Пусть дана квадратная матрица второго порядка. a11 a A = Определитель второго порядка, соответствующий матрице (1), определяется равенством

Размер: px
Начинать показ со страницы:

Download "Пусть дана квадратная матрица второго порядка. a11 a A = Определитель второго порядка, соответствующий матрице (1), определяется равенством"

Транскрипт

1 Пусть дана квадратная матрица второго порядка ( ) a11 a A = 12 a 21 a 22 (1) Определитель второго порядка, соответствующий матрице (1), определяется равенством a 11 a 12 a 21 a 22 = a 11a 22 a 12 a 21 Обычно определитель матрицы A обозначается следующими символами A, det A или буквой.

2 Определитель третьего порядка, a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33 = a 11a 22 a 33 + a 12 a 23 a 31 + a 13 a 21 a 32 a 13 a 22 a 31 a 11 a 23 a 32 a 12 a 21 a 33. Схема вычисления определителя: (+) ( ) a 11 a 12 a 13 a 11 a 12 a 21 a 22 a 23 a 21 a 22 a 31 a 32 a 33 a 31 a 32 a 11 a 12 a 13 a 11 a 12 a 21 a 22 a 23 a 21 a 22 a 31 a 32 a 33 a 31 a 32

3 Рассмотрим множество, состоящее из натуральных чисел 1, 2,..., n. Будем обозначать перестановки этих чисел (то есть последовательную их запись в некотором порядке без повторений) как (i 1, i 2..., i n ). Заметим, что полное число таких различных перестановок равно n!. Пример Для множества {1, 2, 3} существуют 6 перестановок: (1, 2, 3), (2, 1, 3), (3, 1, 2), (1, 3, 2), (2, 3, 1), (3, 2, 1).

4 Определение Будем говорить, что числа i p и i q образуют в перестановке инверсию (нарушение порядка), если при p < q имеет место i p > i q. Полное число инверсий в перестановке (i 1, i 2..., i n ) будем обозначать N(i 1, i 2..., i n ). Пример Например, N(3, 1, 4, 2) = 3. (3,1,4,2) < 2, 3 > 1, + 1 < 3, 3 < 4, 1 < 4, 3 > 2, + 2 < 3, 1 < 4, 2 < 4, 1 < 2, 3 < 4, 4 > 2, +

5 Пусть дана квадратная матрица A = (a ij ), i, j = 1, n. Определение Определителем квадратной матрицы A называется число (или выражение), которое равно: det A = ( 1) N(i1,i2...,in) a 1i1 a 2i2... a nin, (i 1,i 2...,i n) где (i 1, i 2..., i n ) всевозможные различные перестановки, образованные из номеров столбцов матрицы A. Поскольку в данном определении указано, что сумма берется по всем возможным различным перестановкам, то число слагаемых равно n!.

6 a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33 = ( 1) N(i1,i2,i3) a 1i1 a 2i2 a 3i3 = (i 1,i 2,i 3) = ( 1) N(1,2,3) a 11 a 22 a 33 + ( 1) N(2,1,3) a 12 a 21 a 33 + ( 1) N(3,1,2) a 13 a 21 a ( 1) N(1,3,2) a 11 a 23 a 32 +( 1) N(2,3,1) a 12 a 23 a 31 +( 1) N(3,2,1) a 13 a 22 a 31 = N(1, 2, 3) = 0, N(2, 1, 3) = 1, N(3, 1, 2) = 2, N(1, 3, 2) = 1, N(2, 3, 1) = 2, N(3, 2, 1) = 3. = a 11 a 22 a 33 a 12 a 21 a 33 + a 13 a 21 a 32 a 11 a 23 a 32 + a 12 a 23 a 31 a 13 a 22 a 31 = = a 11 a 22 a 33 + a 12 a 23 a 31 + a 13 a 21 a 32 a 13 a 22 a 31 a 11 a 23 a 32 a 12 a 21 a 33.

7 Если элементы какой-либо строки представлены в виде суммы двух слагаемых, то определитель равен сумме двух определителей, в первом из которых элементы отмеченной строки равны первым слагаемым, во втором вторым. Это свойство становится прозрачнее, если от словесной формулировки перейти к формуле: a a 1n a a 1n a a 1n b k1 + c k1... b kn + c kn = b k1... b kn + c k1... c kn a n1... a nn a n1... a nn a n1... a nn

8 Если все элементы какой-либо строки определителя имеют общий множитель, то этот общий множитель можно вынести за знак определителя. a a 1n a a 1n λa k1... λa kn = λ a k1... a kn a n1... a nn a n1... a nn

9 Определитель не изменится, если ко всем элементам какой-либо строки прибавить соответствующие элементы другой строки, умноженные на одно и то же число. a a 1n a a 1n a i1... a in a i1 + λa j1... a in + λa jn = a j1... a jn a j1... a jn a n1... a nn a n1... a nn При перестановке двух строк матрицы знак ее определителя меняется на противоположный. Определитель матрицы, содержащей две одинаковые строки, равен нулю.

10 При транспонировании матрицы ее определитель не меняется. Определитель произведения матриц равен произведению их определителей, то есть det(ab) = det A det B.

11 Минором, соответствующим элементу a ij, для данного определителя называется определитель матрицы, получающейся из матрицы исходного определителя посредством вычеркивания i-й строки и j-гo столбца, обозначается символом M ij. 1 a 12 a 13 a 14 A = a 21 a 22 a 23 a 24 1 a 12 a a 33 a 34, M 23 = 0 2 a a = 6 Величина A ij = ( 1) i+j M ij называется алгебраическим дополнением элемента a ij. A 23 = ( 1) 2+3 M 23 = M 23 = 6.

12 a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33 = a 11 a 12 a 13 a a a 23 a 31 a 32 a 33 = a 11 a 12 a 13 = a a 31 a 32 a 33 + a 11 a 12 a 13 0 a 22 0 a 31 a 32 a 33 + a 11 a 12 a a 23 a 31 a 32 a 33 = a 11 a 12 a 13 = a a 31 a 32 a 33 + a a 11 a 12 a a 31 a 32 a 33 + a a 11 a 12 a a 31 a 32 a 33 = = a 21 A 21 + a 22 A 22 + a 23 A 23.

13 Рассмотрим случая M 11= a 21 a 22 a 23 a 31 a 32 a 33 M 11 = ( 1) N(i1,i2,i3) a 1i1 a 2i2 a 3i3 = ( 1) N(1,i2,i3) a 2i2 a 3i3, (i 1,i 2,i 3) (1,i 2,i 3) Ясно, что N(1, i 2, i 3 ) = N(i 2, i 3 ), ибо 1 на первом месте не образует инверсий с другими элементами. Поэтому M 11 = ( 1) N(i2,i3) a 2i2 a 3i3 = a 22 a 23 a 32 a 33 (i 2,i 3)

14 a 11 a 12 a a 31 a 32 a 33 = ( 1) a 11 a 12 a 13 a 31 a 32 a 33 = ( 1)2+1 a 12 a 13 a 32 a 33 = = M 21 = A 21 a 11 a 12 a a 31 a 32 a 33 = ( 1) a 12 a 11 a 13 a 32 a 31 a 33 = ( 1)2+2 a 11 a 13 a 31 a 33 = = ( 1) 2+2 M 22 = A 22 a 11 a 12 a a 31 a 32 a 33 = ( 1) a 13 a 11 a 12 a 33 a 31 a 32 = ( 1)2+3 a 11 a 12 a 31 a 32 = = ( 1) 2+3 M 23 = A 23

15 Теорема Имеет место равенство где δ ij = { 1, i = j, 0, i j, a i1 A j a in A jn = δ ij det A, символ Кронекера. По определению алгебраического дополнения имеем det A = a i1 A i a in A in, то есть утверждение теоремы для случая i = j справедливо.

