Контрольная работа T=3. Задание 1. [1, стр. 2]

Save this PDF as:
 WORD  PNG  TXT  JPG

Размер: px
Начинать показ со страницы:

Download "Контрольная работа T=3. Задание 1. [1, стр. 2]"

Транскрипт

1 Дана матрица Контрольная работа A 0 T= Задание [, стр ] Определите ее размерность Выпишите характеристики этой матрицы: прямоугольная, квадратная, симметричная, единичная, нулевая, треугольная, диагональная, вырожденная, невырожденная Ответы обоснуйте Размерность матрицы х Характеристики матрицы: Так как число строк равно числу столбцов, то матрица не прямоугольная, а квадратная Симметрической называют такую матрицу, что Так как a a, то матрица не симметрическая единичная матрица х имеет вид: 0 0 E Значит А не единичная 4 Нулевая матрица х имеет вид: O Значит А не нулевая 5 Треугольная матрица под главной диагональю все элемнты нулевые Так как a 0, то матрица не треугольная 6 Диагональная матрица имеет все недиагональные элементы нулевые Так как a 0, то матрица не диагональная 7 Вычислим определитель матрицы А: A Так как A 0, то матрица А невырожденная (значит не является вырожденной)

2 Задание [, стр -4] С матрицей А, записанной в задании, выполните действия, если это возможно Если действие выполнить нельзя, объясните причину A A * A A Выполнить действие невозможно, тк операция сложения определена только для матриц одинаковой размерности A Выполнить действие невозможно, тк операция умножения определена только для матриц таких, что число столбцов первой матрицы () должно быть равно числу строк второй матрицы () * A Найдем транспонированную матрицу: * * A * A

3 Задание [, стр 6] Найдите матрицу, обратную матрице А, записанной в задании Выполните проверку A 0 Определитель матрицы А (из з): A Определитель не равен нулю, значит, A существует Вычислим алгебраические дополнения: 0 0 A 4 A A A A 0 A A 6 A A 0 0 Выписываем обратную матрицу по формуле: 4 6 A 0 Выполним проверку: A A E, где Е единичная матрица: 4 6 A A E Значит, все вычисления выполнены верно

4 Задание 4 [, стр 7-9] Решите систему линейных уравнений тремя разными способами: y z y y z а) методом Гаусса При помощи элементарных преобразований над строками упрощаем расширенную матрицу системы 0 0 A Â Таким образом, исходная система равносильна следующей y yz z y y 5 z 7 5 y z Система имеет единственное решение б) средствами матричного исчисления Запишем систему в матричном виде: 0 y z Или AX B, Откуда X A B 7 5 X ; ; 4

5 Вычислим определитель матрицы системы (из з): A Определитель не равен нулю, значит, A существует В задании нами вычислена обратная матрица: 4 6 A 0 Тогда решением системы является X A B те решение системы X ; ; в) по формулам Крамера Найдём определитель матрицы, полученной из матрицы системы заменой первого столбца на столбец свободных членов Найдём определитель матрицы, полученной из матрицы системы заменой второго столбца на столбец свободных членов Найдём определитель матрицы, полученной из матрицы системы заменой третьего столбца на столбец свободных членов По формулам Крамера найдем неизвестные: 7, 5 y, z, 7 5 те решением системы является X ; ; 5

6 Даны векторы a, 4,, b5,, Найдите: вектор c a 5b и его длину Задание 5 [, стр ] Угол между данными векторами Площадь параллелограмма, построенного на данных векторах как на сторонах ) c a 5b ; 5 5 5; 4 5 ; 5 6;; 7 c a b, Длина вектора с: c ) угол между векторами a и b ab cos a b a 4 9, b 5 5, cos угол между векторами a и b равен: 05 arccos 0 ) Площадь параллелограмма, построенного на данных векторах как на сторонах S a b Вычислим векторное произведение векторов: i j k 4 4 ab 4 i j k i 4 9 j 5 k 6 0 5i 7 j 6k Модуль векторного произведения равен площади параллелограмма: S ab

7 Задание 6 [, стр 4] Кривая второго порядка задана уравнением y 69 5 Определите ее вид, основные характеристики Запишите координаты центра и фокусов Изобразите эту кривую в декартовой системе координат Скорее всего, в условии задачи ошибка Чтобы кривая являлась кривой второго порядка, необходимо, чтобы были переменные во второй степени Пусть уравнение кривой имеет вид: y 69 5 Это каноническое уравнение эллипса: y, 5 Центр эллипса: A ;, Полуоси эллипса a, b 5 c a b, c 5 44, c Фокусы несмещенного эллипса: F c ;0, F c;0 Тогда фокусы смещенного эллипса: F ;0 5;, F ;0 9; Изобразим эллипс в декартовой системе координат: 7

8 Найдите следующие пределы: ) lim 0 ) lim lg ) lim Задание 7 [, стр 9-0, для п стр 7] 0 ) lim ) lim Разделим на переменную в старшей степени, встречаемой в выражении: 0 lim lim 0 0 lg lg 0 ) lim 0 Так как имеется неопределенность вида Бернулли: 0 0 lg lg lim lim lim lim, то применим правило Лопиталя- 8

9 Задание 8 [, стр 5] Найдите производные следующих функций: ) y ) y e e ) y (, стр64) y, y y 0 y e e, y e e y y 9

10 Задание 9 [, стр 9] 4 Выполните полное исследование функции и постройте ее график y ) Так как 4 0 при все х, то D y ; Область определения функции: Множество значений E y ; ) Четность функции: õ ó 4 4 y()= -y(-)- функция нечетная, график симметричен относительно начала координат ) Точки пересечения с осями координат: С осью OY =0, то 0 O 0;0 - пересечение с осью Оy y, значит, С осью Oх у= , O 0;0 - пересечение с осью Ох 4) Асимптоты графика: Вертикальных асимптот нет, т к нет точек разрыва lim lim lim lim y y 0 горизонтальная асимптота Так как имеется горизонтальная асимптота, то наклонных асимптот нет 5) Исследуем функцию на монотонность и экстремум: Найдем производную: y y 0, 4 0,, При переходе через точку значит, это тока максимума, знак производной меняется с плюса на минус, 0

