Аналитическая геометрия

Save this PDF as:

Размер: px
Начинать показ со страницы:

Download "Аналитическая геометрия"

Транскрипт

1 Аналитическая геометрия

2 Аналитическая геометрия на плоскости. Аналитическая геометрия решение геометрических задач с помощью алгебры, для чего используется метод координат. Под системой координат на плоскости понимают способ, позволяющий численно описать положение любой точки плоскости. Любая точка М на плоскости может быть задана своими координатами: (, ). Множество точек на плоскости могут образовать линию. Например, прямую или окружность. При этом точки принадлежащие линии обладают определенными геометрическими свойствами. у М(х, у) х

3 Определение. Уравнение линии (уравнением кривой) на плоскости Оху нозывается уравнение F(, ) =, которому удовлетворяют координаты х и у каждой точки данной линии и не удовлетворют координаты любой точки, не лежащей на этой линии. Если точка М(, ) лежит на кривой, то F(, ) =, если N(, ) не лежит на кривой то F(, ). Примеры:. Уравнение окружности: + = 4. Точка А (-, ) лежит на окружности, так как (-) + = 4, В (, ) не лежит = ( = 8 ) C(, 4) лежит. D (, 5) не лежит.. - = ( = ) Е (, ) лежит, К (, ) не лежит. A(-,) у М(, ) N(, ) B(,) х

4 Общее уравнение прямой Уравнение вида: A B C () с произвольными коэффициентами А; В; С такими, что А и В не равны нулю одновременно, называется общим уравнением прямой. Общее уравнение прямой называется полным, если все коэффициенты А, В, и С отличны от нуля. В противном случае уравнение называется неполным. Виды неполных уравнений: ) C ; A B ) B ; A C ) A ; B C 4) B C ; A 5) A C ; B х

5 Теорема. Вектор является вектором перпендикулярным к прямой A + B + C =. Вектор A, A; B B - нормаль этой прямой. Задача. Записать уравнение прямой, проходящей через заданную точку, перпендикулярно заданному ненулевому вектору A, B. M Возьмем на прямой произвольную точку M(, ) и рассмотрим вектор M M, M M A, B. M M B A () М (х; у ) М (х ; у ) Его можно переписать в виде общего уравнения прямой: A + B + C =.

6 Уравнение прямой в отрезках Рассмотрим полное уравнение прямой: A B A B C A B C C C C C A B C C Обозначим: a b Получим: A B a b Уравнение в отрезках Уравнение в отрезках используется для построения прямой, при этом a и b отрезки, которые отсекает прямая от осей координат. b a х ()

7 Каноническое уравнение прямой Любой ненулевой вектор, параллельный данной прямой, называется направляющим вектором этой прямой. Требуется найти уравнение прямой, проходящей через заданную точку М (х ; у ) и параллельно заданному вектору l ; m Очевидно, что точка М (х; у ) лежит на прямой, только в том случае, если векторы l ; m и M M ; коллинеарны. По условию коллинеарности получаем: М (х ; у ) М (х; у ) l m (4) Каноническое уравнение прямой

8 Если каноническое уравнение приравнять параметру t :: l m lt параметрическое уравнение (5) прямой mt t Пусть прямая проходит через две заданные и отличные друг от друга точки: М (х ; у ) и М (х ; у ). М (х ; у ), М (х ; у ) Тогда в качестве направляющего вектора в каноническом уравнении можно взять вектор: M M ; l m (6) Уравнение прямой, проходящей через две заданные точки

9 Пример Прямая проходит через точку М(; ) и имеет направляющий вектор: {; } Записать: каноническое, общее уравнение прямой, уравнение прямой в отрезках, уравнение с угловым коэффициентом. Найти нормальный вектор прямой, отрезки, которые отсекает прямая от осей координат и угол, который составляет прямая с осью OX.. Каноническое уравнение:. Общее уравнение: ( ) ( ) 5 N {;}

10 Пример. Уравнение в отрезках: a b 5 4. Уравнение с угловым коэффициентом: 5 5 k tg b М N a х

11 Угол между двумя прямыми Пусть две прямые L и L заданы общими уравнениями: L L : A B C : A B C Угол между этими прямыми определяется как угол между нормальными векторами к этим прямым: A A ;B ;B L L cos cos( ; ) A A A B B A B B L A A B B L A B L ll L A B

12 Угол между двумя прямыми Пусть две прямые L и L заданы каноническими уравнениями: L L : : Угол между этими прямыми определяется как угол между направляющими векторами к этим прямым: l l ;m cos l l l cos( m m ;m ; ) l m l l l m m l m l m L ll L L L m l m m L L

13 Расстояние от точки до прямой Пусть необходимо найти расстояние от точки М (х ; у ) до прямой, заданной общим уравнением: d М (х ; у ) A B C Расстояние от точки до прямой это длина перпендикуляра, опущенного на прямую из точки. М (х ; у ) L Для прямой, заданной своим общим уравнением A + B + C = и точки M (, ) расстояние определяем по формуле: d A B A B C

14 Пример Даны вершины треугольника: А(; ); В(; ); С(; 6) Найти: Уравнения высоты и медианы, проведенных из вершины А. В. Уравнение высоты: (ВС): С N {7;} (АН): {7;} А N Н

15 Пример. Уравнение медианы: В BM т. М: MC B C M.5 M B C А M(.5; 9.5) С М

16 Общее уравнение кривой второго порядка Определение. Линия, определяемая уравнением второй степени относительно декартовых координат и : A B C D E F Общее уравнение кривой второго порядка где А, В, С не равны нулю одновременно, есть кривая второго порядка. К кривым второго порядка относятся: эллипс, частным случаем которого является окружность, гипербола и парабола. В некоторых частных случаях это уравнение может определять также две прямые, точку или мнимое геометрическое место.