16 Пусть теперь i j. Тогда выражение a i1 A j a in A jn, можно рассматривать как разложение по j-ой строке определителя матрицы, у которой j-я строка совпадает с i-ой строкой. a i1 A j a in A jn = a 11 a a 1n a 21 a a 2n a i1 a i2... a in i-я строка a i1 a i2... a in j-я строка a n1 a n2... a nn Но такой определитель равен нулю.

17 Определение Матрица A 1 называется обратной квадратной матрице A, если выполнены равенства AA 1 = A 1 A = E. Теорема Если обратная матрица существует, то она единственна. Действительно, пусть некоторая матрица A имеет обратный A 1. Пусть существует матрица такая, что AB = BA = E, тогда B = EB = (A 1 A)B = A 1 (AB) = A 1 E = A 1.

18 Для существования матрицы обратной к A необходимо и достаточно, чтобы выполнялось условие det A 0. Матрица A, для которой det A 0, называется невырожденной, а матрица, для которой det A = 0 вырожденной.

19 Теорема Для любой невырожденной матрицы существует обратная матрица A 11 A A n1 A 1 = 1 A 12 A A n A 1n A 2n... A nn Найдем произведение матриц A и A 1. [AA 1 ] ij = n k=1 a ik a 1 kj = n k=1 a ik A jk = 1 n a ik A jk = 1 δ ij = δ ij. Аналогичное соотношение получается и для произведения A 1 A. Таким образом, AA 1 = A 1 A = E. k=1

20 Пусть дана система n линейных алгебраических уравнений с n неизвестными a 11 x 1 +a 12 x a 1n x n = b 1, a 21 x 1 +a 22 x a 2n x n = b 2, a n1 x 1 +a n2 x a nn x n = b n. В матричной форме эта СЛАУ может быть записана так: a 11 a a 1n x 1 b 1 a 21 a a 2n x 2... = b a n1 a n2... a nn x n b n Кратко это записывается так: AX = B, где квадратная матрица A = (a ij ) матрица коэффициентов, а столбцы X = (x i ) и B = (b j ) столбцы неизвестных и правых частей, соответственно.

21 Теорема Для любой невырожденной матрицы A и любой матрицы B линейное относительно X уравнение AX = B имеет единственное решение. Достаточно умножить левую и правую части уравнения слева на A 1 : A 1 AX = A 1 B, EX = A 1 B и X = A 1 B. Проверкой является подстановка произведения A 1 B в уравнение вместо X.

22 Найти это единственное решение можно по правилу Крамера. Рассмотрим i-ю компоненту матрицы-столбца A 1 B, являющегося единственным решением матричного уравнения СЛАУ. A 11 A A n1 b 1 X = 1 A B = 1 A 12 A A n2 b A 1i A 2i... A ni... b i A 1n A 2n... A nn x i = A 1ib 1 + A 2i b A ni b n = i a 11 a b 1... a 1n A 1i b 1 + A 2i b A ni b n = a 21 a b 2... a 2n = i a n1 a n2... b n... a nn b n

23 Теорема (Правило Крамера) Если 0, то существует единственное решение СЛАУ, определяемое формулами x i = i, где i определитель матрицы, получаемой из матрицы A, заменой i-го столбца столбцом правых частей B.

24 Рассмотрим систему m линейных алгебраических уравнений с n неизвестными вида a 11 x 1 +a 12 x a 1n x n =b 1, a 21 x 1 +a 22 x a 2n x n =b 2, a m1 x 1 +a m2 x a mn x n =b m. (2) СЛАУ называется однородной, если b i = 0, для i = 1, m, в противном случае неоднородной. Решением СЛАУ (26) называется упорядоченный набор n чисел α 1, α 2,..., α n, что каждое из уравнений обращается в тождество после замены в нём неизвестных x i, соответствующими числами α i, i = 1, n. Если СЛАУ не имеет ни одного решения, то она называется несовместной, в противном случае совместной. Совместная СЛАУ называется определенной, если она обладает одним-единственным решением, и неопределенной, если решений больше чем одно. Две СЛАУ называются эквивалентными, если обе они либо несовместны, либо совместны и обладают одними и теми же решениями.

25 Эффективным вычислительным алгоритмом, позволяющим либо находить решение СЛАУ, либо устанавливать факт её несовместности, является метод Гаусса. Суть этого метода заключается в приведении СЛАУ к наиболее простому виду последовательностью так называемых элементарных преобразований, каждое из которых не меняет решения системы уравнений.

26 Под «наиболее простым» видом СЛАУ мы будем понимать трапецевидную форму, для которой возможно рекуррентное нахождение неизвестных путем решения на каждом шаге процедуры линейного уравнения с одним неизвестным. Возможно, что при этом придется изменить нумерацию неизвестных. a 11 x a 1r x r +a 1r+1 x r a 1n x n = b 1, a 22 x a 2r+1 x r a 2n x n = b 2, a rr x r +a rr+1 x r a rn x n = b r. 0 =b r+1, = b m.

27 Элементарными преобразованиями системы линейных уравнений называем умножение уравнения на отличное от нуля число, перестановку уравнений местами, прибавление к одному уравнению другого, умноженного на некоторое число. Ясно, что элементарные преобразования переводят систему в эквивалентную.

28 .... a i1 x a in x n = b i,.... a k1 x a kn x n = b k, a i1 x a in x n = b i,.... (a k1 + λa i1 )x (a kn + λa in )x n = b k + λb i,.... Пусть α 1,..., α n будет произвольное решение системы (3). Эти числа удовлетворяют, видно, всем уравнениям системы (4), кроме k-го. Они удовлетворяют, однако, и k-у уравнению системы это уравнение выражается через i-е и k-е уравнения системы (3). a k1 x 1 + λa i1 x a kn x n + λa in x n = b k + λb i, a k1 x a kn x n + λ(a i1 x a in x n ) = b k + λb i, (3) (4)

29 В силу обратимости элементарных преобразований (i-е уравнение системы(4), умножить на число λ) проведенное рассуждение показывает также, что, обратно, любое решение системы (4) будет решением системы (3).

30 Перейдем теперь к изложению метода Гаусса. Пусть в системе линейных уравнений a 11 x 1 +a 12 x a 1n x n =b 1, a 21 x 1 +a 22 x a 2n x n =b 2, a 31 x 1 +a 32 x a 3n x n =b 3, a m1 x 1 +a m2 x a mn x n =b m. a Мы исключим x 1 из всех уравнений, начиная со 2-го, для чего ко второму уравнению почленно прибавим первое, помноженное на a 21 a 11, к третьему почленно прибавим первое, помноженное на a 31 a 11, и т. д.

31 После этого система линейных уравнений (26) заменится эквивалентной системой a 11 x 1 + a 12 x a 1n x n = b 1, a 22 x a 2n x n = b 2, a 32 x a 3n x n = b 3, a m2 x a mnx n = b m. Коэффициенты при неизвестных и свободные члены в последних (n 1) уравнениях определяются формулами a ij = a ij a i1 a 1j = a ija 11 a i1 a 1j a 11 a 1j a i1 a ij =, a 11 a 11 a 11 b i = b i a i1 a 11 b 1, i = 2, m, j = 2, n.

32 Пусть a Тогда таким же образом мы исключим x 2 из всех уравнений, начиная со 3-го, для чего к третьему, к четвёртому и следующим уравнениям почленно прибавим второе, помноженное соответственно на числа a 32 a 22, a 42 a 22,... Получим систему линейных уравнений a 11 x 1 + a 12 x 2 + a 13 x a 1n x n = b 1, a 22 x 2 + a 23 x a 2n x n = b 2, a 33 x a 3n x n = b 3, a m3 x a mnx n = b m. (5) Будем применять этот процесс до тех пор, пока возможно.