11 y, 8 При переходе через точку значит это точка минимума y, 8 Функция возрастает на интервалах, знак производной меняется с минуса на плюс, ; ; Функция убывает на интервале ; 6) Найдем промежутки выпуклости и вогнутости и точки перегиба Вычислим вторую производную: 4 8õ y õ õ y 0, 8õ 9 4 0,, 0 При переходе через эти точки, знак второй производной меняется поэтому все точки являются точками перегиба 9 6 y, y, Функция выпукла вверх ; 0; Функция выпукла вниз ;0 ; 7) Построим график функции

12

13 Задание 0 [, стр 4] Задана функция двух переменных Вычислите f 0; f y ; 4 f ; y 7 y y Вычислим частные производные функции: По х:, f y 0; 0 6 По y: f f y, y y f y ; Тогда f 0; f y; 6 5 4

Лекция 5. Лекция 6. Лекция 7. Лекция 8.

Лекция 5. Лекция 6. Лекция 7. Лекция 8. Очная форма обучения. Бакалавры. I курс, I семестр. Направление 220700- «Автоматизация технологических процессов и производств» Дисциплина - «Математика». Лекции Лекция 1. Векторные и скалярные величины.

Подробнее

Решения типовых задач. Задача 1. Доказать по определению предела числовой последовательности, что lim. Решение. n 2n

Решения типовых задач. Задача 1. Доказать по определению предела числовой последовательности, что lim. Решение. n 2n Решения типовых задач Задача Доказать по определению предела числовой последовательности что n li n n Решение По определению число является пределом числовой последовательности n n n N если найдется натуральное

Подробнее

равны нулю. При формальных операциях с нулями обращаемся с ними как с бесконечно малыми.

равны нулю. При формальных операциях с нулями обращаемся с ними как с бесконечно малыми. Контрольная работа Тема Пределы и производные функций Найти пределы нижеследующих функций одной переменной (без правила Лопиталя) а) б) в) г) Пример а) Решение Определяем вид неопределенности При формальных

Подробнее

Лекция 3. Системы линейных алгебраических уравнений. 1. Чем отличается однородная система от неоднородной?

Лекция 3. Системы линейных алгебраических уравнений. 1. Чем отличается однородная система от неоднородной? КОНТРОЛЬНЫЕ ВОПРОСЫ К ЛЕКЦИЯМ. Раздел 1. Векторная и линейная алгебра. Лекция 1. Матрицы, операции над ними. Определители. 1. Определения матрицы и транспонированной матрицы.. Что называется порядком матрицы?

Подробнее

Лекция 3. Системы линейных алгебраических уравнений. 1. Чем отличается однородная система от неоднородной?

Лекция 3. Системы линейных алгебраических уравнений. 1. Чем отличается однородная система от неоднородной? . КОНТРОЛЬНЫЕ ВОПРОСЫ К ЛЕКЦИЯМ. Раздел 1. Векторная и линейная алгебра. Лекция 1. Матрицы, операции над ними. Определители. 1. Определения матрицы и транспонированной матрицы.. Что называется порядком

Подробнее

Найти х из уравнений:

Найти х из уравнений: Методические указания для обучающихся по освоению дисциплины (модуля) Планы практических занятий Матрицы и определители, системы линейных уравнений Матрицы Операции над матрицами Обратная матрица Элементарные

Подробнее

Математический анализ

Математический анализ Кафедра математики и информатики Математический анализ Учебно-методический комплекс для студентов ВПО, обучающихся с применением дистанционных технологий Модуль 4 Приложения производной Составитель: доцент

Подробнее

Если в качестве базисной переменной выбрать x, то общее решение: x = 4 8x + 5x, x, x R; базисное решение: x = 0, x = 0, x = 4. Ответ: 8.

Если в качестве базисной переменной выбрать x, то общее решение: x = 4 8x + 5x, x, x R; базисное решение: x = 0, x = 0, x = 4. Ответ: 8. 01 1. Найдите общее и базисное решения системы уравнений: 16x 10x + 2x = 8, 40x + 25x 5x = 20. Ответ: Если в качестве базисной переменной выбрать x, то общее решение: x = 1 2 + 5 8 x 1 8 x, x, x R; базисное

Подробнее

Пример решения варианта контрольной работы 1.

Пример решения варианта контрольной работы 1. Пример решения варианта контрольной работы Задание Вычислить определитель Решение: при решении подобных задач используются следующие свойства определителя: ) Если в определителе все элементы какой-либо

Подробнее

1.Областью определения функции является интервал x ( ;0) 3.Рассмотрим поведение функции в окрестностях точек разрыва. Точка x 0

1.Областью определения функции является интервал x ( ;0) 3.Рассмотрим поведение функции в окрестностях точек разрыва. Точка x 0 Построить график функции y Областью определения функции является интервал ( ;0) (0; ) Функция y является четной, тк y( ) y( ), а ( ) график функции симметричен относительно оси OY 3Рассмотрим поведение

Подробнее

Контрольные работы по дисциплине «Математика» для студентов направления ( ) «Технология и дизайн упаковочного производства»

Контрольные работы по дисциплине «Математика» для студентов направления ( ) «Технология и дизайн упаковочного производства» Контрольные работы по дисциплине «Математика» для студентов направления 676 (9) «Технология и дизайн упаковочного производства» Тематических перечень Линейная алгебра Векторная алгебра Аналитическая геометрия

Подробнее

Свойства определителя квадратной матрицы. Обратная

Свойства определителя квадратной матрицы. Обратная 3. СОДЕРЖАНИЕ КУРСА ЛЕКЦИЙ. Раздел 1. Векторная и линейная алгебра. 10 часов. Лекция 1. Матрицы, операции над ними. Определители. Определение матрицы. Обозначения матрицы. Элементы, строки, столбцы. Порядок

Подробнее

Свойства определителя квадратной матрицы. Обратная

Свойства определителя квадратной матрицы. Обратная СОДЕРЖАНИЕ КУРСА ЛЕКЦИЙ 1 Семестра Раздел 1. Векторная и линейная алгебра. 10 часов. Лекция 1. Матрицы, операции над ними. Определители. Определение матрицы. Обозначения матрицы. Элементы, строки, столбцы.