17 Окружность Окружностью называется геометрическое место точек на плоскости, равноудаленных от точки М (a; b) на расстояние R. R М(; ) Для любой точки М справедливо: M M R М х a b R a b R Каноническое уравнение окружности

18 Эллипс Эллипсом называется множество всех точек плоскости, сумма расстояний от каждой из которых до двух данных точек той же плоскости, называемых фокусами, есть величина постоянная. F( c; ); F ( c; ) M(; ) r r a r r c FM c FM r r F F -c c х a b Каноническое уравнение эллипса

19 Гипербола Гиперболой называется множество точек плоскости, разность расстояний от каждой из которых до двух точек той же плоскости, называемых фокусами, есть величина постоянная. F( c; ); F ( c; ) r r a M(; ) r c FM r c FM r r F F -c c х a b Каноническое уравнение гиперболы

20 F( ; ) d Парабола Параболой называется множество всех точек плоскости каждая из которых одинаково удалена некоторой фиксированной точки той же плоскости, называемой фокусом, и данной прямой, называемой директрисой. - параметр M(; ) r r FM r d F х каноническое уравнение параболы d

21 Аналитическая геометрия в пространстве Определение. Уравнением поверхности в прямоугольной системе координат Охz называется такое уравнение F(,, z) = c тремя переменными, и z которому удовлетворяют координаты каждой точки, лежащей на поверхности, и не удовлетворяют координаты точек не лежащими на этой поверхности. М(,, z)

22 Общее уравнение плоскости Если в пространстве фиксирована произвольная декартова система координат Oz, то всякое уравнение первой степени с тремя переменными z определяет относительно этой системы плоскость. A B Cz D Общее уравнение плоскости A; B; C; D некоторые постоянные, причем из чисел A; B; C хотя бы одно отлично от нуля. A, B, C Вектор является вектором перпендикулярным к плоскости A + B + Cz + D =. Его называют вектором нормальным данной плоскости (вектором нормали). () Общее уравнение плоскости называется полным, если все коэффициенты А; B; C; D отличны от нуля. В противном случае уравнение называется неполным.

23 Уравнение плоскости в отрезках Рассмотрим полное уравнение плоскости: A B Cz D A B Cz D A D B D Cz D Уравнение плоскости в отрезках Уравнение в отрезках используется для построения плоскости, при этом a, b и с отрезки, которые отсекает плоскость от осей координат. z a D b D cd A B C a b c a z с b ()

24 Задача. Записать уравнение плоскости, проходящей через заданную точку M перпендикулярно заданному,, z A, B, C ненулевому вектору М N. М Возьмем произвольную точку М(; ; z) лежащую на плоскости и составим вектор: M M ; N A; B; C ; z z Нормальный вектор плоскости Если точка М лежит в плоскости, то векторы M M. Из условия перпендикулярности векторов: A B Cz z N () Его можно переписать в виде общего уравнения плоскости: A + B + Cz + D =.

25 Уравнение плоскости, проходящей через три точки Пусть точки М (х ; у ; z ), М (х ; у ; z ) и М (х ; у ; z ) не лежат на одной прямой. Тогда векторы: M M ; ; z z M M ; z z ; Точка М(х ; у ; z ) лежит в одной плоскости с точками М, М и М только в том случае, если векторы: M ; MM не коллинеарны. М М М M и M M ; z z ; и М компланарны. M M M M M M Уравнение плоскости, проходящей через точки z z z z z z (4)

26 Угол между двумя плоскостями Пусть две плоскости заданы общими уравнениями: : A B C z D : A B C z D Углом между этими плоскостями называется угол между нормальными векторами к этим плоскостям. N N N A ; B ; C N A ; B C ; cos N N N N A A B A B C B A C C B C

27 Угол между двумя плоскостями Условия параллельности и перпендикулярности плоскостей аналогичны условию параллельности и перпендикулярности нормальных векторов: N N N ll N A A B B C C N N N N A A B B C C

28 Пример Записать уравнение плоскости, проходящей через точки B(; ; 5), C(; -; 4), D(4; ; ) Уравнение плоскости BCD: z z 4 5) ( z 5) ( 8 z 9 z

29 Каноническое уравнение прямой Пусть прямая L проходит через данную точку М ( ; ; z ) параллельно вектору: L М М m; ; Тогда точка М (; ; z) лежит на прямой только и в том случае, если векторы m ; ; M M ; z z ; коллинеарны По условию коллинеарности двух векторов: z z m () m; ; - направляющий вектор прямой Каноническое уравнение прямой

30 Пусть прямая проходит через две заданные и отличные друг от друга точки: М (х ; у ; z ) и М (х ; у ; z ). L Тогда в качестве направляющего вектора в каноническом уравнении можно взять вектор: М М M M ; z z ; m z z z z () Уравнение прямой, проходящей через две заданные точки

31 Угол между прямыми L L φ Пусть прямые L и L заданы каноническими уравнениями: L : L : Под углом между прямыми понимают угол между направляющими векторами z z m, m, z z m,, m m m m m cos m m L L m m L L

32 Угол между прямой и плоскостью Пусть прямая L задана каноническим уравнением: N z z m Плоскость задана общим уравнением: D Cz B A Углом между прямой и плоскостью называется угол между прямой и проекцией этой прямой на плоскость. si ) cos( ), cos( N N N C B A m C B A m C B A m L C B A m L ll L р


Курс лекций подготовлен доц. Мусиной М.В. Аналитическая геометрия на плоскости.

Курс лекций подготовлен доц. Мусиной М.В. Аналитическая геометрия на плоскости. Аналитическая геометрия на плоскости. Аналитическая геометрия решение геометрических задач с помощью алгебры, для чего используется метод координат. Под системой координат на плоскости понимают способ,

Подробнее

Лекции подготовлены доц. Мусиной М.В. Аналитическая геометрия в пространстве.

Лекции подготовлены доц. Мусиной М.В. Аналитическая геометрия в пространстве. Аналитическая геометрия в пространстве Поверхность в пространстве можно рассматривать как геометрическое место точек, удовлетворяющих какому-либо условию Прямоугольная система координат Охy в пространстве

Подробнее

Тема 4 ЭЛЕМЕНТЫ АНАЛИТИЧЕСКОЙ ГЕОМЕТРИИ НА ПЛОСКОСТИ И В ПРОСТРАНСТВЕ

Тема 4 ЭЛЕМЕНТЫ АНАЛИТИЧЕСКОЙ ГЕОМЕТРИИ НА ПЛОСКОСТИ И В ПРОСТРАНСТВЕ Тема ЭЛЕМЕНТЫ АНАЛИТИЧЕСКОЙ ГЕОМЕТРИИ НА ПЛОСКОСТИ И В ПРОСТРАНСТВЕ Лекция.. Прямые на плоскости П л а н. Метод координат на плоскости.. Прямая в декартовых координатах.. Условие параллельности и перпендикулярности

Подробнее

ЧАСТЬ I ТЕМА 2. ЭЛЕМЕНТЫ АНАЛИТИЧЕСКОЙ ГЕОМЕТРИИ

ЧАСТЬ I ТЕМА 2. ЭЛЕМЕНТЫ АНАЛИТИЧЕСКОЙ ГЕОМЕТРИИ МЕТОДИЧЕСКИЕ УКАЗАНИЯ К РАСЧЕТНЫМ ЗАДАНИЯМ ПОКУРСУ ВЫСШЕЙ МАТЕМАТИКИ «ЭЛЕМЕНТЫ ЛИНЕЙНОЙ АЛГЕБРЫ И АНАЛИТИЧЕСКОЙ ГЕОМЕТРИИ. ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИИ ОДНОГО ПЕРЕМЕННОГО» ЧАСТЬ I ТЕМА. ЭЛЕМЕНТЫ