33 a 11 x a 1r x r +a 1r+1 x r a 1n x n = b 1, a 22 x a 1r x r +a 1r+1 x r a 1n x n = b 1, a rr x r +a rr+1 x r a rn x n = b r. 0 =b r+1, = b m. Если хотя бы одно из чисел b r+1..., b m отлично от нуля, то данная система линейных уравнений и, следовательно, исходная система линейных уравнений несовместны.

34 Пусть b r+1 =... = b m = 0. a 11 x a 1r x r +a 1r+1 x r a 1n x n =b 1, a 22 x a 1r x r +a 1r+1 x r a 1n x n =b 1, a rr x r +a rr+1 x r a rn x n =b r. Назовем неизвестные x 1, x 2,..., x r главными, а остальные неизвестные, если таковые имеются, свободными (если r = n, то решение этой системы единственно). Придадим свободным неизвестным произвольные значения и подставим их в уравнения системы, тогда для x r получится уравнение a rr x r = b, где b = b r a rr+1 x r+1... a rn x n, которое имеет единственное решение. Подставляя найденное значение в первые r 1 уравнений и поднимаясь так снизу вверх по системе, мы убедимся в том, что значения для главных неизвестных определяются однозначно при любых заданных значениях для свободных неизвестных.

35 Элементарные преобразования иногда удобно производить не над системой, а над ее расширенной матрицей a 11 a 12...a 1n b 1 a 21 a 22...a 2n b a m1 a m2...a mn b m К элементарным преобразованиям матрицы относятся: перестановка строк; перестановка столбцов основной матрицы; удаление нулевой строки; умножение строки на ненулевое число; прибавить к элементам строки соответствующие элементы любого другой строки, умноженные на один и тот же множитель. Решение неоднородной системы уравнений не изменится также и при использовании любой комбинации элементарных операций.


Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование»

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ Московский государственный технический университет имени НЭ Баумана Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» ÀÍ Êàíàòíèêîâ, ÀÏ Êðèùåíêî ÀÍÀËÈÒÈ

Подробнее

ЛИНЕЙНАЯ АЛГЕБРА Матрицы, определители, системы линейных уравнений

ЛИНЕЙНАЯ АЛГЕБРА Матрицы, определители, системы линейных уравнений МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ ХАРЬКОВСКИЙ НАЦИОНАЛЬНЫЙ УНИВЕРСИТЕТ имени ВН КАРАЗИНА ЮМ ДЮКАРЕВ, ИЮ СЕРИКОВА ЛИНЕЙНАЯ АЛГЕБРА Матрицы, определители, системы линейных уравнений Учебно-методическое

Подробнее

МАТРИЦЫ, ОПРЕДЕЛИТЕЛИ, СИСТЕМЫ ЛИНЕЙНЫХ УРАВНЕНИЙ

МАТРИЦЫ, ОПРЕДЕЛИТЕЛИ, СИСТЕМЫ ЛИНЕЙНЫХ УРАВНЕНИЙ МАТРИЦЫ, ОПРЕДЕЛИТЕЛИ, СИСТЕМЫ ЛИНЕЙНЫХ УРАВНЕНИЙ Метод окаймляющих миноров нахождения ранга матрицы A = m m m минора Минором k порядка k матрицы А называется любой определитель k-го порядка этой матрицы,

Подробнее

тема 1. МАТРИЦЫ квадратная матрица n-го порядка, квадратной матрицы А называются диагональными, а их совокупность главной диагональю матрицы.

тема 1. МАТРИЦЫ квадратная матрица n-го порядка, квадратной матрицы А называются диагональными, а их совокупность главной диагональю матрицы. Линейная алгебра заочное обучение тема МАТРИЦЫ ) Основные определения теории матриц Определение Матрицей размерностью называется прямоугольная таблица чисел состоящая из строк и столбцов Эта таблица обычно

Подробнее

Аналитическая геометрия. Лекция 1.3

Аналитическая геометрия. Лекция 1.3 Московский Государственный Технический Университет им. Н.Э. Баумана Факультет Фундаментальные науки Кафедра Высшая математика Аналитическая геометрия Модуль 1. Матричная алгебра. Векторная алгебра Лекция

Подробнее

3. Ранг матрицы ба- зисным минором Рангом матрицы A

3. Ранг матрицы ба- зисным минором Рангом матрицы A 3. Ранг матрицы ОПРЕДЕЛЕНИЕ. Минор M k матрицы называется ее базисным минором, если он отличен от нуля, а все миноры матрицы более высокого порядка k+, k+,, t равны нулю. ОПРЕДЕЛЕНИЕ. Рангом матрицы называется

Подробнее

Линейная алгебра Лекция 5. Системы линейных уравнений

Линейная алгебра Лекция 5. Системы линейных уравнений Линейная алгебра Лекция 5 Системы линейных уравнений Основные понятия и определения Математика является инструментом для описания окружающего нас мира Линейные уравнения дают некоторые простейшие описания

Подробнее

Теорема Кронекера-Капелли. Решение СЛАУ методом Гаусса.

Теорема Кронекера-Капелли. Решение СЛАУ методом Гаусса. Теорема Кронекера-Капелли. Решение СЛАУ методом Гаусса. Ранг матрицы. Рассмотрим прямоугольную матрицу имеющую m строк и столбцов: A. m m m Выделим в этой матрице произвольные строк и столбцов. Элементы

Подробнее

И называется число находимое следующим образом:

И называется число находимое следующим образом: Определители. Теория матриц и определителей является введением в линейную алгебру. Наиважнейшим применением этой теории является решение систем линейных уравнений. Понятие определителя ввел в году немецкий

Подробнее

4. Системы линейных уравнений 1. Основные понятия

4. Системы линейных уравнений 1. Основные понятия 4. Системы линейных уравнений. Основные понятия Уравнение называется линейным если оно содержит неизвестные только в первой степени и не содержит произведений неизвестных т.е. если оно имеет вид + + +

Подробнее

ЭЛЕМЕНТЫ ЛИНЕЙНОЙ АЛГЕБРЫ Матрицы и действия над ними Матрицей размера m n называется прямоугольная таблица, имеющая m строк и n столбцов. ...

ЭЛЕМЕНТЫ ЛИНЕЙНОЙ АЛГЕБРЫ Матрицы и действия над ними Матрицей размера m n называется прямоугольная таблица, имеющая m строк и n столбцов. ... ы ЭЛЕМЕНТЫ ЛИНЕЙНОЙ АЛГЕБРЫ Матрицы и действия над ними Матрицей размера m называется прямоугольная таблица, имеющая m строк и столбцов m m m суммы двух Суммой двух ( ) и ( ) строк и столбцов называется

Подробнее

1. Линейные системы и матрицы

1. Линейные системы и матрицы 1. Линейные системы и матрицы 1. Дать определение умножения матриц. Коммутативна ли эта операция? Ответ пояснить. Произведение C матриц A и B определяется как m p m p A B ij = A ik B kj. Операция не коммутативна.