Подробнее

Министерство образования и науки Российской Федерации. Кафедра высшей математики. Элементы векторной и линейной алгебры. Аналитическая геометрия.

Министерство образования и науки Российской Федерации. Кафедра высшей математики. Элементы векторной и линейной алгебры. Аналитическая геометрия. Министерство образования и науки Российской Федерации Казанский государственный архитектурно-строительный университет Кафедра высшей математики Элементы векторной и линейной алгебры. Аналитическая геометрия.

Подробнее

Дифференциальное исчисление

Дифференциальное исчисление Дифференциальное исчисление Основные понятия и формулы Определение 1 Производной функции в точке называется предел отношения приращения функции к приращению аргумента, при условии, что приращение аргумента

Подробнее

Элементы высшей математики

Элементы высшей математики Кафедра математики и информатики Элементы высшей математики Учебно-методический комплекс для студентов СПО, обучающихся с применением дистанционных технологий Модуль Дифференциальное исчисление Составитель:

Подробнее

Контрольная работа 1. c 13 C = c 21 c 22 c 23 c 31 c 32 c 33. c 11 c 12

Контрольная работа 1. c 13 C = c 21 c 22 c 23 c 31 c 32 c 33. c 11 c 12 Контрольная работа. Даны матрицы A, B и D. Найти AB 9D, если: 4 7 ( ) 6 9 6 A = 3 9 7, B =, D = 3 8 3. 3 7 7 3 7 Перемножим матрицы A 3 и B 3. Результирующая будет C размера 3 3, состоящая из элементов

Подробнее

ТЕМАТИКА КОНТРОЛЬНЫХ РАБОТ ПО ДИСЦИПЛИНЕ «МАТЕМАТИКА» направление «Экология и природопользование» 1 семестр

ТЕМАТИКА КОНТРОЛЬНЫХ РАБОТ ПО ДИСЦИПЛИНЕ «МАТЕМАТИКА» направление «Экология и природопользование» 1 семестр ТЕМАТИКА КОНТРОЛЬНЫХ РАБОТ ПО ДИСЦИПЛИНЕ «МАТЕМАТИКА» направление «Экология и природопользование» семестр. Разложить вектор X по векторам P, Q, R. Систему решить ) методом Крамера, ) матричным методом,

Подробнее

Итоговый тест. Время выполнения 100 минут. Расстояние между точками A ( 1; равно. 1)5, 2)3, 3)41, 4)7 Ответ:1) 2

Итоговый тест. Время выполнения 100 минут. Расстояние между точками A ( 1; равно. 1)5, 2)3, 3)41, 4)7 Ответ:1) 2 Итоговый тест. Время выполнения минут. Расстояние между точками A ( ; ) и B( ;) ), ), ), )7 Ответ:) равно Координаты середины отрезка, соединяющего точки A ( ; ) и B ( ;) ) (;); ) (;), ) (;), ) (;) Ответ:)

Подробнее

ИССЛЕДОВАНИЕ ФУНКЦИЙ. Достаточные условия возрастания и убывания функции:

ИССЛЕДОВАНИЕ ФУНКЦИЙ. Достаточные условия возрастания и убывания функции: ИССЛЕДОВАНИЕ ФУНКЦИЙ Достаточные условия возрастания и убывания функции: Если производная дифференцируемой функции положительна внутри некоторого промежутка Х, то она возрастает на этом промежутке Если

Подробнее

Министерство образования Республики Беларусь БЕЛОРУССКИЙ НАЦИОНАЛЬНЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ. Кафедра «Высшая математика 3»

Министерство образования Республики Беларусь БЕЛОРУССКИЙ НАЦИОНАЛЬНЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ. Кафедра «Высшая математика 3» Министерство образования Республики Беларусь БЕЛОРУССКИЙ НАЦИОНАЛЬНЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ Кафедра «Высшая математика» ПРОГРАММНЫЕ ВОПРОСЫ И КОНТРОЛЬНЫЕ ЗАДАНИЯ по курсу «Математика. -й семестр» для

Подробнее

Вопросы к экзамену по математике для студентов ИСиА (1 курс, 1, 2 и 9 гр) специальности , семестр

Вопросы к экзамену по математике для студентов ИСиА (1 курс, 1, 2 и 9 гр) специальности , семестр Вопросы к экзамену по математике для студентов ИСиА ( курс,, и 9 гр) специальности 6, 6 семестр Теоретическая часть часть Матрицы Действия с ними Определители квадратных матриц Свойства Миноры и алгебраические

Подробнее

Демонстрационный вариант Найдите общее и базисное решения системы уравнений: выбрав в качестве базисных переменных x и x.

Демонстрационный вариант Найдите общее и базисное решения системы уравнений: выбрав в качестве базисных переменных x и x. Демонстрационный вариант 01 1. Найдите общее и базисное решения системы уравнений: x + x + 3x = 26, 2x 12x x = 22, x + 3x + 2x = 20, выбрав в качестве базисных переменных x и x. 2. Найдите базис системы

Подробнее

ПРИЛОЖЕНИЯ ПРОИЗВОДНОЙ

ПРИЛОЖЕНИЯ ПРОИЗВОДНОЙ М и н и с т е р с т в о о б р а з о в а н и я и н а у к и Р о с с и й с к о й Ф е д е р а ц и и Федеральное государственное автономное образовательное учреждение высшего профессионального образования Национальный

Подробнее

МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ СТУДЕНТОВ ПО ДИСЦИПЛИНЕ «МАТЕМАТИКА».

МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ СТУДЕНТОВ ПО ДИСЦИПЛИНЕ «МАТЕМАТИКА». Приложение 3 к рабочей учебной программе дисциплины МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ СТУДЕНТОВ ПО ДИСЦИПЛИНЕ «МАТЕМАТИКА». Практическое занятие 1 Тема: «Установки. Инструктажи по пожарной безопасности и по технике

Подробнее

1 раздел. Матрицы и определители.