Подробнее

Прямая линия и плоскость в пространстве. Линейная алгебра (лекция 11) / 37

Прямая линия и плоскость в пространстве. Линейная алгебра (лекция 11) / 37 Прямая линия и плоскость в пространстве Линейная алгебра (лекция 11) 24.11.2012 2 / 37 Прямая линия и плоскость в пространстве Расстояние между двумя точками M 1 (x 1, y 1, z 1 ) и M 2 (x 2, y 2, z 2 )

Подробнее

Аналитическая геометрия Прямые и плоскости. Линейная алгебра (лекция 10) / 30

Аналитическая геометрия Прямые и плоскости. Линейная алгебра (лекция 10) / 30 Аналитическая геометрия Прямые и плоскости Линейная алгебра (лекция 10) 17.11.2012 2 / 30 Линейная алгебра (лекция 10) 17.11.2012 3 / 30 Расстояние между двумя точками M 1 (x 1, y 1 ) и M 2 (x 2, y 2 )

Подробнее

F(x,y,z) = 0, (2) где F(x,y,z) многочлен степени n.

F(x,y,z) = 0, (2) где F(x,y,z) многочлен степени n. Аналитическая геометрия Аналитическая геометрия раздел геометрии, в котором простейшие линии и поверхности (прямые, плоскости, кривые и поверхности второго порядка) исследуются средствами алгебры. Линией

Подробнее

ВАРИАНТ 16 M Доказать, что прямые

ВАРИАНТ 16 M Доказать, что прямые ВАРИАНТ 16 1 Через точки M 1 (3 4) и M (6 ) проведена прямая Найти точки пересечения этой прямой с осями координат Составить уравнения сторон треугольника для которого точки A ( 1 ) B ( 3 1) C (0 4) являются

Подробнее

ВАРИАНТ Найти уравнение проекции прямой. на плоскость

ВАРИАНТ Найти уравнение проекции прямой. на плоскость ВАРИАНТ 1 1 Найти угловой коэффициент k прямой проходящей через точки M 1 (18) и M ( 1); записать уравнение прямой в параметрическом виде Составить уравнения сторон и медиан треугольника с вершинами A()

Подробнее

Окружность радиуса R с центром в точке. Пример. Нарисуйте кривую. Решение. Выделив полные квадраты, получим.

Окружность радиуса R с центром в точке. Пример. Нарисуйте кривую. Решение. Выделив полные квадраты, получим. Кривые второго порядка Окружность Эллипс Гипербола Парабола Пусть на плоскости задана прямоугольная декартова система координат. Кривой второго порядка называется множество точек, координаты которых удовлетворяют

Подробнее

3. ЭЛЕМЕНТЫ АНАЛИТИЧЕСКОЙ ГЕОМЕТРИИ

3. ЭЛЕМЕНТЫ АНАЛИТИЧЕСКОЙ ГЕОМЕТРИИ ЭЛЕМЕНТЫ АНАЛИТИЧЕСКОЙ ГЕОМЕТРИИ ЗАНЯТИЕ ПЛОСКОСТЬ В ТРЕХМЕРНОМ ПРОСТРАНСТВЕ Написать векторное уравнение плоскости и объяснить смысл величин, входящих в это уравнение Написать общее уравнение плоскости

Подробнее

Лекция 29,30 Глава 2. Аналитическая геометрия на плоскости

Лекция 29,30 Глава 2. Аналитическая геометрия на плоскости Лекция 9,30 Глава Аналитическая геометрия на плоскости Системы координат на плоскости Прямоугольная и полярная системы координат Системой координат на плоскости называется способ, позволяющий определять

Подробнее

Раздел 7. УРАВНЕНИЯ ПРЯМОЙ И ПЛОСКОСТИ В ПРОСТРАНСТВЕ. Лекция 14.

Раздел 7. УРАВНЕНИЯ ПРЯМОЙ И ПЛОСКОСТИ В ПРОСТРАНСТВЕ. Лекция 14. Раздел 7. УРАВНЕНИЯ ПРЯМОЙ И ПЛОСКОСТИ В ПРОСТРАНСТВЕ Лекция 4. Тема: Уравнения прямой и плоскости в пространстве 7. Система координат в пространстве Рассмотрим прямоугольную декартову систему координат

Подробнее

10. АЛГЕБРАИЧЕСКИЕ ЛИНИИ НА ПЛОСКОСТИ

10. АЛГЕБРАИЧЕСКИЕ ЛИНИИ НА ПЛОСКОСТИ . АЛГЕБРАИЧЕСКИЕ ЛИНИИ НА ПЛОСКОСТИ.. ЛИНИИ ПЕРВОГО ПОРЯДКА (ПРЯМЫЕ НА ПЛОСКОСТИ... ОСНОВНЫЕ ТИПЫ УРАВНЕНИЙ ПРЯМЫХ НА ПЛОСКОСТИ Ненулевой вектор n перпендикулярный заданной прямой называется нормальным

Подробнее

12 ОБЩЕЕ УРАВНЕНИЕ ПЛОСКОСТИ.

12 ОБЩЕЕ УРАВНЕНИЕ ПЛОСКОСТИ. АНАЛИТИЧЕСКАЯ ГЕОЕТРИЯ ОБЩЕЕ УРАВНЕНИЕ ПЛОСКОСТИ. ОПР Плоскостью будем называть поверхность обладающую тем свойством что если две точки прямой принадлежат плоскости то и все точки прямой принадлежат данной

Подробнее

АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ НА ПЛОСКОСТИ И В ПРО- СТРАНСТВЕ

АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ НА ПЛОСКОСТИ И В ПРО- СТРАНСТВЕ Балаковский инженерно-технологический институт - филиал федерального государственного автономного образовательного учреждения высшего образования «Национальный исследовательский ядерный университет «МИФИ»

Подробнее

Вопросы к зачету по математике 1 семестр для студентов 1 курса ИСиА, 1-6 гр. направление подготовки:

Вопросы к зачету по математике 1 семестр для студентов 1 курса ИСиА, 1-6 гр. направление подготовки: Министерство образования и науки РФ Северный (Арктический) федеральный университет им. М.В.Ломоносова Кафедра математики Вопросы к зачету по математике семестр для студентов курса ИСиА, -6 гр. направление

Подробнее

Экзаменационный билет 1.

Экзаменационный билет 1. Экзаменационный билет 1. 1. Векторы в пространстве. Основные определения и операции над векторами: сумма векторов, произведение вектора на число. Свойства. Теорема о коллинеарных векторах. 2. Расстояние

Подробнее

ЛЕКЦИЯ 12. Поверхности в пространстве и их уравнения.