Подробнее

Параграф посвящен вопросу о существовании матрицы, обратной к данной, и способам вычисления такой матрицы. AB = BA = E,

Параграф посвящен вопросу о существовании матрицы, обратной к данной, и способам вычисления такой матрицы. AB = BA = E, 31 Обратная матрица Параграф посвящен вопросу о существовании матрицы, обратной к данной, и способам вычисления такой матрицы 1 Критерий существования и свойства обратной матрицы Определение Пусть A квадратная

Подробнее

называется произведением матрицы A размера компонентам сомножителей матричного произведения иллюстрирует рис

называется произведением матрицы A размера компонентам сомножителей матричного произведения иллюстрирует рис Тема 06 Произведение матриц и его свойства Обращение квадратных матриц и его свойства Детерминант квадратной матрицы -го порядка и его свойства Миноры дополнительные миноры и алгебраические дополнения

Подробнее

M 23 = 1 0 = 1 ( 3) 0 ( 5) = 3 Очевидно, что для квадратной матрицы порядка n=3 вычисляется девять миноров.

M 23 = 1 0 = 1 ( 3) 0 ( 5) = 3 Очевидно, что для квадратной матрицы порядка n=3 вычисляется девять миноров. Лекция 2. Определители Миноры и алгебраические дополнения. Рекуррентное определение определителя n-го порядка. Соответствие между общим определением и правилом Саррюса при n=3. Основные свойства определителей.

Подробнее

A, называется рангом матрицы и обозначается rg A.

A, называется рангом матрицы и обозначается rg A. Тема 7 Ранг матрицы Базисный минор Теорема о ранге матрицы и ее следствия Системы m линейных уравнений с неизвестными Теорема Кронекера- Капелли Фундаментальная система решений однородной системы линейных

Подробнее

ЛЕКЦИЯ N9. Общая теория систем линейных уравнений. 1.Системы линейных уравнений. - A / - расширенная матрица.

ЛЕКЦИЯ N9. Общая теория систем линейных уравнений. 1.Системы линейных уравнений. - A / - расширенная матрица. ЛЕКЦИЯ N9. Общая теория систем линейных уравнений..системы линейных уравнений....правило Крамера.... 3.Ранг матрицы. Базисный минор.... 3 4.Однородные системы.... 4 5.Матричное решение систем линейных

Подробнее

Системы линейных уравнений. Методы решения систем линейных уравнений. Линейная алгебра (лекция 5) / 51

Системы линейных уравнений. Методы решения систем линейных уравнений. Линейная алгебра (лекция 5) / 51 Системы линейных уравнений Системы линейных уравнений. Методы решения систем линейных уравнений Линейная алгебра (лекция 5) 06.10.2012 2 / 51 Система m линейных уравнений с n неизвестными имеет вид: Линейная

Подробнее

ЛИНЕЙНАЯ АЛГЕБРА. Методические указания и варианты курсовых заданий

ЛИНЕЙНАЯ АЛГЕБРА. Методические указания и варианты курсовых заданий Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования «МАТИ» - Российский государственный технологический университет им КЭЦиолковского ЛИНЕЙНАЯ

Подробнее

Параллельные вычисления в. Библиотеки решения систем линейных уравнений. Параллельная реализация CPU / GPU

Параллельные вычисления в. Библиотеки решения систем линейных уравнений. Параллельная реализация CPU / GPU Параллельные вычисления в томографии Библиотеки решения систем линейных уравнений Параллельная реализация CPU / GPU Решение системы линейных алгебраических уравнений методом Гаусса Дана система из s линейных

Подробнее

A A. Убедимся в том, что матрица B является обратной к A. В самом деле, рассмотрим произведение матриц A и B:

A A. Убедимся в том, что матрица B является обратной к A. В самом деле, рассмотрим произведение матриц A и B: Лекция 3. Обратная матрица. Определитель произведения квадратных матриц. Обратная матрица, определение, основные свойства. Критерий обратимости матрицы. Элементарные преобразования матриц. Нахождение обратных

Подробнее

РАЗДЕЛ 1. Линейная алгебра.

РАЗДЕЛ 1. Линейная алгебра. -й семестр. РАЗДЕЛ. Линейная алгебра. Основные определения. Определение. Матрицей размера mn где m- число строк n- число столбцов называется таблица чисел расположенных в определенном порядке. Эти числа

Подробнее

Пространство арифметических векторов. Лекции 2-3

Пространство арифметических векторов. Лекции 2-3 Пространство арифметических векторов Лекции 2-3 1 Пространство Rn арифметических векторов Рассмотрим множество упорядоченных наборов из n чисел x ( x 1, x 2, x ). Каждый такой набор x n будем называть

Подробнее

Системы линейных алгебраических уравнений. Основные понятия Системой линейных алгебраических уравнений (СЛАУ) называется система вида...

Системы линейных алгебраических уравнений. Основные понятия Системой линейных алгебраических уравнений (СЛАУ) называется система вида... Системы линейных алгебраических уравнений Основные понятия Системой линейных алгебраических уравнений (СЛАУ) называется система вида a a a, a a a,, a a a Ее можно представить в виде матричного уравнения

Подробнее

ТЕОРИЯ МАГИЧЕСКИХ МАТРИЦ

ТЕОРИЯ МАГИЧЕСКИХ МАТРИЦ Лекции по Математике. Вып. ТММ-1 Ю. В. Чебраков ТЕОРИЯ МАГИЧЕСКИХ МАТРИЦ Санкт-Петербург, 2010 УДК 511+512 ББК 22 Ч345 Р е ц е н з е н т ы: Доктор физико-математических наук, профессор С.-Петерб. техн.

Подробнее

Матрицы и определители. Ранг матрицы. Линейная алгебра (лекция 4) 2 / 40

Матрицы и определители. Ранг матрицы. Линейная алгебра (лекция 4) 2 / 40 Линейная алгебра Матрицы и определители Ранг матрицы Линейная алгебра (лекция 4) 2 / 40 Выберем в матрице A размера m n произвольные k строк и k столбцов, k min(m, n). Линейная алгебра (лекция 4) 3 / 40

Подробнее

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование»

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ Московский государственный технический университет имени Н.Э. Баумана Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» À.Í. Êàíàòíèêîâ,

Подробнее

Практикум по линейной алгебре

Практикум по линейной алгебре Министерство образования и науки РФ Нижегородский государственный университет им. Н.И. Лобачевского В.К. Вильданов Практикум по линейной алгебре Учебно-методическое пособие Нижний Новгород Издательство

Подробнее

Глава 1. Начала линейной алгебры

Глава 1. Начала линейной алгебры Глава Начала линейной алгебры Системы линейных уравнений Систему m линейных уравнений с n неизвестными будем записывать в следующем виде: + + + + n n = + + + + nn = m + m + m + + mnn = m () Здесь n неизвестные

Подробнее

Федеральное агентство по образованию. Государственное образовательное учреждение высшего профессионального образования

Федеральное агентство по образованию. Государственное образовательное учреждение высшего профессионального образования Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования «МАТИ» Российский государственный технологический университет им. К.Э. Циолковского

Подробнее

Глава 4. Матрицы. Лекция Основные понятия.

Глава 4. Матрицы. Лекция Основные понятия. Лекция 0. Глава 4. Матрицы. В этой главе мы рассмотрим основные виды матриц, операции над ними, понятие ранга матрицы и их приложения к решению систем линейных алгебраических уравнений. 4.. Основные понятия.

Подробнее

ПЕРЕСТАНОВКИ. Определение 1. Перестановкой степени n называется любая упорядоченная запись натуральных чисел 1, 2, 3,..., n в строчку одно за другим.