1 раздел. Матрицы и определители. Министерство образования и науки РФ еверный (рктический) федеральный университет им МЛомоносова Кафедра математики Примерные задания к экзамену по математике ( часть) для студентов 9 группы ИЭИТ направление

Подробнее

Конспект лекций по высшей математике

Конспект лекций по высшей математике Министерство образования Республики Беларусь Учреждение образования «Брестский государственный технический университет» Кафедра высшей математики Конспект лекций по высшей математике для студентов экономических

Подробнее

тема 1. МАТРИЦЫ квадратная матрица n-го порядка, квадратной матрицы А называются диагональными, а их совокупность главной диагональю матрицы.

тема 1. МАТРИЦЫ квадратная матрица n-го порядка, квадратной матрицы А называются диагональными, а их совокупность главной диагональю матрицы. Линейная алгебра заочное обучение тема МАТРИЦЫ ) Основные определения теории матриц Определение Матрицей размерностью называется прямоугольная таблица чисел состоящая из строк и столбцов Эта таблица обычно

Подробнее

Часть 1. Линейная алгебра. Аналитическая геометрия

Часть 1. Линейная алгебра. Аналитическая геометрия Часть Линейная алгебра Аналитическая геометрия Задача Вычислить определитель 6 5 5 6 79 4 8 6 0 0 6 7 6 8 0 5 9 4 0 4 0 5 6 0 6 9 7 9 7 9 8 8 5 8 6 8 6 4 8 5 9 5 9 7 9 7 7 7 4 8 6 8 6 6 8 9 5 4 6 6 9 7

Подробнее

«Строительство» 1 семестр

«Строительство» 1 семестр Очная форма обучения. Бакалавры. I курс, 1 семестр. Направление 270800 «Строительство» Дисциплина - «Математика-1». Содержание Содержание... 1 Лекции... 1 Практические занятия... 4 Практические занятия

Подробнее

Если в качестве базисных переменных выбрать x, x, то общее решение: x R, x = x, x = x ; базисное решение: x = 0, x = 8 7, x = 58 7.

Если в качестве базисных переменных выбрать x, x, то общее решение: x R, x = x, x = x ; базисное решение: x = 0, x = 8 7, x = 58 7. 01 1. Найдите общее и базисное решения системы уравнений: x + x + 3x = 26, 2x 12x x = 22, x + 3x + 2x = 20, выбрав в качестве базисных переменных x и x. Ответ: Если в качестве базисных переменных выбрать

Подробнее

Математика (БкПл-100)

Математика (БкПл-100) Математика (БкПл-100) М.П. Харламов 2011/2012 учебный год, 1-й семестр Лекция 3. Элементы линейной алгебры (матрицы, определители, системы линейных уравнений и формулы Крамера) 1 Тема 1: Матрицы 1.1. Понятие

Подробнее

Построение графиков функций

Построение графиков функций Построение графиков функций 1. План исследования функции при построении графика 1. Найти область определения функции. Часто полезно учесть множество значений функции. Исследовать специальные свойства функции:

Подробнее

Решение типовых задач , разложив его по. Пример 2. Вычислить определитель, приведя его к треугольному виду:

Решение типовых задач , разложив его по. Пример 2. Вычислить определитель, приведя его к треугольному виду: Пример Вычислить определитель Решение типовых задач 5 5 7, разложив его по 9 9 элементам первой строки 7 5 7 5 5 6 9 9 9 9 Пример Вычислить определитель, приведя его к треугольному виду: 5 7 Обозначим

Подробнее

и плоскостью, проходящей через точки K(0; 0; 1), L(2; 4; 6), M(2; 2; 3). 4. Дана функция Вычислить ее производную 20-го порядка в точке x = 0.

и плоскостью, проходящей через точки K(0; 0; 1), L(2; 4; 6), M(2; 2; 3). 4. Дана функция Вычислить ее производную 20-го порядка в точке x = 0. Билет Матрицы, действия над ними Числовая последовательность, свойства бесконечно малых последовательностей Вычислить расстояние от точки M( ; ; ) до плоскости, проходящей через точки A( ; ; 0), B( ; ;

Подробнее

3. Производная функции

3. Производная функции . Производная функции Актуальность темы Понятие производной одно из основных понятий математического анализа. В настоящее время понятия производной находит большое применение в различных областях науки

Подробнее

Примеры решения задач, аналогичных задачам 1-10 Необходимо найти пределы нижеследующих функций одной переменной (без правила Лопиталя).

Примеры решения задач, аналогичных задачам 1-10 Необходимо найти пределы нижеследующих функций одной переменной (без правила Лопиталя). Контрольная работа 2 (КР-2) Тема 3. Пределы и производные функций Примеры решения задач, аналогичных задачам 1-10 Необходимо найти пределы нижеследующих функций одной переменной (без правила Лопиталя).

Подробнее

СХЕМА ПОЛНОГО ИССЛЕДОВАНИЯ ФУНКЦИИ ПРИМЕРЫ

СХЕМА ПОЛНОГО ИССЛЕДОВАНИЯ ФУНКЦИИ ПРИМЕРЫ СХЕМА ПОЛНОГО ИССЛЕДОВАНИЯ ФУНКЦИИ Найти область определения функции Исследовать четность и периодичность функции Исследовать точки разрыва найти вертикальные асимптоты 4 Найти наклонные асимптоты (если

Подробнее

Программа письменного экзамена по «Высшей математике» в зимнюю сессию учебного года, для I курса экономического факультета дневного

Программа письменного экзамена по «Высшей математике» в зимнюю сессию учебного года, для I курса экономического факультета дневного Программа письменного экзамена по «Высшей математике» в зимнюю сессию - учебного года для I курса экономического факультета дневного отделения (специальностей «экономика» и «экономическая теория») заочного

Подробнее

1. Требования к знаниям, умениям, навыкам

1. Требования к знаниям, умениям, навыкам ПРИЛОЖЕНИЯ Требования к знаниям умениям навыкам Страницы даны по учебнику «Математика в экономике» [] Дополнительные задачи по данному курсу можно найти в учебных пособиях [ 6] Векторы Владеть понятиями:

Подробнее

Лекция 2. Решение систем линейных уравнений. 1. Решение систем 3-х линейных уравнений методом Крамера.

