЕ ЗАДАЧИ О ПОЛЕ ТЕМПЕРАТУР ПРИ ОБТЕКАНИИ ОДНОРОДНЫМ ПОТОКОМ КРИВОЛИНЕЙНОГО ИСТОЧНИКА ТЕПЛА ПРОИЗВОЛЬНОЙ ФОРМЫ УДК 57.956.4+536.4 АНАЛИТИЧЕСКОЕ РЕШЕНИЕ ЗАДАЧИ О ПОЛЕ ТЕМПЕРАТУР ПРИ ОБТЕКАНИИ ОДНОРОДНЫМ ПОТОКОМ КРИВОЛИНЕЙНОГО ИСТОЧНИКА ТЕПЛА ПРОИЗВОЛЬНОЙ ФОРМЫ М.Я. Антимиров И.М. Володко Рижский технический университет

Подробнее

Лекция 11. Стационарные состояния одноэлектронных атомов

Лекция 11. Стационарные состояния одноэлектронных атомов Лекция. Стационарные состояния одноэлектронных атомов Четыре приближения в атомной физике Одной из основных задач атомной физики является описание состояний различных атомов. Особый интерес представляют

Подробнее

Министерство образования и науки Российской Федерации Национальный исследовательский ядерный университет «МИФИ»

Министерство образования и науки Российской Федерации Национальный исследовательский ядерный университет «МИФИ» Министерство образования и науки Российской Федерации Национальный исследовательский ядерный университет «МИФИ» Сборник задач по теории переноса, дозиметрии и защите от ионизирующих излучений Под редакцией

Подробнее

Методические указания к решению задач по ядерной физике

Методические указания к решению задач по ядерной физике Санкт-Петербургский Государственный Политехнический Университет Физико-Механический Факультет Кафедра Экспериментальной Ядерной Физики Методические указания к решению задач по ядерной физике Н.И.Троицкая

Подробнее

Министерство образования и науки Российской Федерации. НИЖЕГОРОДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ им. Р.Е.

Министерство образования и науки Российской Федерации. НИЖЕГОРОДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ им. Р.Е. Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования НИЖЕГОРОДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ им РЕАЛЕКСЕЕВА

Подробнее

Расчетное определение собственной активности теплоносителя в циркуляционном контуре РБМК

Расчетное определение собственной активности теплоносителя в циркуляционном контуре РБМК УДК 621.039 Расчетное определение собственной активности теплоносителя в циркуляционном контуре РБМК Максименко К.А., студент Россия, 105005, г. Москва, МГТУ им. Н.Э. Баумана кафедра «Ядерные реакторы

Подробнее

- число силовых линий центрального поля конечно. Число силовых линий поля протона с массой М в М/m раз больше, чем число линий поля электрона с

- число силовых линий центрального поля конечно. Число силовых линий поля протона с массой М в М/m раз больше, чем число линий поля электрона с Как известно, дискретные частоты излучения при возбуждении атома водорода испускаются сериями. Самая высокочастотная из них серия Лаймана. Она описывается эмпирической формулой Ридберга ν = R (1-1 n 2

Подробнее

Физическая теория ядерных реакторов

Физическая теория ядерных реакторов Физическая теория ядерных реакторов Распределение учебного времени Лекции Лабораторные занятия Практические занятия 48 часов; 3 часа; 16 часов. Выходной контроль: зачет и экзамен Физическая теория ядерных

Подробнее

1.15. Рассеяние частиц. Эффективное сечение.

1.15. Рассеяние частиц. Эффективное сечение. 1 1.15. Рассеяние частиц. Эффективное сечение. 1.15.1. Рассеяние на силовом центре. Рассмотрим снова рассеяние на силовом центре (или в качестве силового центра возьмем центр инерции двух сталкивающихся

Подробнее

Медицинская интроскопия Часть 1. Вводная

Медицинская интроскопия Часть 1. Вводная Медицинская интроскопия Часть 1. Вводная Основные понятия, методы, физическая сущность Медицинская интроскопия1 Основные понятия Интроскопии ЧТО ТАКОЕ «МЕДИЦИНСКАЯ РАДИОЛОГИЯ»? Это - лучевая диагностика

