Разностная аппроксимация начально-краевой задачи для уравнения теплопроводности. Понятие явной и неявной схемы.

Save this PDF as:
 WORD  PNG  TXT  JPG

Размер: px
Начинать показ со страницы:

Download "Разностная аппроксимация начально-краевой задачи для уравнения теплопроводности. Понятие явной и неявной схемы."

Транскрипт

1 Разностная аппроксимация начально-краевой задачи для уравнения теплопроводности. Понятие явной и неявной схемы. 1 Разностная аппроксимация уравнения теплопроводности Рассмотрим различные варианты разностной аппроксимации линейного одномерного по пространству уравнения теплопроводности: где T > 0 некоторая константа. u t = u + fx, t, x 0, l, t 0, T ], 1.1 x Введем в области D = {0 x l, 0 t T } равномерную сетку с шагом по координате и шагом по времени: x =, = 0, 1,...,, = l; t j = j, j = 0, 1,..., M, M = T. Уравнение 1.1 содержит как производные по пространственной переменной x, так и по времени t, поэтому для построения его разностной аппроксимации придется использовать узлы сетки, соответствующие различным j. Все узлы сетки, отвечающие фиксированному j, называют j-м временным слоем. Свойства разностных схем для уравнения 1.1 зависят от того, на каком слое j по времени аппроксимируется выражение u x. Рассмотрим возможные варианты. Вариант 1: явная схема. Для аппроксимации оператора L = t x приведенный на рис. 1. в уравнении 1.1 используем шаблон, 1

2 Рис. 1: Шаблон явной схемы для уравнения теплопроводности. Соответствующий разностный оператор L 0 u имеет вид: L 0 ux, t + ux, t ux +, t ux, t + ux, t u =. Далее для краткости будем использовать следующие стандартные обозначения: u = ux, t; û = ux, t +. Тогда: u t = û u, L 0 u = u t u xx. Найдем погрешность аппроксимации разностным оператором L 0 исходного дифференциального оператора L в точке x, t. В случае достаточно гладкой функции ux, t при достаточно малых шагах и имеем: u t = ux, t + ux, t = ux, t t + O, 1. Следовательно, разностный оператор L 0 аппроксимирует дифференциальный оператор L с погрешностью O + в точке x, t: L 0 u xx = ux, t x + O. 1.3 ux, t u = t ux, t x } {{ } L[ux,t] +O +. Введем сеточную функцию ϕ = ϕx, t j, аппроксимирующую правую часть fx, t уравнения 1.1 на всех внутренних узлах x, t j сетки с погрешностью O +. В качестве ϕ можно взять, например ϕx, t j = fx, t j. Тогда разностное уравнение L 0 y = ϕ будет аппроксимировать исходное дифференциальное уравнение теплопроводности 1.1 с первым порядком погрешности по и вторым по.

3 Вариант. Чисто неявная схема. Используем для аппроксимации оператора L = t x приведенный на рис.. в уравнении 1.1 шаблон, Рис. : Шаблон неявной схемы для уравнения теплопроводности. Тогда разностная аппроксимация оператора L уравнения теплопроводности будет выглядеть следующим образом: L 1 ux, t + ux, t ux +, t + ux, t + + ux, t + u = = u t û xx. Рассмотрим погрешность аппроксимации разностным оператором L 1 исходного дифференциального оператора L в точках x, t, x, t +. Так как для достаточно гладкой функции ux, t справедливы равенства û xx = ux, t + x + O = ux, t x + O +, 1.4 то с учетом 1. получаем, что оператор L 1 аппроксимирует дифференциальный оператор L в уравнении 1.1 с погрешностью O + в точках x, t и x, t + : L 1 ux, t u = t ux, t x } {{ } L[ux,t] +O + ux, t + = ux, t + +O +. } t {{ x } L[ux,t+] Беря в качестве сеточной аппроксимации правой части уравнения 1.1, например, функцию ϕx, t j = fx, t j+1, получим разностное уравнение L 1 y = ϕ, аппроксимирующее 1.1 с погрешностью O +. 3