Лекция 2. Решение систем линейных уравнений. 1. Решение систем 3-х линейных уравнений методом Крамера. Лекция 2 Решение систем линейных уравнений. 1. Решение систем 3-х линейных уравнений методом Крамера. Определение. Системой 3-х линейных уравнений называется система вида В этой системе искомые величины,

Подробнее

ОГЛАВЛЕНИЕ. Предисловие... 3

ОГЛАВЛЕНИЕ. Предисловие... 3 ОГЛАВЛЕНИЕ Предисловие......................................... 3 Глава1 Элементы линейной алгебры............................ 5 1.1. Матрицы и определители........................... 5 1.2. Линейные пространства............................

Подробнее

Вариант 17. Данная функция определена на всей числовой оси, кроме точек x = 0 и x = 2. . Преобразуем функцию:

Вариант 17. Данная функция определена на всей числовой оси, кроме точек x = 0 и x = 2. . Преобразуем функцию: Вариант 7 Найти область определения функции : y + / lg Область определения данной функции определяется следующими условиями:, >, те > / Далее, знаменатель не должен обращаться в нуль: или Объединяя результаты,

Подробнее

ТАБЛИЦА ПРОИЗВОДНЫХ / степенные функции. показательно степенные функции. = x( модуль функции. u u = 0, 18. u ; ) (сигнум u). показательные функции

ТАБЛИЦА ПРОИЗВОДНЫХ / степенные функции. показательно степенные функции. = x( модуль функции. u u = 0, 18. u ; ) (сигнум u). показательные функции ТАБЛИЦА ПРОИЗВОДНЫХ. сos) степенные функции. ) a. b. ) c. ) e. ) ) показательные функции. a ) a l a a. e ) e логарифмические функции 4. loga ) l a 4a. l ) a l l a l b l a l a ) b тригонометрические функции

Подробнее

Основные формулы. n2, где. порядка по строке или столбцу:

Основные формулы. n2, где. порядка по строке или столбцу: . Линейная алгебра. Основные формулы. Определитель -го порядка: det A a a a a a a a a. a a a Определитель -го порядка (правило Саррюса): det A a a a a a a a a a + a a a + a a a a a a a a a a a a. Алгебраическое

Подробнее

ЛИНЕЙНАЯ АЛГЕБРА И АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ

ЛИНЕЙНАЯ АЛГЕБРА И АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ Государственное образовательное учреждение высшего профессионального образования «Московский авиационный институт (национальный исследовательский университет)» Кафедра «Высшая математика» ЛИНЕЙНАЯ АЛГЕБРА

Подробнее

Министерство общего и профессионального образования РФ Восточно-Сибирский государственный технологический университет ЛИНЕЙНАЯ АЛГЕБРА

Министерство общего и профессионального образования РФ Восточно-Сибирский государственный технологический университет ЛИНЕЙНАЯ АЛГЕБРА Министерство общего и профессионального образования РФ Восточно-Сибирский государственный технологический университет ЛИНЕЙНАЯ АЛГЕБРА Методические указания и контрольные задания по высшей математике для

Подробнее

Вопросы и задачи для контрольной работы. 1. Линейная алгебра

Вопросы и задачи для контрольной работы. 1. Линейная алгебра Вопросы и задачи для контрольной работы Линейная алгебра Матрицы и определители Вычислить определители: а), б), в), г) Решить уравнение 9 9 Найти определитель матрицы B A C : A, B Найти произведение матриц

Подробнее

Вопросы и задачи к экзамену 1 семестр

Вопросы и задачи к экзамену 1 семестр Направление: «Строительство» Вопросы и задачи к экзамену семестр. Матрицы: определение, виды. Действия с матрицами: транспонирование, сложение, умножение на число, умножение матриц. 2. Элементарные преобразования

Подробнее

Математики и математических методов в экономике 2. Направление подготовки

Математики и математических методов в экономике 2. Направление подготовки 8 Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине (модулю): Общие сведения 1 Кафедра Математики и математических методов в экономике 2 Направление подготовки 380301

Подробнее

Тесты по контролю промежуточных знаний по высшей математике для студентов I курса I семестра факультетов МТ и АТ

Тесты по контролю промежуточных знаний по высшей математике для студентов I курса I семестра факультетов МТ и АТ ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ Московский государственный технический университет «МАМИ» Кафедра «Высшая математика» Проф, дф-мн Кадымов ВА Доц, кф-мн Соловьев ГХ Тесты по контролю промежуточных

Подробнее

Математика (БкПл-100, БкК-100)

Математика (БкПл-100, БкК-100) Математика (БкПл-100, БкК-100) М.П. Харламов 2009/2010 учебный год, 2-й семестр Лекция 7. Определители, системы линейных уравнений и формулы Крамера 1 Тема 1: Определители 1.1. Понятие определителя Определитель

Подробнее

Задачи для отработки пропущенных занятий

Задачи для отработки пропущенных занятий Задачи для отработки пропущенных занятий Оглавление Тема: Матрицы, действия над ними. Вычисление определителей.... 2 Тема: Обратная матрица. Решение систем уравнений с помощью обратной матрицы. Формулы

Подробнее

Контрольная работа 1 ...

Контрольная работа 1 ... Контрольная работа Тема Матрицы, операции над матрицами Решение систем линейных уравнений Матрицей называется прямоугольная таблица чисел, имеющая m срок n столбцов Для обозначения матриц применяются круглые

Подробнее

Критерии и показатели оценивания компетенций на различных этапах их формирования

Критерии и показатели оценивания компетенций на различных этапах их формирования Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине (модулю) Общие сведения 1 Кафедра Математики, физики и информационных технологий 2 Направление подготовки 010302

Подробнее

41 Методические указания к выполнению контрольной работы 2 «Производная и ее приложения. Приложения дифференциального исчисления»

41 Методические указания к выполнению контрольной работы 2 «Производная и ее приложения. Приложения дифференциального исчисления» 4 Методические указания к выполнению контрольной работы «Производная и ее приложения Приложения дифференциального исчисления» Производная Приложения дифференциального исчисления Производной функции f (

Подробнее

Урок на тему: Построение графиков.