Подробнее

ВОПРОСЫ ПО СОВРЕМЕННЫМ МЕТОДАМ ЛУЧЕВОЙ ДИАГНОСТИКИ И ЛУЧЕВОЙ ТЕРАПИИ

ВОПРОСЫ ПО СОВРЕМЕННЫМ МЕТОДАМ ЛУЧЕВОЙ ДИАГНОСТИКИ И ЛУЧЕВОЙ ТЕРАПИИ ВОПРОСЫ ПО СОВРЕМЕННЫМ МЕТОДАМ ЛУЧЕВОЙ ДИАГНОСТИКИ И ЛУЧЕВОЙ ТЕРАПИИ ТЕМА: Физико-технические основы современных методов лучевой диагностики и лучевой терапии ВОПРОС: 1. Кто открыл явление естественной

Подробнее

Экспериментальная ядерная физика

Экспериментальная ядерная физика Национальный исследовательский ядерный университет «МИФИ» Кафедра 7 экспериментальной ядерной физики и космофизики А.И. Болоздыня Экспериментальная ядерная физика Лекция 23 Ядерные силы в нуклон-нуклонных

Подробнее

Специальный семинар по физике ядра и ядерным реакциям (наименование дисциплины) Направление подготовки физика

Специальный семинар по физике ядра и ядерным реакциям (наименование дисциплины) Направление подготовки физика Аннотация рабочей программы дисциплины Специальный семинар по физике ядра и ядерным реакциям (наименование дисциплины) Направление подготовки 03.03.02 физика Профиль подготовки «Фундаментальная физика»,

Подробнее

ЛЕКЦИЯ 11 ЯДЕРНЫЕ РЕАКЦИИ

ЛЕКЦИЯ 11 ЯДЕРНЫЕ РЕАКЦИИ ЛЕКЦИЯ 11 ЯДЕРНЫЕ РЕАКЦИИ Продолжаем изучать атомные ядра. 1. Диаграмма стабильности ядер. Долина стабильности На рис. 11.1 показана диаграмма стабильности ядер. Если сдвинуться из этой долины, то тогда

Подробнее

АСТРОНОМИЯ НЕКОТОРЫЕ АСИМПТОТИЧЕСКИЕ ФОРМУЛЫ В ТЕОРИИ НЕСТАЦИОНАРНОГО ПЕРЕНОСА ИЗЛУЧЕНИЯ. А.К.Колесов 1, Н.Ю.Кропачева 2

АСТРОНОМИЯ НЕКОТОРЫЕ АСИМПТОТИЧЕСКИЕ ФОРМУЛЫ В ТЕОРИИ НЕСТАЦИОНАРНОГО ПЕРЕНОСА ИЗЛУЧЕНИЯ. А.К.Колесов 1, Н.Ю.Кропачева 2 13 ВЕСТНИК САНКТ-ПЕТЕРБУРГСКОГО УНИВЕРСИТЕТА Сер. 1 Вып. 4 АСТРОНОМИЯ УДК 5-64 НЕКОТОРЫЕ АСИМПТОТИЧЕСКИЕ ФОРМУЛЫ В ТЕОРИИ НЕСТАЦИОНАРНОГО ПЕРЕНОСА ИЗЛУЧЕНИЯ А.К.Колесов 1, Н.Ю.Кропачева 1. С.-Петербургский

Подробнее

Задания А15 по физике

Задания А15 по физике Задания А15 по физике 1. Имеются четыре тонкие собирающие линзы и точечный источник света. На приведенных ниже рисунках показаны источник S и его изображения S, полученные с помощью этих линз. Какая из

Подробнее

Обзор результатов и статус эксперимента НЕВОД

Обзор результатов и статус эксперимента НЕВОД 34-я ВККЛ, Дубна, 15-19 августа 2016 г. Обзор результатов и статус эксперимента НЕВОД Р.П. Кокоулин (от сотрудничества НЕВОД-ДЕКОР) Национальный исследовательский ядерный университет «МИФИ» Институт физики

Подробнее

01;02;05;10;11. V(r) = Z 1Z 2 e 2 r. ( r. n c i exp( d i r/a).

01;02;05;10;11. V(r) = Z 1Z 2 e 2 r. ( r. n c i exp( d i r/a). 0;02;05;0; Новый модельный потенциал взаимодействия для описания движения заряженных частиц в веществе Е.Г. Шейкин Научно-исследовательское предприятие гиперзвуковых систем, 96066 Санкт-Петербург, Россия

Подробнее

4.Метод парциальных амплитуд. 1. Вернемся к исходной постановке задачи рассеяния. Имеем уравнение Шредингера: (1.16) (1.17)!