ЛЕКЦИЯ 12. Поверхности в пространстве и их уравнения. ЛЕКЦИЯ Поверхности в пространстве и их уравнения Поверхность Поверхность, определенная некоторым уравнением в данной системе координат, есть геометрическое место точек, координаты которых удовлетворяют

Подробнее

Глава 3. АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ. 1. Простейшие задачи аналитической геометрии в пространстве

Глава 3. АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ. 1. Простейшие задачи аналитической геометрии в пространстве Глава 3 АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ 1 Простейшие задачи аналитической геометрии в пространстве Положение точки в пространстве обычно определяется заданием тройки чисел координат точки в декартовом базисе 1)

Подробнее

Уравнения прямой и плоскости

Уравнения прямой и плоскости Уравнения прямой и плоскости Уравнение прямой на плоскости.. Общее уравнение прямой. Признак параллельности и перпендикулярности прямых. В декартовых координатах каждая прямая на плоскости Oxy определяется

Подробнее

Лекция 5. Прямая на плоскости. 1. Уравнение прямой, задаваемой точкой и вектором нормали.

Лекция 5. Прямая на плоскости. 1. Уравнение прямой, задаваемой точкой и вектором нормали. Лекция 5 на плоскости. Определение. Любая прямая на плоскости может быть задана уравнением первого порядка причем постоянные А, В не равны нулю одновременно. Это уравнение первого порядка называют общим

Подробнее

Методические указания к контрольным работам

Методические указания к контрольным работам Методические указания к контрольным работам Контрольная работа «Переаттестация» Тема. Элементы аналитической геометрии на плоскости. Прямая на плоскости Расстояние между двумя точками M ( ) и ( ) плоскости

Подробнее

8.1. Уравнение прямой в пространстве по точке и направляющему вектору.

8.1. Уравнение прямой в пространстве по точке и направляющему вектору. Глава 8 Уравнение линии в пространстве Как на плоскости, так и в пространстве, любая линия может быть определена как совокупность точек, координаты которых в некоторой выбранной в пространстве системе

Подробнее

Уравнение прямой на плоскости.

Уравнение прямой на плоскости. Уравнение прямой на плоскости. Каноническое уравнение прямой. Пусть прямая параллельна вектору {, } и проходит через точку (, ) тогда уравнение этой прямой может быть записано в виде,. () Уравнение ()

Подробнее

РТУ-МИРЭА ГОРШУНОВА Т.А. Аналитическая геометрия на плоскости Уравнение линии является важнейшим понятием аналитической геометрии.

РТУ-МИРЭА ГОРШУНОВА Т.А. Аналитическая геометрия на плоскости Уравнение линии является важнейшим понятием аналитической геометрии. Аналитическая геометрия на плоскости Уравнение линии является важнейшим понятием аналитической геометрии. y М(x, y) 0 x Определение. Уравнением линии (кривой) на плоскости Оху называется уравнение, которому

Подробнее

Раздел 6. ПРЯМАЯ НА ПЛОСКОСТИ. Лекция 12. Тема: Прямая на плоскости. 6.1 Системы координат на плоскости (простейшие задачи)

Раздел 6. ПРЯМАЯ НА ПЛОСКОСТИ. Лекция 12. Тема: Прямая на плоскости. 6.1 Системы координат на плоскости (простейшие задачи) Раздел 6 ПРЯМАЯ НА ПЛОСКОСТИ Лекция Тема: Прямая на плоскости 6 Системы координат на плоскости (простейшие задачи) Прямая, которая служит для изображения действительных чисел, на которой выбраны начальная

Подробнее

Глава I. Векторная алгебра.

Глава I. Векторная алгебра. Глава I Векторная алгебра Линейные операции над векторами Основные обозначения: - вектор; АВ - вектор с началом в точке и концом в точке B ; B -длина вектора АВ, те расстояние между точками и B ; b - коллинеарные

Подробнее

Вопросы к коллоквиуму по математике 1 семестр для студентов 1 курса ИСиА, 1-6 гр. направление подготовки:

Вопросы к коллоквиуму по математике 1 семестр для студентов 1 курса ИСиА, 1-6 гр. направление подготовки: Министерство образования и науки РФ Северный (Арктический) федеральный университет им МВЛомоносова Кафедра математики Вопросы к коллоквиуму по математике семестр для студентов курса ИСиА, -6 гр направление

Подробнее

, и в этом случае линия является графиком функции f( x ). Пример 5.1. На оси Ox найти точку, одинаково удаленную от двух точек

, и в этом случае линия является графиком функции f( x ). Пример 5.1. На оси Ox найти точку, одинаково удаленную от двух точек ГЛАВА 5. АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ 5.. Уравнение линии на плоскости Уравнение вида F( x, y) 0 называется уравнением линии, если этому уравнению удовлетворяют координаты любой точки, лежащей на данной плоской

Подробнее

Контрольная работа 3

Контрольная работа 3 Контрольная работа 3 ВАРИАНТ 1 Составить уравнение прямой, перпендикулярной и проходящей через точку пересечения прямых и.. Записать уравнение прямой проходящей через точки и и найти расстояние от точки

Подробнее

Д 40 АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ: Учебно-методическое пособие.

Д 40 АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ: Учебно-методическое пособие. КЫРГЫЗСКО-РОССИЙСКИЙ СЛАВЯНСКИЙ УНИВЕРСИТЕТ Кафедра высшей математики УДК 57 Рецензенты: д-р физ-мат наук, профессор ТМ Иманалиев, канд физ-мат наук, доцент КИ Ишмахаметов ЖР Джаналиева, СБ Доулбекова

Подробнее

1.1. Расстояние между двумя точками. Рассмотрим прямоугольную систему координат (декартовую, рис. 1). Рис. 1

1.1. Расстояние между двумя точками. Рассмотрим прямоугольную систему координат (декартовую, рис. 1). Рис. 1 1 Простейшие задачи аналитической геометрии на плоскости 11 Расстояние между двумя точками Рассмотрим прямоугольную систему координат (декартовую, рис Рис 1 Любой точки M соответствуют координаты OA x

Подробнее

Лекция 31 Глава 3. Аналитическая геометрия в пространстве

Лекция 31 Глава 3. Аналитическая геометрия в пространстве Лекция Глава Аналитическая геометрия в пространстве Плоскость в пространстве Уравнение плоскости проходящей через данную точку перпендикулярно данному вектору Пусть в пространстве OXYZ даны точка ) и ненулевой

Подробнее

ВАРИАНТ 1. на плоскость. 6. Найти уравнение проекции прямой

ВАРИАНТ 1. на плоскость. 6. Найти уравнение проекции прямой ВАРИАНТ 1 1 Найти угловой коэффициент k прямой проходящей через точки M 1 (18) и M ( 14); записать уравнение прямой в параметрическом виде Составить уравнения сторон и медиан треугольника с вершинами A()

Подробнее

Кривые второго порядка.