ПЕРЕСТАНОВКИ. Определение 1. Перестановкой степени n называется любая упорядоченная запись натуральных чисел 1, 2, 3,..., n в строчку одно за другим. ПЕРЕСТАНОВКИ Определение 1 Перестановкой степени n называется любая упорядоченная запись натуральных чисел 1, 2, 3,, n в строчку одно за другим Например, 2, 4, 3, 1, 5 Это перестановка пятой степени Вообще

Подробнее

Определители. Решение систем линейных алгебраических уравнений методом Крамера

Определители. Решение систем линейных алгебраических уравнений методом Крамера Занятие Определители. Решение систем линейных алгебраических уравнений методом Крамера.. Определители. Пусть дана квадратная таблица чисел А, т.е. матрица из двух строк и двух столбцов. Заметим сразу,

Подробнее

Решение систем линейных уравнений

Решение систем линейных уравнений Решение систем линейных уравнений Л. В. Калиновская, Ю. Л. Калиновский Министерство образования Московской области Государственное бюджетное образовательное учреждение высшего образования Московской области

Подробнее

Метод Гаусса (метод исключения неизвестных)

Метод Гаусса (метод исключения неизвестных) Метод Гаусса (метод исключения неизвестных) Две системы называются эквивалентными (равносильными) если их решения совпадают. К эквивалентной системе можно перейти с помощью элементарных преобразований

Подробнее

Системы линейных алгебраических уравнений

Системы линейных алгебраических уравнений Системы линейных алгебраических уравнений Рассмотрим систему m линейных алгебраических уравнений с неизвестными b b () m m m bm Система () называется однородной если все её свободные члены b b b m равны

Подробнее

Системы линейных алгебраических уравнений

Системы линейных алгебраических уравнений ) Понятие СЛАУ ) Правило Крамера решения СЛАУ ) Метод Гаусса 4) Ранг матрицы, теорема Кронекера-Капелли 5) Решение СЛАУ обращением матриц, понятие обусловленности матриц ) Понятие СЛАУ О. СЛАУ система

Подробнее

Рассмотрим первый способ решения СЛУ по правилу Крамера для системы трех уравнений с тремя неизвестными: Ответ рассчитывается по формулам Крамера:

Рассмотрим первый способ решения СЛУ по правилу Крамера для системы трех уравнений с тремя неизвестными: Ответ рассчитывается по формулам Крамера: Рассмотрим первый способ решения СЛУ по правилу Крамера для системы трех уравнений с тремя неизвестными: Ответ рассчитывается по формулам Крамера: D, D1, D2, D3 это определители Определителем третьего

Подробнее

АЛГЕБРА И ГЕОМЕТРИЯ. СИСТЕМЫ ЛИНЕЙНЫХ УРАВНЕНИЙ. Электронные методические указания

АЛГЕБРА И ГЕОМЕТРИЯ. СИСТЕМЫ ЛИНЕЙНЫХ УРАВНЕНИЙ. Электронные методические указания МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ "САМАРСКИЙ ГОСУДАРСТВЕННЫЙ АЭРОКОСМИЧЕСКИЙ УНИВЕРСИТЕТ

Подробнее

ЛИНЕЙНАЯ АЛГЕБРА. Методические указания и варианты курсовых заданий

ЛИНЕЙНАЯ АЛГЕБРА. Методические указания и варианты курсовых заданий Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования «МАТИ» - Российский государственный технологический университет им КЭЦиолковского ЛИНЕЙНАЯ

Подробнее

Ликбез по курсу Алгебра для студентов 1 курса, 1-ый семестр

Ликбез по курсу Алгебра для студентов 1 курса, 1-ый семестр Ликбез по курсу Алгебра для студентов 1 курса, 1-ый семестр лектор Панов АН 1 Наиболее часто задаваемые вопросы Вопрос 11 Что такое перестановка и что такое знак перестановки? Ответ Перестановка это множество

Подробнее

Глава 3. Определители

Глава 3. Определители Глава Определители Перестановки Q Рассмотрим множество первых натуральных чисел которое обозначим как Определение Перестановкой P множества элементов из Q назовем любое расположение этих элементов в некотором

Подробнее

Тема 3: Определители

Тема 3: Определители Тема 3: Определители А. Я. Овсянников Уральский федеральный университет Институт математики и компьютерных наук кафедра алгебры и дискретной математики алгебра и геометрия для физиков-инженеров Начало

Подробнее

2. Решение произвольных систем линейных алгебраических уравнений

2. Решение произвольных систем линейных алгебраических уравнений Решение произвольных систем линейных алгебраических уравнений Выше рассматривались в основном квадратные системы линейных уравнений число неизвестных в которых совпадает с числом уравнений В настоящем

Подробнее

a 2 1x 1 + a 2 2x a 2 nx n = b 2, a m 1 x 1 + a m 2 x a m n x n = b m. a m 1 a m 2... a m n b m AX = B, a 1 1 a

a 2 1x 1 + a 2 2x a 2 nx n = b 2, a m 1 x 1 + a m 2 x a m n x n = b m. a m 1 a m 2... a m n b m AX = B, a 1 1 a Лекция 5 СИСТЕМЫ ЛИНЕЙНЫХ УРАВНЕНИЙ Рассмотрим систему, состоящую из m линейных уравнений с n неизвестными: a x + a x + + a nx n = b, a x + a x + + a nx n = b, a m x + a m x + + a m n x n = b m Сокращенно

Подробнее

Разработчик курса доцент кафедры высшей математики кандидат технических наук Некряч Е.Н.(2009 г.) ПЕРЕСТАНОВКИ

Разработчик курса доцент кафедры высшей математики кандидат технических наук Некряч Е.Н.(2009 г.) ПЕРЕСТАНОВКИ Разработчик курса доцент кафедры высшей математики кандидат технических наук Некряч Е.Н.(2009 г.) ПЕРЕСТАНОВКИ Определение 1. Перестановкой степени n называется любая упорядоченная запись натуральных чисел

Подробнее

1. Системы линейных алгебраических уравнений. Основные понятия. Метод Гаусса

1. Системы линейных алгебраических уравнений. Основные понятия. Метод Гаусса Системы линейных алгебраических уравнений Основные понятия Метод Гаусса Основные понятия Равносильные системы Определение Система линейных алгебраических уравнений (или система линейных уравнений) имеет

Подробнее

ЛЕКЦИЯ 2 СИСТЕМЫ ЛИНЕЙНЫХ УРАВНЕНИЙ ОПРЕДЕЛИТЕЛИ МАЛЫХ ПОРЯД- КОВ

ЛЕКЦИЯ 2 СИСТЕМЫ ЛИНЕЙНЫХ УРАВНЕНИЙ ОПРЕДЕЛИТЕЛИ МАЛЫХ ПОРЯД- КОВ ЛЕКЦИЯ 2 СИСТЕМЫ ЛИНЕЙНЫХ УРАВНЕНИЙ ОПРЕДЕЛИТЕЛИ МАЛЫХ ПОРЯД- КОВ 1 ЭКВИВАЛЕНТНОСТЬ ЛИНЕЙНЫХ СИСТЕМ Пусть нам дана еще одна линейная система того же размера a 11x 1 + a 12x 2 + + a 1nx n = b 1, a 21x 1

Подробнее

Тема 1-7: Определители

Тема 1-7: Определители Тема 1-7: Определители А. Я. Овсянников Уральский федеральный университет Институт математики и компьютерных наук кафедра алгебры и дискретной математики алгебра и геометрия для механиков (1 семестр) Перестановки

Подробнее

1. Крамеровские системы линейных алгебраических уравнений

1. Крамеровские системы линейных алгебраических уравнений Крамеровские системы линейных алгебраических уравнений Матричная форма записи системы линейных уравнений Пусть дана система из т линейных уравнений с п неизвестными : () С введением понятия матриц и операций

Подробнее

ЛИНЕЙНАЯ АЛГЕБРА Матрицы и определители. Системы линейных алгебраических уравнений. Составитель: доцент кафедры ИТОиМ, к. ф.-м. н. Романова Н.Ю.