Урок на тему: Построение графиков. Урок на тему: Построение графиков. Ребята, мы с вами строили уже не мало графиков функций, например параболы, гиперболы, тригонометрических функций и другие. Давайте вспомним, как мы это делали? Мы выбирали

Подробнее

. Преобразуем функцию:, если x

. Преобразуем функцию:, если x Вариант Найти область определения функции : + + + Неравенство + выполняется всегда Поэтому область определения данной функции определяется следующими неравенствами:, те, и, те Решением системы этих неравенств

Подробнее

Вопросы для подготовки к экзамену Тема. Линейная алгебра 1. Что такое определитель? При каких преобразованиях величина определителя не меняется? 2.

Вопросы для подготовки к экзамену Тема. Линейная алгебра 1. Что такое определитель? При каких преобразованиях величина определителя не меняется? 2. Вопросы для подготовки к экзамену Тема. Линейная алгебра 1. Что такое определитель? При каких преобразованиях величина определителя не меняется? 2. В каких случаях определитель равен нулю? Что следует

Подробнее

8. Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине (модулю):

8. Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине (модулю): 8 Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине (модулю): Общие сведения 1 Кафедра М и ММЭ 2 Направление подготовки Бизнес-информатика Общий профиль 3 Дисциплина

Подробнее

Составитель: доц. Никонова Т.В. 2012/2013 учебный год

Составитель: доц. Никонова Т.В. 2012/2013 учебный год Практические занятия по курсу высшей математики (I семестр) на основе учебного пособия «Сборник индивидуальных заданий по высшей математике», том, под ред Рябушко АП для студентов дневной формы обучения

Подробнее

~ 1 ~ «Признаки монотонности функции»

~ 1 ~ «Признаки монотонности функции» ~ 1 ~ «Признаки монотонности функции» Теорема: Для того чтобы функция f(x), дифференцируемая на a,b возрастала (убывала) на a,b необходимо и достаточно, чтобы x a,b выполнялось неравенство f (x) 0 (f (x)

Подробнее

ЗАДАЧИ. для самостоятельного решения Системы линейных уравнений и их решение методом Гаусса. 1. Найдите функцию ( )

ЗАДАЧИ. для самостоятельного решения Системы линейных уравнений и их решение методом Гаусса. 1. Найдите функцию ( ) ЗАДАЧИ для самостоятельного решения Системы линейных уравнений и их решение методом Гаусса x bx + c f x = +, если известны ее значения в трех указанных x точках: Найдите функцию ( ) а) f ( ) f ( ) f (

Подробнее

8. Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине (модулю): Общие сведения

8. Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине (модулю): Общие сведения 8. Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине (модулю): Общие сведения 1. Кафедра М и ММЭ 2. Направление подготовки 01.03.02 (010400.62) Прикладная математика

Подробнее

Примеры выполнения контрольных работ при заочном обучении Контрольная работа 1 (КР-1)

Примеры выполнения контрольных работ при заочном обучении Контрольная работа 1 (КР-1) Примеры выполнения контрольных работ при заочном обучении Контрольная работа 1 (КР-1) Тема 1. Линейная алгебра Задача 1 Необходимо решить систему уравнений, представленную в задании в виде Постоянные параметры

Подробнее

ТАБЛИЦА ПРОИЗВОДНЫХ / степенные функции. показательно степенные функции. = x( модуль функции. u u = 0, 18. u. 1, u < 0; функция знак u (сигнум u).

ТАБЛИЦА ПРОИЗВОДНЫХ / степенные функции. показательно степенные функции. = x( модуль функции. u u = 0, 18. u. 1, u < 0; функция знак u (сигнум u). ТАБЛИЦА ПРОИЗВОДНЫХ. сos ) степенные. ). ) b. ) c. ) e. ) ) показательные. ) l. e ) e логарифмические. log ) l. l ) l l l b l l ) b тригонометрические. si ) cos 6. cos) si 7. g ) cos 8. cg ) si обратные

Подробнее

Пространство арифметических векторов. Лекции 2-3

Пространство арифметических векторов. Лекции 2-3 Пространство арифметических векторов Лекции 2-3 1 Пространство Rn арифметических векторов Рассмотрим множество упорядоченных наборов из n чисел x ( x 1, x 2, x ). Каждый такой набор x n будем называть

Подробнее

Экзамен по ЛА для бакалавров экономики в уч. году, ДЕМОвариант 01

Экзамен по ЛА для бакалавров экономики в уч. году, ДЕМОвариант 01 Ne Экзамен по ЛА для бакалавров экономики в 04-0 уч году, Найдите вектор Ne (6 4 ; 6 8 ) и Ne ДЕМОвариант 0 (x ; y )(у которого Ne и x < 0) такой, чтобы система векторов (x ; y ) образовывала бы ортогональный

Подробнее

Билет 1 1. Матрицы, действия над ними. 2. Уравнение параболы в канонической системе координат.

Билет 1 1. Матрицы, действия над ними. 2. Уравнение параболы в канонической системе координат. Билет. Матрицы, действия над ними.. Уравнение параболы в канонической системе координат. Билет. Свойства матричных операций.. Взаимное расположение прямой и плоскости. Угол между ними, условия параллельности

Подробнее

Вопросы к коллоквиуму по математике 1 семестр для студентов 1 курса ИСиА, 1-6 гр. направление подготовки:

Вопросы к коллоквиуму по математике 1 семестр для студентов 1 курса ИСиА, 1-6 гр. направление подготовки: Министерство образования и науки РФ Северный (Арктический) федеральный университет им МВЛомоносова Кафедра математики Вопросы к коллоквиуму по математике семестр для студентов курса ИСиА, -6 гр направление

Подробнее

Лекция 1. Работа с матрицами. ( ) Количество строк и столбцов матрицы называется размерностью. ( )

Лекция 1. Работа с матрицами. ( ) Количество строк и столбцов матрицы называется размерностью. ( ) Лекция 1 Работа с матрицами. 1. Основные понятия. Определение. Матрицей размерности чисел, содержащая строк и столбцов. называется таблица пронумерованных Исходя из такого определения матрицы, можно сделать