Кривые второго порядка. Кривые второго порядка. Определение : Линией кривой) второго порядка называется множество {М} точек плоскости, декартовы координаты X, Y) которых удовлетворяют алгебраическому уравнению второй степени:,

Подробнее

Конспект лекции 13 ЭЛЛИПС, ГИПЕРБОЛА И ПАРАБОЛА

Конспект лекции 13 ЭЛЛИПС, ГИПЕРБОЛА И ПАРАБОЛА Конспект лекции 13 ЭЛЛИПС, ГИПЕРБОЛА И ПАРАБОЛА 0. План лекции Лекция Эллипс, Гипербола и Парабола. 1. Эллипс. 1.1. Определение эллипса; 1.2. Определение канонической системы координат; 1.3. Вывод уравнения

Подробнее

РЕШЕНИЕ ЗАДАЧ по теме "АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ" Составитель: В.П.Белкин

РЕШЕНИЕ ЗАДАЧ по теме АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ Составитель: В.П.Белкин РЕШЕНИЕ ЗАДАЧ по теме "АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ" Составитель: ВПБелкин Занятие Прямая на плоскости Пример Определить коэффициенты k, b в уравнении прямой y = kx+ b, если прямая определена уравнением x y=

Подробнее

Н.Н. Корнеева, М.Ф. Насрутдинов, Ф.Ф. Шарифуллина СБОРНИК ЗАДАЧ ПО АНАЛИТИЧЕСКОЙ ГЕОМЕТРИИ

Н.Н. Корнеева, М.Ф. Насрутдинов, Ф.Ф. Шарифуллина СБОРНИК ЗАДАЧ ПО АНАЛИТИЧЕСКОЙ ГЕОМЕТРИИ КАЗАНСКИЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ ВЫСШАЯ ШКОЛА ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ И ИНФОРМАЦИОННЫХ СИСТЕМ Н.Н. Корнеева, М.Ф. Насрутдинов, Ф.Ф. Шарифуллина СБОРНИК ЗАДАЧ ПО АНАЛИТИЧЕСКОЙ ГЕОМЕТРИИ УЧЕБНО-МЕТОДИЧЕСКОЕ

Подробнее

Основные задачи аналитической геометрии. 1. Способы задания линии на плоскости.

Основные задачи аналитической геометрии. 1. Способы задания линии на плоскости. Основные задачи аналитической геометрии Аналитическая геометрия раздел математики, в котором изучаются геометрические объекты с помощью алгебраических методов. Основным методом аналитической геометрии

Подробнее

РАЗДЕЛ 2. АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ

РАЗДЕЛ 2. АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ РАЗДЕЛ АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ Часть I Аналитическая геометрия на плоскости Уравнение линии на плоскости Как известно, любая точка на плоскости определяется двумя координатами в какой- либо системе координат

Подробнее

Галаев С.В., Шевцова Ю.В. Контрольные работы по аналитической геометрии

Галаев С.В., Шевцова Ю.В. Контрольные работы по аналитической геометрии Саратовский государственный университет им.н.г.чернышевского Галаев С.В., Шевцова Ю.В. Контрольные работы по аналитической геометрии Саратов 2001 Контрольная работа 1 по теме Основные формулы аналитической

Подробнее

Аналитическая геометрия

Аналитическая геометрия Аналитическая геометрия 5.. Прямая на плоскости Различные способы задания прямой на плоскости. Общее уравнение прямой на плоскости. Расположение прямой относительно системы координат. Геометрический смысл

Подробнее

( ) ( ) ( ) x x + y y + z z = R

( ) ( ) ( ) x x + y y + z z = R Глава II. АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ В ПРОСТРАНСТВЕ Лекции 0-2 2. УРАВНЕНИЯ ПОВЕРХНОСТИ И ЛИНИИ В ПРОСТРАНСТВЕ 2.. Основные понятия Поверхность и ее уравнение Поверхность в пространстве можно рассматривать

Подробнее

Линейная алгебра и аналитическая геометрия. Тема: Плоскость. Лектор Пахомова Е.Г г.

Линейная алгебра и аналитическая геометрия. Тема: Плоскость. Лектор Пахомова Е.Г г. Линейная алгебра и аналитическая геометрия Тема: Плоскость Лектор Пахомова Е.Г. г. 3. Плоскость. Общее уравнение плоскости и его исследование ЗАДАЧА. Записать уравнение плоскости, проходящей через точку

Подробнее

8. Кривые второго порядка Окружность

8. Кривые второго порядка Окружность 8 Кривые второго порядка 81 Окружность Множество точек плоскости, равноудаленных от одной точки, называемой центром, на расстояние, называемое радиусом, называется окружностью Пусть центр окружности находится

Подробнее

Аналитическая геометрия. Задачи для самостоятельного решения.

Аналитическая геометрия. Задачи для самостоятельного решения. Аналитическая геометрия Задачи для самостоятельного решения 1 Векторы 11 Даны вершины треугольника: A( 1; 2; 4), B ( 4; 2;0) и C(3; 2; 1) Найти угол между медианой AM и стороной AB 12 Выяснить при каком

Подробнее

Задачи по аналитической геометрии

Задачи по аналитической геометрии I. Векторная алгебра Задачи по аналитической геометрии I.1. Скалярное, векторное и смешанное произведение 1. Длины векторов ā и b равны 1, скалярное произведение (ā + b, 2ā + 3 b) = 3 2. Найти скалярное

Подробнее

уравнением первой степени и при любом другом выборе декартовой прямоугольной системы. Расположим оси Ox и Oy в плоскости π, а ось Oz направим

уравнением первой степени и при любом другом выборе декартовой прямоугольной системы. Расположим оси Ox и Oy в плоскости π, а ось Oz направим Уравнения плоскости. Общее уравнение плоскости. Неполные уравнения плоскости. Уравнение плоскости в отрезках Угол между двумя плоскостями. Условия параллельности и перпендикулярности плоскостей. Уравнение

Подробнее

ВАРИАНТ Записать общее уравнение прямой, заданной параметрически. ; найти угловой коэффициент этой прямой.