ЛИНЕЙНАЯ АЛГЕБРА Матрицы и определители. Системы линейных алгебраических уравнений. Составитель: доцент кафедры ИТОиМ, к. ф.-м. н. Романова Н.Ю. ЛИНЕЙНАЯ АЛГЕБРА Матрицы и определители. Системы линейных алгебраических уравнений. Составитель: доцент кафедры ИТОиМ, к. ф.-м. н. Романова Н.Ю. Широкое использование математических методов в современном

Подробнее

a 1 1 a 1 2 a 1 n a 2 1 a 2 2 a 2 n a m 1 a m 2 a m n a 11 a 12 a 1n a 21 a 22 a 2n a m1 a m2 a mn

a 1 1 a 1 2 a 1 n a 2 1 a 2 2 a 2 n a m 1 a m 2 a m n a 11 a 12 a 1n a 21 a 22 a 2n a m1 a m2 a mn Лекция 8 Матрицы Системы линейных уравнений Алгоритм Гаусса МАТРИЦЫ Основные определения Матрица размера m n прямоугольная таблица из чисел (элементов матрицы), состоящая из m строк и n столбцов Нумерация

Подробнее

Тема: Системы линейных уравнений

Тема: Системы линейных уравнений Линейная алгебра и аналитическая геометрия Тема: Системы линейных уравнений (Метод Гаусса. Системы линейных однородных уравнений) Лектор Рожкова С.В. 0 г. Метод Гаусса (метод исключения неизвестных) Две

Подробнее

2. ОПРЕДЕЛИТЕЛИ. СВОЙСТВА. МЕТОДЫ ВЫЧИСЛЕНИЯ. порядка n > 1 называется число

2. ОПРЕДЕЛИТЕЛИ. СВОЙСТВА. МЕТОДЫ ВЫЧИСЛЕНИЯ. порядка n > 1 называется число ОПРЕДЕЛИТЕЛИ СВОЙСТВА МЕТОДЫ ВЫЧИСЛЕНИЯ ИНДУКТИВНОЕ ОПРЕДЕЛЕНИЕ Пусть квадратная матрица порядка Определитель (детерминант) квадратной матрицы это число det, которое ставится в соответствие матрице и вычисляется

Подробнее

3. Определители высших порядков

3. Определители высших порядков Определители высших порядков Понятие определителя п-го порядка и его основные свойства Понятие определителя п-го порядка вводится на основе изучения структуры определителей -го и -го порядков Так например

Подробнее

где А матрица коэффициентов системы (основная матрица):

где А матрица коэффициентов системы (основная матрица): Лекции Глава Системы линейных уравнений Основные понятия Системой m линейных уравнений с неизвестными называется система вида: m + + + + + m + + + + m = = = m () где неизвестные величины числа ij (i =

Подробнее

Лекция 1.6. Методы решения СЛАУ: матричный и Гаусса

Лекция 1.6. Методы решения СЛАУ: матричный и Гаусса Лекция 6 Методы решения СЛАУ: матричный и Гаусса Аннотация: Доказывается теорема о базисном миноре Кратко излагается суть метода Гаусса Приводятся пример решения системы этим методом Доказывается теорема

Подробнее

2 5 8 A = a) A = 2 3. ; b) B =

2 5 8 A = a) A = 2 3. ; b) B = Занятие 1 Определители 11 Матричные обозначения Основные определения Матрицей размера m n, или m n-матрицей, называется таблица чисел (или других математических выражений с m строками и n столбцами Матрица

Подробнее

Матрицы и определители. Обратная матрица. Линейная алгебра (лекция 3) 2 / 23

Матрицы и определители. Обратная матрица. Линейная алгебра (лекция 3) 2 / 23 Линейная алгебра Матрицы и определители Обратная матрица Линейная алгебра (лекция 3) 2 / 23 Квадратная матрица называется вырожденной (или особенной), если ее определитель равен нулю, и невырожденной (или

Подробнее

Тема 2: Матрицы и действия над ними

Тема 2: Матрицы и действия над ними Тема 2: Матрицы и действия над ними А. Я. Овсянников Уральский федеральный университет Институт математики и компьютерных наук кафедра алгебры и дискретной математики алгебра и геометрия для физиков-инженеров

Подробнее

Лекция 1.5. Действия над матрицами. Обратная матрица. Ранг матрицы

Лекция 1.5. Действия над матрицами. Обратная матрица. Ранг матрицы Лекция 5 Действия над матрицами Обратная матрица Ранг матрицы Аннотация: Вводятся операции алгебры матриц Доказывается что всякая невырожденная матрица имеет обратную Выводится формула решения СЛАУ с помощью

Подробнее

Лекция II. II.1. Определитель матрицы. a 1 a 2 b 1 b 2. = a 1b 2 a 2 b 1.

Лекция II. II.1. Определитель матрицы. a 1 a 2 b 1 b 2. = a 1b 2 a 2 b 1. Лекция II II.1. Определитель матрицы С каждой квадратной матрицей A можно связать некоторое число, называемое её определителем или детерминантом (обозначается deta или A ). Определителем (или детерминантом)

Подробнее

2.1.3 Методы решений системы линейных алгебраических уравнений

2.1.3 Методы решений системы линейных алгебраических уравнений Методы решений системы линейных алгебраических уравнений Метод обратной матрицы Рассмотрим частный случай системы ) когда число уравнений равно числу неизвестных те m Система уравнений имеет вид: ì ) î

Подробнее

Матрицы и определители. Линейная алгебра

Матрицы и определители. Линейная алгебра Матрицы и определители Линейная алгебра Определение матрицы Числовой матрицей размера mxn называется совокупность чисел, расположенных в виде таблицы, содержащей m строк и n столбцов 11 21... m1 12......

Подробнее

ЗАНЯТИЕ 3 Метод Крамера и матричный метод решения систем линейных уравнений

ЗАНЯТИЕ 3 Метод Крамера и матричный метод решения систем линейных уравнений ЗАНЯТИЕ Метод Крамера и матричный метод решения систем линейных уравнений Сведения из теории Уравнение называется линейным, если оно содержит неизвестные только в первой степени и не содержит произведений

Подробнее

ВЕКТОРНЫЕ ПРОСТРАНСТВА. 9. Векторное пространство над полем

ВЕКТОРНЫЕ ПРОСТРАНСТВА. 9. Векторное пространство над полем Г л а в а 2 ВЕКТОРНЫЕ ПРОСТРАНСТВА 9 Векторное пространство над полем 91 Аксиоматика Пусть задано поле P, элементы которого будем называть скалярами и некоторое множество V, элементы которого будем называть

Подробнее

ОПРЕДЕЛИТЕЛИ МАТРИЦ А.В.СТЕПАНОВ. R n. i 1,...,i m=1

ОПРЕДЕЛИТЕЛИ МАТРИЦ А.В.СТЕПАНОВ. R n. i 1,...,i m=1 ОПРЕДЕЛИТЕЛИ МАТРИЦ А.В.СТЕПАНОВ Содержание. Полилинейные отображения 2. Перестановки 3. Определение и формула для вычисления определителя 2 4. Свойства определителя 2 5. Формула для элементов обратной

Подробнее

МАТЕМАТИКА. Составитель: старший преподаватель Н. А. Кривошеева

МАТЕМАТИКА. Составитель: старший преподаватель Н. А. Кривошеева МАТЕМАТИКА Методические рекомендации и задания контрольной работы для студентов, обучающихся по заочной форме по направлениям «Менеджмент», «Экономика» Составитель: старший преподаватель Н А Кривошеева

Подробнее

Ранг также не меняется при вычеркивании из матрицы нулевой строки и при транспонировании матрицы.