Подробнее

Тема: Кривые второго порядка

Тема: Кривые второго порядка Линейная алгебра и аналитическая геометрия Тема: Кривые второго порядка Лектор Рожкова С.В. 01 г. 15. Кривые второго порядка Кривые второго порядка делятся на 1) вырожденные и ) невырожденные Вырожденные

Подробнее

МАТЕМАТИКА Контрольные работы для студентов заочного обучения 1 семестр

МАТЕМАТИКА Контрольные работы для студентов заочного обучения 1 семестр М.М. Белоусова, К.С. Поторочина МАТЕМАТИКА Контрольные работы для студентов заочного обучения семестр Екатеринбург 07 ФГАОУ ВО «Уральский Федеральный Университет имени первого Президента России Б.Н. Ельцина»

Подробнее

1 1 c) n n. 1 1 b) n. lim. lim. lim. lim. 1. Найти общий член последовательности 0,,,,. 2. Найти. a) 28 7 b) 7 c) 7 d) Найти. 4.

1 1 c) n n. 1 1 b) n. lim. lim. lim. lim. 1. Найти общий член последовательности 0,,,,. 2. Найти. a) 28 7 b) 7 c) 7 d) Найти. 4. Найти общий член последовательности,,,, ) Найти b) lim ( ) c) 9 7 7 ) 8 7 b) 7 c) 7 d) 7 Найти ( )!! lim ( )! ) b) c) Найти 6 si lim si d) ) b) c) d) d) ( ) Найти lim [ (l( ) l )] ) b) c) e d) l 6 Найти

Подробнее

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ КАЗАНСКИЙ ГОСУДАРСТВЕННЫЙ АРХИТЕКТУРНО- СТРОИТЕЛЬНЫЙ УНИВЕРСИТЕТ. Кафедра высшей математики

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ КАЗАНСКИЙ ГОСУДАРСТВЕННЫЙ АРХИТЕКТУРНО- СТРОИТЕЛЬНЫЙ УНИВЕРСИТЕТ. Кафедра высшей математики МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ КАЗАНСКИЙ ГОСУДАРСТВЕННЫЙ АРХИТЕКТУРНО- СТРОИТЕЛЬНЫЙ УНИВЕРСИТЕТ Кафедра высшей математики Задания для практических занятий по темам «Векторная и линейная

Подробнее

МЕТОДИЧЕСКИЕ УКАЗАНИЯ И КОНТРОЛЬНЫЕ ЗАДАНИЯ

МЕТОДИЧЕСКИЕ УКАЗАНИЯ И КОНТРОЛЬНЫЕ ЗАДАНИЯ Государственное образовательное учреждение Астраханской области среднего профессионального образования «Астраханский колледж вычислительной техники» МЕТОДИЧЕСКИЕ УКАЗАНИЯ И КОНТРОЛЬНЫЕ ЗАДАНИЯ по дисциплине

Подробнее

П.01. Производная. . Тогда производной функции в данной точке называется следующее отношение: lim

П.01. Производная. . Тогда производной функции в данной точке называется следующее отношение: lim П0 Производная Рассмотрим некоторую функцию f ( ), зависящую от аргумента Пусть эта функция определена в точке 0 и некоторой ее окрестности, непрерывна в этой точке и ее окрестностях Рассмотрим небольшое

Подробнее

«Линейная алгебра» B Решить

«Линейная алгебра» B Решить Контрольные работы по дисциплине «Высшая математика» для студентов направления 876 () «Техносферная безопасность» Тематических перечень Линейная алгебра Векторная алгебра Аналитическая геометрия на плоскости

Подробнее

Примерные практические задания:

Примерные практические задания: Банк заданий по теме «ПРОИЗВОДНАЯ» МАТЕМАТИКА класс (профиль) Учащиеся должны знать/понимать: Понятие производной. Определение производной. Теоремы и правила нахождения производных суммы, разности, произведения

Подробнее

Тема 2. СИСТЕМЫ ЛИНЕЙНЫХУРАВНЕНИЙ свободные члены, - неизвестные величины.

Тема 2. СИСТЕМЫ ЛИНЕЙНЫХУРАВНЕНИЙ свободные члены, - неизвестные величины. Тема СИСТЕМЫ ЛИНЕЙНЫХУРАВНЕНИЙ Система m линейных уравнений с переменными в общем случае имеет вид: m m m m ) где числа ij i, m, j, ) называются коэффициентами при переменных, i - свободные члены, j -

Подробнее

Образцы базовых задач и вопросов по МА за 1 семестр

Образцы базовых задач и вопросов по МА за 1 семестр Образцы базовых задач и вопросов по МА за семестр Предел последовательности Простейшие Вычислите предел последовательности l i m 2 n 6 n 2 + 9 n 6 4 n 6 n 4 6 4 n 6 2 2 Вычислите предел последовательности

Подробнее

По этим результатам можно схематично изобразить график функции: Терема 4 (второй достаточный признак существования экстремума).

По этим результатам можно схематично изобразить график функции: Терема 4 (второй достаточный признак существования экстремума). 6 По этим результатам можно схематично изобразить график функции: Терема 4 (второй достаточный признак существования экстремума) Стационарная точка функции f( ), дважды дифференцируемой в Oδ ( ), является

Подробнее

БЕЛГОРОДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ имени В.Г.ШУХОВА ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ 2

БЕЛГОРОДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ имени В.Г.ШУХОВА ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ 2 Поток: ТВГТ -I ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ 1 1Определители -го и -го порядка Правила вычисления Общий алгоритм исследования графика функций с помощью производных Нахождение наибольшего и наименьшего значений

Подробнее

Образцы базовых задач по ЛА

Образцы базовых задач по ЛА Образцы базовых задач по ЛА Метод Гаусса Определенные системы линейных уравнений Решите систему линейных уравнений методом Гаусса x 6 y 6 8, 6 x 6 y 6 Решите систему линейных уравнений методом Гаусса 6

Подробнее

Контрольная работа по математике 1 и программа экзамена для студентов I курса ФАО (направления , )