ВАРИАНТ Записать общее уравнение прямой, заданной параметрически. ; найти угловой коэффициент этой прямой. ВАРИАНТ Записать общее уравнение прямой, заданной параметрически x = + t ; найти угловой коэффициент этой прямой y = 4 t Даны две вершины A (, ) и B (5, 7) треугольника ABC и точка пересечения его высот

Подробнее

«Элементы векторной алгебры и аналитической геометрии»

«Элементы векторной алгебры и аналитической геометрии» МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Национальный исследовательский ядерный университет

Подробнее

Линейная алгебра и аналитическая геометрия

Линейная алгебра и аналитическая геометрия Линейная алгебра и аналитическая геометрия Тема: Плоскость Лектор Имас О.Н. 016 г. Плоскость 1. Общее уравнение плоскости Опр. Плоскостью называется геометрическое место точек, координаты которых удовлетворяют

Подробнее

Аналитическая геометрия Модуль 1. Матричная алгебра. Векторная алгебра

Аналитическая геометрия Модуль 1. Матричная алгебра. Векторная алгебра Аналитическая геометрия Модуль 1 Матричная алгебра Векторная алгебра Текст 5 (самостоятельное изучение) Аннотация Декартова прямоугольная система координат на плоскости и в пространстве Формулы для расстояния

Подробнее

Аналитическая геометрия Модуль 2. Аналитическая геометрия на плоскости и в пространстве

Аналитическая геометрия Модуль 2. Аналитическая геометрия на плоскости и в пространстве Аналитическая геометрия Модуль. Аналитическая геометрия на плоскости и в пространстве Лекция 7 Аннотация Линии второго порядка на плоскости: эллипс, гипербола, парабола. Определение, общие характеристики.

Подробнее

(x x 0 ) 2 + (y y 0 ) 2 = R 2. (x x 0 ) 2 + (y y 0 ) 2 + (z z 0 ) 2 = R 2. A (x x 0 ) + B (y y 0 ) = 0. (1) Ax + By + C = 0. (2)

(x x 0 ) 2 + (y y 0 ) 2 = R 2. (x x 0 ) 2 + (y y 0 ) 2 + (z z 0 ) 2 = R 2. A (x x 0 ) + B (y y 0 ) = 0. (1) Ax + By + C = 0. (2) Занятие 9 Прямая на плоскости и плоскость в пространстве На этом занятии мы будем заниматься кривыми и поверхностями, которые задаются простейшими уравнениями алгебраическими уравнениями первой степени.

Подробнее

4. Координаты вектора

4. Координаты вектора 4. Координаты вектора ОПРЕДЕЛЕНИЕ. Коэффициенты в разложении вектора по базису называются координатами этого вектора в данном базисе. Декартовой прямоугольной системой координат в пространстве называют

Подробнее

ЛИНЕЙНАЯ АЛГЕБРА Лекция 10. Прямая и плоскость в пространстве

ЛИНЕЙНАЯ АЛГЕБРА Лекция 10. Прямая и плоскость в пространстве ЛИНЕЙНАЯ АЛГЕБРА Лекция Прямая и плоскость в пространстве Содержание: Уравнение плоскости Взаимное расположение плоскостей Векторно-параметрическое уравнение прямой Уравнения прямой по двум точкам Прямая

Подробнее

Задания для аудиторной и самостоятельной работы

Задания для аудиторной и самостоятельной работы Задания для аудиторной и самостоятельной работы Решите системы линейных уравнений методом Крамера (если это возможно) и методом Гаусса ( ):,,,, 4,, 4 5 7 5 5 4 4 6 6 4 5,, 6 4 4 4,, 8, 9,, 4 4 5 Контрольный

Подробнее

Лекция 13. Тема: Кривые второго порядка. Кривые второго порядка на плоскости: эллипс, гипербола, парабола.

Лекция 13. Тема: Кривые второго порядка. Кривые второго порядка на плоскости: эллипс, гипербола, парабола. Лекция 13 Тема: Кривые второго порядка Кривые второго порядка на плоскости: эллипс, гипербола, парабола. Вывод уравнений кривых второго порядка исходя из их геометрических свойств. Исследование формы эллипса,

Подробнее

3. Плоскость 1. Общее уравнение плоскости и его исследование

3. Плоскость 1. Общее уравнение плоскости и его исследование 3. Плоскость. Общее уравнение плоскости и его исследование ЗАДАЧА. Записать уравнение плоскости, проходящей через точку M 0 ( 0 ; 0 ; 0 ), перпендикулярно вектору N { A, B, C} Вектор, перпендикулярный

Подробнее

Пусть на плоскости задана декартова система координат и некоторая линия L.

Пусть на плоскости задана декартова система координат и некоторая линия L. Лекция 7. Линии на плоскости и их уравнения. Прямая на плоскости. Различные формы уравнений прямой на плоскости. Угол между прямыми. Расстояние от точки до прямой. Пусть на плоскости задана декартова система

Подробнее

Глава 7 Плоскость в пространстве

Глава 7 Плоскость в пространстве Глава 7 Плоскость в пространстве Определение. Плоскостью называется поверхность, все точки которой удовлетворяют общему уравнению:, где А, В, С координаты вектора i j k -вектор нормали к плоскости. Возможны

Подробнее

Аналитическая геометрия Прямая на плоскости. Вариант 5

Аналитическая геометрия Прямая на плоскости. Вариант 5 Аналитическая геометрия Прямая на плоскости Вариант 1 1.) Дана прямая 5 x + 4y 3 = 0. Найти 1) направляющий вектор прямой, ) угловой коэффициент прямой, 3) отрезки отсекаемые прямой на осях координат..)

Подробнее

13. Прямая в пространстве 1. Уравнения прямой в пространстве

13. Прямая в пространстве 1. Уравнения прямой в пространстве 3. Прямая в пространстве. Уравнения прямой в пространстве Пусть A +B +C +D =0 и A +B +C +D =0 уравнения любых двух различных плоскостей содержащих прямую l. Тогда координаты любой точки прямой l удовлетворяют

Подробнее

Линейная алгебра Лекция 9. Прямая линия на плоскости

Линейная алгебра Лекция 9. Прямая линия на плоскости Линейная алгебра Лекция 9 Прямая линия на плоскости Пусть дана декартовая прямоугольная система координат Oxy на плоскости Геометрическое место точек (ГМТ) Определение Уравнением линии на плоскости Оху

Подробнее

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ГЕОДЕЗИИ И КАРТОГРАФИИ (МИИГАиК) О.В.Исакова

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ГЕОДЕЗИИ И КАРТОГРАФИИ (МИИГАиК) О.В.Исакова Федеральное агентство по образованию МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ГЕОДЕЗИИ И КАРТОГРАФИИ МИИГАиК) ОВИсакова ИНДИВИДУАЛЬНЫЕ РАСЧЁТНЫЕ ЗАДАНИЯ И МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ СТУДЕНТОВ ПО САМОСТОЯТЕЛЬНОМУ

Подробнее

Уравнение плоскости, проходящей через заданную точку, перпендикулярно заданному вектору.