4.Метод парциальных амплитуд. 1. Вернемся к исходной постановке задачи рассеяния. Имеем уравнение Шредингера: (1.16) (1.17)! 4.Метод парциальных амплитуд.. Вернемся к исходной постановке задачи рассеяния. Имеем уравнение Шредингера: ( +! m ( +! ( + φ ( V ( φ ( (.6 и соответствующее ему граничное условие :!! e! φ ( { e + f (

Подробнее

Аналитическое описание динамики заряженных частиц в поле магнитного сферического диполя

Аналитическое описание динамики заряженных частиц в поле магнитного сферического диполя 1 Аналитическое описание динамики заряженных частиц в поле магнитного сферического диполя В.К. Баев, Б.Ю. Богданович, А.В. Нестерович Национальный исследовательский ядерный университет МИФИ, 115409 Москва,

Подробнее

Паспорт фонда оценочных средств

Паспорт фонда оценочных средств п/п Контролируемые разделы (темы) дисциплины* 1 Предмет, задачи и проблемы сельскохозяйственной радиологии 2 Паспорт фонда оценочных средств Код контролируемой компетенции (или ее части) Наименование оценочного

Подробнее

Лекция 10. Автор: Сергей Евгеньевич Муравьев кандидат физико-математических наук, доцент кафедры теоретической ядерной физики НИЯУ МИФИ

Лекция 10. Автор: Сергей Евгеньевич Муравьев кандидат физико-математических наук, доцент кафедры теоретической ядерной физики НИЯУ МИФИ Лекция 10. Автор: Сергей Евгеньевич Муравьев кандидат физико-математических наук, доцент кафедры теоретической ядерной физики НИЯУ МИФИ Видимый свет Что такое «видимый свет»? - электромагнитная волна -

Подробнее

КВАНТОВАЯ ФИЗИКА. Лекция 3. Фотоны. Масса и импульс фотона

КВАНТОВАЯ ФИЗИКА. Лекция 3. Фотоны. Масса и импульс фотона КВАНТОВАЯ ФИЗИКА Лекция 3. Фотоны. Масса и импульс фотона Согласно квантовым гипотезам Планка и Эйнштейна свет испускается, распространяется и поглощается дискретными порциями квантами. Фотоэлектрический

Подробнее

Нестационарная двухпотоковая модель переноса излучения для томографии рассеивающих сред Введение Нестационарная двухпотоковая модель

Нестационарная двухпотоковая модель переноса излучения для томографии рассеивающих сред Введение Нестационарная двухпотоковая модель 01;07;12 Нестационарная двухпотоковая модель переноса излучения для томографии рассеивающих сред С.В. Селищев, С.А. Терещенко Московский институт электронной техники, 103498 Москва, Россия (Поступило в

Подробнее

Чупикин Дмитрий Анатольевич ДОЗИМЕТРИЧЕСКОЕ ПЛАНИРОВАНИЕ ДИСТАНЦИОННОЙ ЛУЧЕВОЙ ТЕРАПИИ НА ОСНОВЕ МЕТОДА МОНТЕ-КАРЛО

Чупикин Дмитрий Анатольевич ДОЗИМЕТРИЧЕСКОЕ ПЛАНИРОВАНИЕ ДИСТАНЦИОННОЙ ЛУЧЕВОЙ ТЕРАПИИ НА ОСНОВЕ МЕТОДА МОНТЕ-КАРЛО На правах рукописи Чупикин Дмитрий Анатольевич ДОЗИМЕТРИЧЕСКОЕ ПЛАНИРОВАНИЕ ДИСТАНЦИОННОЙ ЛУЧЕВОЙ ТЕРАПИИ НА ОСНОВЕ МЕТОДА МОНТЕ-КАРЛО Специальность 01.04.16 Физика атомного ядра и элементарных частиц

Подробнее

3. Взаимодействие альфа-частиц с веществом. Введение

3. Взаимодействие альфа-частиц с веществом. Введение 3. Взаимодействие альфа-частиц с веществом Введение Альфа-частицы представляют собой ядра гелия 4 2He, имеют заряд +2e, состоят из 4 нуклонов 2 протонов и 2 нейтронов. Альфа-частицы возникают при радиоактивном

Подробнее

Реферат на тему: Состав и размер ядра. Опыт Резерфорда.

Реферат на тему: Состав и размер ядра. Опыт Резерфорда. Московский государственный университет им. М. В. Ломоносова Физический факультет Реферат на тему: Состав и размер ядра. Опыт Резерфорда. Работу выполнила студентка 209 группы Минаева Евгения. «Москва,

Подробнее

ПРОТОННАЯ ТЕРАПИЯ Proton Therapy Center Czech s.r.o.