Контрольная работа по математике 1 и программа экзамена для студентов I курса ФАО (направления , ) Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Ивановский государственный политехнический университет» Университетский центр социально-гуманитарных

Подробнее

Область определения данной функции определяется неравенством x x> Освободимся от знака модуля: при x 0 неравенство x x>

Область определения данной функции определяется неравенством x x> Освободимся от знака модуля: при x 0 неравенство x x> Вариант Найти область определения функции : y / Область определения данной функции определяется неравенством > Освободимся от знака модуля: при неравенство > никогда не выполняется; при < неравенство >

Подробнее

ϕ, π ϕ и ϕ. В каждом интервале

ϕ, π ϕ и ϕ. В каждом интервале Вариант + Найти область определения функции: y lg Область определения данной функции определяется неравенством + те Далее знаменатель не должен обращаться в нуль: lg или ± Кроме того аргумент логарифма

Подробнее

Матрицы. Примеры решения задач. 1. Даны матрицы и. 2. Дана система m линейных уравнений с n неизвестными

Матрицы. Примеры решения задач. 1. Даны матрицы и. 2. Дана система m линейных уравнений с n неизвестными Матрицы 1 Даны матрицы и Найти: а) А + В; б) 2В; в) В T ; г) AВ T ; д) В T A Решение а) По определению суммы матриц б) По определению произведения матрицы на число в) По определению транспонированной матрицы

Подробнее

Рассмотрим первый способ решения СЛУ по правилу Крамера для системы трех уравнений с тремя неизвестными: Ответ рассчитывается по формулам Крамера:

Рассмотрим первый способ решения СЛУ по правилу Крамера для системы трех уравнений с тремя неизвестными: Ответ рассчитывается по формулам Крамера: Рассмотрим первый способ решения СЛУ по правилу Крамера для системы трех уравнений с тремя неизвестными: Ответ рассчитывается по формулам Крамера: D, D1, D2, D3 это определители Определителем третьего

Подробнее

Данная функция определена на всей числовой оси, кроме точки x = 2. Если x 2± 0, то y +

Данная функция определена на всей числовой оси, кроме точки x = 2. Если x 2± 0, то y + Вариант Найти область определения функции : y + + lg(5 Область определения данной функции определяется следующими неравенствами: + те 5 > те < 5 Далее знаменатель не должен обращаться в нуль: lg( 5 или

Подробнее

Вариант 18. Область определения данной функции определяется неравенством 1. 2 или x 2 / 3. Из правого неравенства x 2 или x 2

Вариант 18. Область определения данной функции определяется неравенством 1. 2 или x 2 / 3. Из правого неравенства x 2 или x 2 Вариант Найти область определения функции : arccos Область определения данной функции определяется неравенством Освободимся от знака модуля: Если то Из левого неравенства находим или / Из правого неравенства

Подробнее

Сборник тестовых заданий

Сборник тестовых заданий федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ПУТЕЙ СООБЩЕНИЯ» КАФЕДРА «МАТЕМАТИКА» М. В. ИШХАНЯН, А.И.

Подробнее

Решение типовых задач к разделу «Матрицы»

Решение типовых задач к разделу «Матрицы» Решение типовых задач к разделу «Матрицы» Вычислить сумму матриц и Р е ш е н и е 8 8 9 + + + + Вычислить произведение матрицы на число Р е ш е н и е Вычислить произведение матриц и Р е ш е н и е 8 Вычислить

Подробнее

Методические указания к решению контрольной работы 1 по дисциплине «Математика» для студентов первого курса строительных специальностей

Методические указания к решению контрольной работы 1 по дисциплине «Математика» для студентов первого курса строительных специальностей Методические указания к решению контрольной работы 1 по дисциплине «Математика» для студентов первого курса строительных специальностей Кафедра высшей математики АВ Капусто Минск 016 016 Кафедра высшей

Подробнее

МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ К ВЫПОЛНЕНИЮ 1-ой КОНТРОЛЬНОЙ РАБОТЫ

МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ К ВЫПОЛНЕНИЮ 1-ой КОНТРОЛЬНОЙ РАБОТЫ МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ К ВЫПОЛНЕНИЮ -ой КОНТРОЛЬНОЙ РАБОТЫ Теоретические положения -ой части контрольной работы (тема: Элементы линейной алгебры) Определителем называется число, задаваемое таблицей

Подробнее

Лекция Исследование функции и построение ее графика

Лекция Исследование функции и построение ее графика Лекция Исследование функции и построение ее графика Аннотация: Функция исследуется на монотонность, экстремум, выпуклость-вогнутость, на существование асимптот Приводится пример исследования функции, строится

Подробнее

Вопросы к зачету по математике 1 семестр для студентов 1 курса ИСиА, 1-6 гр. направление подготовки:

Вопросы к зачету по математике 1 семестр для студентов 1 курса ИСиА, 1-6 гр. направление подготовки: Министерство образования и науки РФ Северный (Арктический) федеральный университет им. М.В.Ломоносова Кафедра математики Вопросы к зачету по математике семестр для студентов курса ИСиА, -6 гр. направление

Подробнее

16.2.Н. Производная.

16.2.Н. Производная. 6..Н. Производная 6..Н. Производная. Оглавление 6..0.Н. Производная Введение.... 6..0.Н. Производная сложной функции.... 5 6..0.Н. Производные от функций с модулями.... 7 6..0.Н. Возрастание и убывание

Подробнее

1. Линейные системы и матрицы

1. Линейные системы и матрицы 1. Линейные системы и матрицы 1. Дать определение умножения матриц. Коммутативна ли эта операция? Ответ пояснить. Произведение C матриц A и B определяется как m p m p A B ij = A ik B kj. Операция не коммутативна.

Подробнее

называется определителем второго порядка, соответствующим данной матрице, и обозначается символом

называется определителем второго порядка, соответствующим данной матрице, и обозначается символом ОПРЕДЕЛИТЕЛИ Пусть дана матрица Число называется определителем второго порядка, соответствующим данной матрице, и обозначается символом = = - Определитель второго порядка содержит две строки и два столбца,

Подробнее