Уравнение плоскости, проходящей через заданную точку, перпендикулярно заданному вектору. Уравнение плоскости, проходящей через заданную точку, перпендикулярно заданному вектору. Положение плоскости в пространстве можно задать точкой M 0 (x 0, y 0, z 0 ), принадлежащей этой плоскости и вектором

Подробнее

Уравнения прямой в пространстве. Лекция 7

Уравнения прямой в пространстве. Лекция 7 Уравнения прямой в пространстве Лекция 7 1 Параметрические уравнения прямой Перейдём в векторном уравнении прямой в пространстве к координатной форме r ( x; y; z), r ( x ; y ; z ), a ( m; n; p) r r t a

Подробнее

ВТОРОЕ ЗАДАНИЕ. 4. В прямоугольной системе координат точка А лежит на прямой 2x 3y+ 4= 0.

ВТОРОЕ ЗАДАНИЕ. 4. В прямоугольной системе координат точка А лежит на прямой 2x 3y+ 4= 0. ВТОРОЕ ЗАДАНИЕ 1. Прямая на плоскости. 1. Две прямые заданы векторными уравнениями (, rn ) = D и r= r + a, причем ( an, ) 0. Найти радиус-вектор точки пересечения прямых. 0 t. Даны точка М 0 с радиус-вектором

Подробнее

АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ В ПРОСТРАНСТВЕ

АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ В ПРОСТРАНСТВЕ ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ ГОУ ВПО «УРАЛЬСКИЙ ГОСУДАРСТВЕННЫЙ ЛЕСОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ» Кафедра высшей математики НЛ Воронцова АВ Маргулян НК Орехова ЕС Филимонова АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ

Подробнее

Примеры решений контрольных работ

Примеры решений контрольных работ Примеры решений контрольных работ Л.И. Терехина, И.И. Фикс 1 Контрольная работа 3. Аналитическая геометрия на плоскости 1. Составить уравнения прямых, проходящих через точку A(4; 1) a) параллельно прямой

Подробнее

Задача Кузнецов Аналитическая геометрия 1-3. Условие задачи. Написать разложение вектора по векторам : Решение. Искомое разложение вектора

Задача Кузнецов Аналитическая геометрия 1-3. Условие задачи. Написать разложение вектора по векторам : Решение. Искомое разложение вектора Задача Кузнецов Аналитическая геометрия 1-3 Написать разложение вектора по векторам : Искомое разложение вектора имеет вид: Или в виде системы: Получаем: Ко второй строке прибавим третью: Вычтем из первой

Подробнее

Плоскость. Прямая в пространстве 1

Плоскость. Прямая в пространстве 1 Объект изучения геометрические элементы: точки, прямые, линии, плоскости, поверхности; Метод изучения метод координат; Основные задачи 1. Задано ГМТ, т.е. совокупность точек, обладающих характерным свойством.

Подробнее

Вопросы и задачи к экзамену по аналитической геометрии, зима. I. Теоретические вопросы.

Вопросы и задачи к экзамену по аналитической геометрии, зима. I. Теоретические вопросы. Вопросы и задачи к экзамену по аналитической геометрии, зима 1 I. Теоретические вопросы. Условные бозначения. (*) в конце фразы означает, что студенты будущей группы 2362 ее положения доказывать не должны,

Подробнее

0.5 setgray0 0.5 setgray1

0.5 setgray0 0.5 setgray1 0.5 setgray0 0.5 setgray1 1 Лекция 9 ЭЛЛИПС, ГИПЕРБОЛА И ПАРАБОЛА 1. Каноническое уравнение эллипса Определение 1. Эллипсом называется геометрическое место точек M на плоскости, сумма расстояний от каждой

Подробнее

Тема: Кривые второго порядка

Тема: Кривые второго порядка Линейная алгебра и аналитическая геометрия Тема: Кривые второго порядка Лектор Рожкова С.В. 01 г. 15. Кривые второго порядка Кривые второго порядка делятся на 1) вырожденные и ) невырожденные Вырожденные

Подробнее

называется определителем второго порядка, соответствующим данной матрице, и обозначается символом

называется определителем второго порядка, соответствующим данной матрице, и обозначается символом ОПРЕДЕЛИТЕЛИ Пусть дана матрица Число называется определителем второго порядка, соответствующим данной матрице, и обозначается символом = = - Определитель второго порядка содержит две строки и два столбца,

Подробнее

Лекция 1.3. Уравнения плоскости и прямой

Лекция 1.3. Уравнения плоскости и прямой Лекция.. Уравнения плоскости и прямой Аннотация: Помимо векторного, общего, нормального и в отрезках дается еще и параметрическое уравнение плоскости, с целью обобщения в дальнейшем понятия плоскости в

Подробнее

Тема: Кривые второго порядка (продолжение)

Тема: Кривые второго порядка (продолжение) Линейная алгебра и аналитическая геометрия Тема: Кривые второго порядка (продолжение) Лектор Пахомова Е.Г. 01 г. 4. Общее определение эллипса, гиперболы и параболы ОПРЕДЕЛЕНИЕ. Прямые a m называются дирек-

Подробнее

ЛЕКЦИЯ 5 ЭЛЕМЕНТЫ АНАЛИТИЧЕСКОЙ ГЕОМЕТРИИ.

ЛЕКЦИЯ 5 ЭЛЕМЕНТЫ АНАЛИТИЧЕСКОЙ ГЕОМЕТРИИ. ЛЕКЦИЯ 5 ЭЛЕМЕНТЫ АНАЛИТИЧЕСКОЙ ГЕОМЕТРИИ. 1 1. Уравнение поверхности и уравнения линии в пространстве. Геометрический смысл уравнений В аналитической геометрии всякую поверхность рассматривают как совокупность

Подробнее

Лекция 6. Прямая на плоскости

Лекция 6. Прямая на плоскости Лекция 6 Прямая на плоскости Уравнение прямой, проходящей через заданную точку и имеющей заданный вектор нормали l O b y На плоскости, где введена прямоугольная система координат, рассмотрим прямую l.

Подробнее

ТИПОВОЙ РАСЧЕТ «Векторная алгебра. Аналитическая геометрия»

ТИПОВОЙ РАСЧЕТ «Векторная алгебра. Аналитическая геометрия» ТИПОВОЙ РАСЧЕТ «Векторная алгебра Аналитическая геометрия» Задание 1: а) показать, что векторы p, q, r образуют базис Найти координаты вектора x в этом базисе; б) проверить коллинеарность векторов и c

Подробнее

И. Н. Пирогова Аналитическая геометрия в примерах и задачах

И. Н. Пирогова Аналитическая геометрия в примерах и задачах Федеральное агентство железнодорожного транспорта Уральский государственный университет путей сообщения Кафедра «Высшая математика» И Н Пирогова Аналитическая геометрия в примерах и задачах Екатеринбург

Подробнее

ЭЛЕМЕНТЫ АНАЛИТИЧЕСКОЙ ГЕОМЕТРИИ НА ПЛОСКОСТИ.