ПРОТОННАЯ ТЕРАПИЯ Proton Therapy Center Czech s.r.o. ПРОТОННАЯ ТЕРАПИЯ Proton Therapy Center Czech s.r.o. 1. Введение Несмотря на прогресс, достигнутый в результате введения современных методов лечения, злокачественные опухоли остаются одной из самых больших

Подробнее

= 0. (1) E 2z. ϕ(x, y, z) = f 1 (x) f 2 (y) f 3 (z). (3) f 1 (x) + f ) f 3 (z) f. f 3 (z) = γ2. f 3 (z) = Ae γz + B e γz. f 1 (x) = γ2 1, z=0 E 1z

= 0. (1) E 2z. ϕ(x, y, z) = f 1 (x) f 2 (y) f 3 (z). (3) f 1 (x) + f ) f 3 (z) f. f 3 (z) = γ2. f 3 (z) = Ae γz + B e γz. f 1 (x) = γ2 1, z=0 E 1z 1. Электростатика 1 1. Электростатика Урок 6 Разделение переменных в декартовых координатах 1.1. (Задача 1.49) Плоскость z = заряжена с плотностью σ (x, y) = σ sin (αx) sin (βy), где σ, α, β постоянные.

Подробнее

5.2. УРАВНЕНИЕ ШРЁДИНГЕРА

5.2. УРАВНЕНИЕ ШРЁДИНГЕРА 5 УРАВНЕНИЕ ШРЁДИНГЕРА Основным динамическим уравнением квантовой механики описывающим эволюцию состояния микрочастицы во времени является уравнение Шрѐдингера: () Ĥ оператор Гамильтона в общем случае

Подробнее

1 основные понятия и величины; опросы на семинарах, решение задач Л1 Л2 Л3

1 основные понятия и величины; опросы на семинарах, решение задач Л1 Л2 Л3 Аннотация рабочей программы дисциплины (модуля) «Дозиметрия ионизирующих излучений» по направлению 14.03.02 Ядерные физика и технологии (профиль Радиационная безопасность человека и окружающей среды) 1.

Подробнее

ПРОХОЖДЕНИЕ РЕНТГЕНОВСКОГО ИЗЛУЧЕНИЯ ЧЕРЕЗ СРЕДЫ ИМЕЮЩИЕ СТРУКТУРУ ГОМОГЕННЫХ ФРАКТАЛОВ

ПРОХОЖДЕНИЕ РЕНТГЕНОВСКОГО ИЗЛУЧЕНИЯ ЧЕРЕЗ СРЕДЫ ИМЕЮЩИЕ СТРУКТУРУ ГОМОГЕННЫХ ФРАКТАЛОВ Вестник КРАУНЦ. Физ.-мат. науки. 2014. 2(9). C. 53-58. ISSN 2079-6641 УДК 517.955 ПРОХОЖДЕНИЕ РЕНТГЕНОВСКОГО ИЗЛУЧЕНИЯ ЧЕРЕЗ СРЕДЫ ИМЕЮЩИЕ СТРУКТУРУ ГОМОГЕННЫХ ФРАКТАЛОВ В.А. Чуриков Томский политехнический

Подробнее

КВАНТОВАЯ ОПТИКА. Задачи

КВАНТОВАЯ ОПТИКА. Задачи КВАНТОВАЯ ОПТИКА. Задачи 1 Качественные задачи 1. Зависит ли энергия фотона от длины волны света? 2. Металлическая пластинка под действием рентгеновских лучей зарядилась. Каков знак заряда? 3. Чему равно

Подробнее

Экспериментальная ядерная физика

Экспериментальная ядерная физика Национальный исследовательский ядерный университет «МИФИ» Кафедра 7 экспериментальной ядерной физики и космофизики А.И. Болоздыня Экспериментальная ядерная физика Лекция 16 Общие закономерности ядерных

Подробнее

5.1 Задача двух тел в квантовой механике. + U(r 1 r 2 ). (5.1) 2m 1. 2m 2. В координатном представлении гамильтониан имеет вид:

5.1 Задача двух тел в квантовой механике. + U(r 1 r 2 ). (5.1) 2m 1. 2m 2. В координатном представлении гамильтониан имеет вид: Глава 5 Центральное поле 5.1 Задача двух тел в квантовой механике Задача двух тел имеет важное значение как в классической, так и в квантовой механике. Естественно, в квантовой механике задача также сводится

Подробнее

8. Теория входных состояний.