Ранг также не меняется при вычеркивании из матрицы нулевой строки и при транспонировании матрицы. .4. Ранг матрицы. В матрице А выделим k строк и столбцов из элементов, стоящих на их пересечении составим определитель. Будем называть его минором k-того порядка. Если минор k-того порядка отличен от нуля,

Подробнее

МОДУЛЬ 1. Векторная алгебра и аналитическая геометрия. Элементы линейной алгебры

МОДУЛЬ 1. Векторная алгебра и аналитическая геометрия. Элементы линейной алгебры МОДУЛЬ Векторная алгебра и аналитическая геометрия Элементы линейной алгебры Леция Понятие матрицы и определителя Свойства определителей Аннотация: В лекции указывается на применение определителей для

Подробнее

МАТРИЦЫ И СИСТЕМЫ ЛИНЕЙНЫХ АЛГЕБРАИЧЕСКИХ УРАВНЕНИЙ

МАТРИЦЫ И СИСТЕМЫ ЛИНЕЙНЫХ АЛГЕБРАИЧЕСКИХ УРАВНЕНИЙ САРАТОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ НГ ЧЕРНЫШЕВСКОГО Кафедра дифференциальных уравнений и прикладной математики АС Суслова МАТРИЦЫ И СИСТЕМЫ ЛИНЕЙНЫХ АЛГЕБРАИЧЕСКИХ УРАВНЕНИЙ Учебное пособие

Подробнее

Ликбез по курсу Алгебра для студентов специальностей Математика и Механика, 1-ый семестр

Ликбез по курсу Алгебра для студентов специальностей Математика и Механика, 1-ый семестр Ликбез по курсу Алгебра для студентов специальностей Математика и Механика, 1-ый семестр лектор Панов АН 1 Основные определения и формулировки основных теорем Вопрос 11 Что такое перестановка и что такое

Подробнее

0.5 setgray0 0.5 setgray1

0.5 setgray0 0.5 setgray1 5 setgray 5 setgray Лекция 3 СИСТЕМЫ ЛИНЕЙНЫХ УРАВНЕНИЙ Основные определения Рассмотрим следующую систему m уравнений относительно n неизвестных в поле K: a x + a 2 + + a nx n b, a 2 x + a 2 2 + + a2 nx

Подробнее

4. ОБРАТНАЯ МАТРИЦА. Рассмотрим проблему определения операции, обратной умножению матриц., определитель которой отличен от нуля, имеет

4. ОБРАТНАЯ МАТРИЦА. Рассмотрим проблему определения операции, обратной умножению матриц., определитель которой отличен от нуля, имеет ОБРАТНАЯ МАТРИЦА ОПРЕДЕЛЕНИЕ, СУЩЕСТВОВАНИЕ И ЕДИНСТВЕННОСТЬ ОБРАТНОЙ МАТРИЦЫ Рассмотрим проблему определения операции, обратной умножению матриц Пусть квадратная матрица порядка n Матрица, удовлетворяющая

Подробнее

Глава 2. Системы линейных равнений

Глава 2. Системы линейных равнений Глава истемы линейных равнений Метод Гаусса решения систем линейных алгебраических уравнений истема m линейных алгебраических уравнений (ЛАУ) с неизвестными имеет вид a a a b a a a b () am am am bm Здесь

Подробнее

3. РАНГ МАТРИЦЫ 3.1 ЛИНЕЙНАЯ ЗАВИСИМОСТЬ И ЛИНЕЙНАЯ НЕЗАВИСИМОСТЬ СТРОК (СТОЛБЦОВ) МАТРИЦЫ

3. РАНГ МАТРИЦЫ 3.1 ЛИНЕЙНАЯ ЗАВИСИМОСТЬ И ЛИНЕЙНАЯ НЕЗАВИСИМОСТЬ СТРОК (СТОЛБЦОВ) МАТРИЦЫ . РАНГ МАТРИЦЫ. ЛИНЕЙНАЯ ЗАВИСИМОСТЬ И ЛИНЕЙНАЯ НЕЗАВИСИМОСТЬ СТРОК (СТОЛБЦОВ) МАТРИЦЫ Матрицы-столбцы (матрицы-строки) будем называть далее просто столбцами (соответственно строками) и обозначать в этой

Подробнее

образуют главную диагональ матрицы. Вторую диагональ матрицы называют побочной.

образуют главную диагональ матрицы. Вторую диагональ матрицы называют побочной. МАТРИЦЫ И ОПРЕДЕЛИТЕЛИ МАТРИЦ Матрицы При решении ряда прикладных задач используются специальные математические выражения, называемые матрицами О п р е д е л е н и е Матрицей размерности m n называется

Подробнее

ЭЛЕМЕНТЫ ЛИНЕЙНОЙ АЛГЕБРЫ. I часть

ЭЛЕМЕНТЫ ЛИНЕЙНОЙ АЛГЕБРЫ. I часть Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Московский государственный университет путей сообщения» Институт экономики и финансов Кафедра «Математика»

Подробнее

Математика (БкПл-100)

Математика (БкПл-100) Математика (БкПл-100) М.П. Харламов 2011/2012 учебный год, 1-й семестр Лекция 3. Элементы линейной алгебры (матрицы, определители, системы линейных уравнений и формулы Крамера) 1 Тема 1: Матрицы 1.1. Понятие

Подробнее

ЛЕКЦИЯ 4 ЭЛЕМЕНТАРНЫЕ ПРЕОБРАЗОВАНИЯ МАТРИЦ. РАНГ МАТРИЦЫ

ЛЕКЦИЯ 4 ЭЛЕМЕНТАРНЫЕ ПРЕОБРАЗОВАНИЯ МАТРИЦ. РАНГ МАТРИЦЫ ЛЕКЦИЯ ЭЛЕМЕНТАРНЫЕ ПРЕОБРАЗОВАНИЯ МАТРИЦ РАНГ МАТРИЦЫ Элементарные преобразования матриц Эквивалентные матрицы Получение обратной матрицы с помощью элементарных преобразований Линейная зависимость (независимость)

Подробнее

РАЗЛОЖЕНИЕ ОПРЕДЕЛИТЕЛЯ ПО СТРОКЕ ИЛИ СТОЛБЦУ ОПРЕДЕЛИТЕЛЬ МАТРИЦЫ С УГ- ЛОМ НУЛЕЙ ОПРЕДЕЛИТЕЛЬ ПРОИЗВЕДЕНИЯ

РАЗЛОЖЕНИЕ ОПРЕДЕЛИТЕЛЯ ПО СТРОКЕ ИЛИ СТОЛБЦУ ОПРЕДЕЛИТЕЛЬ МАТРИЦЫ С УГ- ЛОМ НУЛЕЙ ОПРЕДЕЛИТЕЛЬ ПРОИЗВЕДЕНИЯ ЛЕКЦИЯ 11 РАЗЛОЖЕНИЕ ОПРЕДЕЛИТЕЛЯ ПО СТРОКЕ ИЛИ СТОЛБЦУ ОПРЕДЕЛИТЕЛЬ МАТРИЦЫ С УГ- ЛОМ НУЛЕЙ ОПРЕДЕЛИТЕЛЬ ПРОИЗВЕДЕНИЯ 1 РАЗЛОЖЕНИЕ ОПРЕДЕЛИТЕЛЯ ПО СТРОКЕ ИЛИ СТОЛБЦУ Определение 1. Определитель матрицы,

Подробнее

ЭЛЕМЕНТЫ ЛИНЕЙНОЙ АЛГЕБРЫ. 1. Матрицы и операции над ними. 2. Определители и их свойства. Вычисление определителей. А =

ЭЛЕМЕНТЫ ЛИНЕЙНОЙ АЛГЕБРЫ. 1. Матрицы и операции над ними. 2. Определители и их свойства. Вычисление определителей. А = ЭЛЕМЕНТЫ ЛИНЕЙНОЙ ЛГЕБРЫ. Матрицы и операции над ними.. Определители и их свойства. Вычисление определителей. Матрицы и операции над ними Определение. Матрицей размера m n, где m- число строк, n- число

Подробнее

Лекция 1: Определители второго и третьего порядков

Лекция 1: Определители второго и третьего порядков Лекция 1: Определители второго и третьего порядков Уральский федеральный университет, Институт математики и компьютерных наук, кафедра алгебры и дискретной математики Вступительные замечания Мы начинаем

Подробнее

ЛЕКТОР Доцент Скориков Александр Васильевич Кафедра высшей математики Веб- страница: Трубопроводный факультет.