ЭЛЕМЕНТЫ АНАЛИТИЧЕСКОЙ ГЕОМЕТРИИ НА ПЛОСКОСТИ. ЭЛЕМЕНТЫ АНАЛИТИЧЕСКОЙ ГЕОМЕТРИИ НА ПЛОСКОСТИ. Прямая линия 1. Вычислите периметр треугольника, вершинами которого служат точки A(6; 7), B(3; 3), C( 1; 5). 2. Найдите точку, равноудаленную от точек A(7;

Подробнее

3. Прямая на плоскости

3. Прямая на плоскости 3 Прямая на плоскости В 3 представлены типов задач на прямую на плоскости, использующие все основные уравнения прямой, а также формулы расстояния между двумя точками, расстояния от точки до прямой, угла

Подробнее

Элементы линейной алгебры и аналитической геометрии

Элементы линейной алгебры и аналитической геометрии Министерство образования Российской Федерации Ростовский Государственный Университет Механико-маттематический факультет Кафедра геометрии Казак В.В. Практикум по аналитической геометрии для студентов первого

Подробнее

Глава 9 Кривые на плоскости. Кривые второго порядка

Глава 9 Кривые на плоскости. Кривые второго порядка Глава 9 Кривые на плоскости. Кривые второго порядка 9. Основные понятия Говорят, что кривая Г в прямоугольной системе координат Оху имеет уравнение F (, )=0, если точка М(х, у) принадлежит кривой в том

Подробнее

ЛИНЕЙНАЯ И ВЕКТОРНАЯ АЛГЕБРА. АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ. Методические указания к выполнению индивидуальных

ЛИНЕЙНАЯ И ВЕКТОРНАЯ АЛГЕБРА. АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ. Методические указания к выполнению индивидуальных ЛИНЕЙНАЯ И ВЕКТОРНАЯ АЛГЕБРА АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ Методические указания к выполнению индивидуальных домашних заданий ЭЛЕМЕНТЫ ЛИНЕЙНОЙ АЛГЕБРЫ m n называется прямоугольная табли- Матрицей размера ца

Подробнее

ВАРИАНТ 11. Вычислить его площадь; найти уравнение высоты и медианы, проведенных

ВАРИАНТ 11. Вычислить его площадь; найти уравнение высоты и медианы, проведенных ВАРИАНТ 11 1 Точка M() является основанием перпендикуляра опущенного из точки N(1-1) на прямую l Написать уравнение прямой l; найти расстояние от точки N до прямой l Составить уравнения прямых проходящих

Подробнее

Аналитическая геометрия

Аналитическая геометрия МЛ Каган, ТС Кузина, ТА Мацеевич Аналитическая геометрия Предлагаемый электронный вариант учебного пособия подготовлен на основе книги МЛ Кагана и МВ Самохина «Математика в инженерном вузе Алгебра и геометрия»

Подробнее

МАТЕМАТИКА АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ

МАТЕМАТИКА АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ ООО «Резольвента», wwwesolventau, esolventa@listu, (495) 59-8- Учебный центр «Резольвента» Доктор физико-математических наук, профессор К Л САМАРОВ МАТЕМАТИКА Учебно-методическое пособие по разделу АНАЛИТИЧЕСКАЯ

Подробнее

Аналитическая геометрия Модуль 2. Аналитическая геометрия на плоскости и в пространстве

Аналитическая геометрия Модуль 2. Аналитическая геометрия на плоскости и в пространстве Аналитическая геометрия Модуль 2 Аналитическая геометрия на плоскости и в пространстве Текст 6 (самостоятельное изучение) Аннотация Уравнения прямой в пространстве: как линии пересечения двух плоскостей,

Подробнее

Тема: Кривые второго порядка

Тема: Кривые второго порядка Линейная алгебра и аналитическая геометрия Тема: Кривые второго порядка Лектор Пахомова Е.Г. 01 г. 15. Кривые второго порядка Кривые второго порядка делятся на 1) вырожденные и ) невырожденные Вырожденные

Подробнее

Электронная библиотека

Электронная библиотека ГОСУДАРСТВЕННОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «БЕЛОРУССКО-РОССИЙСКИЙ УНИВЕРСИТЕТ» Кафедра «Высшая математика» ВЫСШАЯ МАТЕМАТИКА. МАТЕМАТИКА Методические указания к практическим занятиям

Подробнее

Асимптотами гиперболы называются прямые, к которым неограниченно приближается гипербола при неограниченном возрастании абсцисс ее точек.

Асимптотами гиперболы называются прямые, к которым неограниченно приближается гипербола при неограниченном возрастании абсцисс ее точек. Практическое занятие 1 Тема: Гипербола План 1 Определение и каноническое уравнение гиперболы Геометрические свойства гиперболы Взаимное расположение гиперболы и прямой, проходящей через ее центр Асимптоты

Подробнее

Аналитическая геометрия Модуль 2. Аналитическая геометрия на плоскости и в пространстве

Аналитическая геометрия Модуль 2. Аналитическая геометрия на плоскости и в пространстве Аналитическая геометрия Модуль 2 Аналитическая геометрия на плоскости и в пространстве Лекция 6 Аннотация Уравнение плоскости, проходящей через заданную точку перпендикулярно заданному вектору Общее уравнение

Подробнее

Министерство образования республики Беларусь Учреждение образования «Могилевский государственный университет продовольствия» ВЫСШАЯ МАТЕМАТИКА

Министерство образования республики Беларусь Учреждение образования «Могилевский государственный университет продовольствия» ВЫСШАЯ МАТЕМАТИКА Министерство образования республики Беларусь Учреждение образования «Могилевский государственный университет продовольствия» ВЫСШАЯ МАТЕМАТИКА Методические указания к решению задач по теме «Аналитическая

Подробнее

Элементы аналитической геометрии в курсе геометрии классов

Элементы аналитической геометрии в курсе геометрии классов Элементы аналитической геометрии в курсе геометрии 1-11 классов 1. Введение. Уравнение прямой. Уравнение плоскости 4. задач с использованием уравнений прямой и плоскости 5. Расстояние и отклонение точки

Подробнее

И называется число находимое следующим образом:

И называется число находимое следующим образом: Введение в линейную алгебру и аналитическую геометрию Определители Теория матриц и определителей является введением в линейную алгебру Наиважнейшим применением этой теории является решение систем линейных

Подробнее

Аналитическая геометрия Векторные пространства Конспект лекций для студентов экономических специальностей Составил В. С. Мастяница

Аналитическая геометрия Векторные пространства Конспект лекций для студентов экономических специальностей Составил В. С. Мастяница БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ Э К О Н О М И Ч Е С К И Й Ф А К У Л Ь Т Е Т КАФЕДРА АНАЛИТИЧЕСКОЙ ЭКОНОМИКИ И ЭКОНОМЕТРИКИ Аналитическая геометрия Векторные пространства Конспект лекций для студентов

Подробнее