8. Теория входных состояний. 8. Теория входных состояний.. Одной из важнейших характеристик ядерных реакций является функция возбуждения, т.е. зависимость сечения реакции от энергии налетающей частицы. Первоначально в энергетической

Подробнее

ДИФРАКЦИЯ ЭЛЕКТРОМАГНИТНЫХ ВОЛН НА БЕСКОНЕЧНОМ ДИЭЛЕКТРИЧЕСКОМ ЦИЛИНДРЕ, НАХОДЯЩЕМСЯ ПОД ПЛОСКОЙ ЗЕМНОЙ ПОВЕРХНОСТЬЮ

ДИФРАКЦИЯ ЭЛЕКТРОМАГНИТНЫХ ВОЛН НА БЕСКОНЕЧНОМ ДИЭЛЕКТРИЧЕСКОМ ЦИЛИНДРЕ, НАХОДЯЩЕМСЯ ПОД ПЛОСКОЙ ЗЕМНОЙ ПОВЕРХНОСТЬЮ III Всероссийская конференция «Радиолокация и радиосвязь» ИРЭ РАН, 6-30 октября 009 г ДИФРАКЦИЯ ЭЛЕКТРОМАГНИТНЫХ ВОЛН НА БЕСКОНЕЧНОМ ДИЭЛЕКТРИЧЕСКОМ ЦИЛИНДРЕ, НАХОДЯЩЕМСЯ ПОД ПЛОСКОЙ ЗЕМНОЙ ПОВЕРХНОСТЬЮ

Подробнее

МОДЕЛИРОВАНИЕ РАСПРЕДЕЛЕНИЙ ПОГЛОЩЕННОЙ ДОЗЫ МЕТОДОМ МОНТЕ-КАРЛО В ТЕХНОЛОГИИ ФОТОН-ЗАХВАТНОЙ ТЕРАПИИ

МОДЕЛИРОВАНИЕ РАСПРЕДЕЛЕНИЙ ПОГЛОЩЕННОЙ ДОЗЫ МЕТОДОМ МОНТЕ-КАРЛО В ТЕХНОЛОГИИ ФОТОН-ЗАХВАТНОЙ ТЕРАПИИ 12 МОДЕЛИРОВАНИЕ РАСПРЕДЕЛЕНИЙ ПОГЛОЩЕННОЙ ДОЗЫ МЕТОДОМ МОНТЕ-КАРЛО В ТЕХНОЛОГИИ ФОТОН-ЗАХВАТНОЙ ТЕРАПИИ И.В. Щегольков, И.Н. Шейно, В.Ф. Хохлов, А.А. Липенгольц Федеральный медицинский биофизический центр

Подробнее

Все члены уравнения Шредингера для атома водорода (и водородоподобных

Все члены уравнения Шредингера для атома водорода (и водородоподобных Лекция Решение уравнения Шредингера для атома водорода и водородоподобных атомов Уравнение Шредингера для атома водорода Все члены уравнения Шредингера для атома водорода и водородоподобных атомов имеющих

Подробнее

Экспериментальная ядерная физика

Экспериментальная ядерная физика Национальный исследовательский ядерный университет «МИФИ» Кафедра 7 экспериментальной ядерной физики и космофизики А.И. Болоздыня Экспериментальная ядерная физика Лекция 23 Нуклон-нуклонные взаимодействия

Подробнее

ВВЕДЕНИЕ 1.1. Электрон как пробная частица

ВВЕДЕНИЕ 1.1. Электрон как пробная частица Глава 1 ВВЕДЕНИЕ 1.1. Электрон как пробная частица Рассеяние электронов на ядрах и нуклонах является важнейшим способом исследования внутренней структуры этих частиц [1-4]. Изучение внутренней структуры

Подробнее

12.1.ФОРМАТ 12.1.1. ВАРИАНТ 1 (LO=1): МНОЖЕСТВЕННОСТИ

12.1.ФОРМАТ 12.1.1. ВАРИАНТ 1 (LO=1): МНОЖЕСТВЕННОСТИ 1 12. ФАЙЛ 12. МНОЖЕСТВЕННОСТИ ОБРАЗОВАНИЯ ФОТОНОВ И ВЕРОЯТНОСТИ ПЕРЕХОДОВ Файл 12 может использоваться для представления энергетических зависимостей сечений образования фотонов либо через множественности,

Подробнее