ЛЕКТОР Доцент Скориков Александр Васильевич Кафедра высшей математики Веб- страница:  Трубопроводный факультет. ЛЕКТОР Доцент Скориков Александр Васильевич Кафедра высшей математики Веб- страница: http://kvm.gubkin.ru Трубопроводный факультет. 1 Литература по линейной и векторной алгебре и аналитической геометрии

Подробнее

Министерство образования и науки Российской Федерации Дальневосточный федеральный университет Инженерная школа

Министерство образования и науки Российской Федерации Дальневосточный федеральный университет Инженерная школа Министерство образования и науки Российской Федерации Дальневосточный федеральный университет Инженерная школа РЕШЕНИЕ СИСТЕМ ЛИНЕЙНЫХ АЛГЕБРАИЧЕСКИХ УРАВНЕНИЙ Методическое пособие по проведению практических

Подробнее

СБОРНИК ЗАДАЧ И УПРАЖНЕНИЙ ПО ЛИНЕЙНОЙ АЛГЕБРЕ

СБОРНИК ЗАДАЧ И УПРАЖНЕНИЙ ПО ЛИНЕЙНОЙ АЛГЕБРЕ МИНИСТЕРСТВО ТРАНСПОРТА РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ УЛЬЯНОВСКОЕ ВЫСШЕЕ АВИАЦИОННОЕ УЧИЛИЩЕ ГРАЖДАНСКОЙ АВИАЦИИ (ИНСТИТУТ)

Подробнее

Лекция 12: Ранг матрицы

Лекция 12: Ранг матрицы Уральский федеральный университет, Институт математики и компьютерных наук, кафедра алгебры и дискретной математики Вступительные замечания В данной лекции изучается важная числовая характеристика матрицы

Подробнее

Семинар 7. Линейная алгебра

Семинар 7. Линейная алгебра 1 Семинар 7. Линейная алгебра Теоретические вопросы для самостоятельного изучения: 1. Определители и их свойства. 2. Матрица. Виды матриц. 3. Действия над матрицами 4. Обратная матрица. Решение матричных

Подробнее

... a n1 x 1 + a n2 x a nn x n = b n.

... a n1 x 1 + a n2 x a nn x n = b n. 5. КРАМЕРОВСКИЕ СИСТЕМЫ ЛИНЕЙНЫХ УРАВНЕНИЙ В этом параграфе будем рассматривать системы линейных уравнений, у которых количество неизвестных равно числу уравнений. В самом общем виде эта система может

Подробнее

ТРАНСПОНИРОВАНИЕ МАТРИЦ

ТРАНСПОНИРОВАНИЕ МАТРИЦ матрица Для любой матрицы ТРАНСПОНИРОВАНИЕ МАТРИЦ a a an a a an am am amn a a am a a am, an an amn получающаяся из матрицы заменой строк соответствующими столбцами, а столбцов соответствующими строками,

Подробнее

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование»

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ Московский государственный технический университет имени НЭ Баумана Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» ÀÍ Êàíàòíèêîâ,

Подробнее

ТЕМА 1. ЭЛЕМЕНТЫ ВЕКТОРНОЙ И ЛИНЕЙНОЙ АЛГЕБРЫ

ТЕМА 1. ЭЛЕМЕНТЫ ВЕКТОРНОЙ И ЛИНЕЙНОЙ АЛГЕБРЫ МЕТОДИЧЕСКИЕ УКАЗАНИЯ К РАСЧЕТНЫМ ЗАДАНИЯМ ПО КУРСУ ВЫСШЕЙ МАТЕМАТИКИ «ЭЛЕМЕНТЫ ЛИНЕЙНОЙ АЛГЕБРЫ И АНАЛИТИЧЕСКОЙ ГЕОМЕТРИИ ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИИ ОДНОГО ПЕРЕМЕННОГО» ЧАСТЬ I ТЕМА ЭЛЕМЕНТЫ

Подробнее

Лекция 10: Умножение матриц

Лекция 10: Умножение матриц Уральский федеральный университет, Институт математики и компьютерных наук, кафедра алгебры и дискретной математики Вступительные замечания В данной лекции вводится операция умножения матриц, изучаются

Подробнее

Тема 1: Системы линейных уравнений

Тема 1: Системы линейных уравнений Тема 1: Системы линейных уравнений А. Я. Овсянников Уральский федеральный университет Институт математики и компьютерных наук кафедра алгебры и дискретной математики алгебра и геометрия для физиков-инженеров

Подробнее

Лекция 5. Det-3 должен обладать свойствами, аналогичными свойствам det-2: (1) линейность по столбцам:

Лекция 5. Det-3 должен обладать свойствами, аналогичными свойствам det-2: (1) линейность по столбцам: Лекция 5 1. ОПРЕДЕЛИТЕЛЬ ТРЕТЬЕГО ПОРЯДКА 1.1. Определение. Определитель третьего порядка (сокращенно det-3) должен состоять из трех строк и трех столбцов чисел; будем считать его функцией его столбцов:

Подробнее

Линейная алгебра Лекция 2. Определители квадратных матриц

Линейная алгебра Лекция 2. Определители квадратных матриц Линейная алгебра Лекция. Определители квадратных матриц Введение Определитель или детерминант одно из основных понятий линейной алгебры. Определитель матрицы является многочленом от элементов квадратной

Подробнее

А.П. Иванова РЕШЕНИЕ ЗАДАЧ ЛИНЕЙНОЙ АЛГЕБРЫ В MATHCAD

А.П. Иванова РЕШЕНИЕ ЗАДАЧ ЛИНЕЙНОЙ АЛГЕБРЫ В MATHCAD Федеральное государственное бюджетное образовательное учреждение высшего образования «МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ПУТЕЙ СООБЩЕНИЯ ИМПЕРАТОРА НИКОЛАЯ II» Кафедра «Математический анализ» А.П.

Подробнее

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование»

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ Московский государственный технический университет имени Н.Э. Баумана Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» À.Í. Êàíàòíèêîâ,

Подробнее

Д.К. Агишева, С.А. Зотова, В.Б. Светличная МАТРИЦЫ И ИХ ПРИМЕНЕНИЕ К РЕШЕНИЮ СИСТЕМ ЛИНЕЙНЫХ УРАВНЕНИЙ

Д.К. Агишева, С.А. Зотова, В.Б. Светличная МАТРИЦЫ И ИХ ПРИМЕНЕНИЕ К РЕШЕНИЮ СИСТЕМ ЛИНЕЙНЫХ УРАВНЕНИЙ ДК Агишева СА Зотова ВБ Светличная МАТРИЦЫ И ИХ ПРИМЕНЕНИЕ К РЕШЕНИЮ СИСТЕМ ЛИНЕЙНЫХ УРАВНЕНИЙ Волгоград Тема Матрицы Основные действия над ними Обратная матрица Матричный способ решения систем линейных

Подробнее