4 Вариант 3. Неявная схема с весами. Используем шаблон, приведенный на рис. 3, и линейную комбинацию операторов L 0 и L 1 для аппроксимации дифференциального оператора L: L σ u = σl1 u+1 σl0 u = σu t σû xx +1 σu t 1 σu xx = u t σû xx + 1 σu xx, где σ 0, 1. Рис. 3: Шаблон неявной схемы с весами для уравнения теплопроводности. Пользуясь равенствами 1., 1.3 и 1.4, получаем, что оператор L σ аппроксимирует исходный дифференциальный оператор L с погрешностью O + в точках x, t, x, t+ при любом σ. По определению погрешность ψx, t = L σ u Lu 1.5 аппроксимации выражения Lu разностным выражением L σ u может вычисляться в любой точке x, t, а не обязательно в каком-либо узле сетки, так как в соотношении 1.5 функция ux, t это произвольная достаточно гладкая функция непрерывных аргументов x и t. Поэтому рассмотрим погрешность аппроксимации оператором L σ дифференциального оператора L в центральной точке x, t шаблона, приведенного на рис. 3. Пользуясь для достаточно гладкой функции ux, t разложением в ряд Тейлора в окрестности точки x, t + 0.5, при малых и получаем: ux, t + ux, t u t = = u t + O, x,t+0.5 û xx = u x + O = u x,t+ x + 3 u x,t+0.5 t x + O +, x,t+0.5 u xx = u x + O = u x,t x x,t u t x + O +. x,t+0.5 4

5 Следовательно, при σ = 0.5 в точке x, t оператор L 0.5 в силу своей симметрии аппроксимирует L со вторым порядком погрешности аппроксимации по и : L σ u = ux, t + t ux, t + x } {{ } L[ux,t+ ] 3 ux, t + σ 1 + O +. }{{} x t 0 при σ=0.5 Для того, чтобы получить разностное уравнение, аппроксимирующее дифференциальное уравнение u t = u + fx, t x с погрешностью O + в точке x, t +, достаточно взять в качестве сеточной аппроксимации правой части fx, t этого уравнения функцию ϕx, t j = fx, t j Итак, разностное уравнение L 0.5 y = ϕ, где ϕx, t j = fx, t j + 0.5, аппроксимирует уравнение 1.1 со вторым порядком погрешности по и. Реализация явной, неявной и симметричной разностных схем для начально-краевой задачи для уравнения теплопроводности на отрезке. Пример.1. Постройте явную разностную схему для следующей начально-краевой задачи на отрезке x [0, 1]: u t = u + x, 0 < x < 1, 0 < t 1, x 3πx ux, 0 = sn, u0, t = 0, u x = t. x=1 Сравните численное решение с аналитическим и исследуйте зависимость погрешности от шагов сетки. При численном решении соблюдайте условие устойчивости явной схемы: /. Решение. Прежде всего найдем аналитическое решение задачи.1. В силу ее линейности решение можно искать в виде ux, t = vx, t + xt, где функция vx, t удовлетворяет.1 5

6 задаче с однородными граничными условиями: v t = v, 0 < x < 1, 0 < t 1, x 3πx vx, 0 = sn, v v0, t = 0, x = 0. x=1 Используя метод разделения переменных, получаем: v = e 3π/t sn3πx/. Следовательно, аналитическое решение задачи.1 имеет вид: ux, t = xt + e 3π t 3πx sn. Для того, чтобы получить численное решение, введем в расчетной области равномерную сетку: x =, = 0, 1,...,, = 1; t j = j, j = 0, 1,..., M, M = 1, и будем для краткости использовать обозначения u j = ux, t j, y j = yx, t j. Построим разностную аппроксимацию уравнения в соответствии с явной схемой: y j = yj 1 yj + yj +1 + x, = 1,,..., 1, j = 0, 1,..., M 1.. Это разностное уравнение необходимо дополнить соответствующими начальными и граничными условиями на сетке. Начальное условие и граничное условие Дирихле при x = 0 аппроксимируются точно: y 0 3πx = sn, = 0, 1,...,, y j 0 = 0, j = 0, 1,..., M. Граничное условие при x = 1 содержит производную u. Если ее просто заменить x односторонней разностной производной, то уравнение y j yj 1 = t j, j = 0, 1,..., M,.3 будет аппроксимировать соответствующее граничное условие с первым порядком погрешности аппроксимации. Это означает, что и для всей разностной схемы порядок погрешности аппроксимации по будет первым. Напомним, что разностное уравнение. аппроксимировало дифференциальное уравнение в задаче.1 с погрешностью O +. 6

7 Итак, первый вариант явной разностной схемы для задачи.1, обладающей погрешностью аппроксимации O +, имеет вид: y j = yj 1 yj + yj +1 + x, = 1,,..., 1, j = 0, 1,..., M 1, y 0 3πx = sn, = 0, 1,...,,.4 y j 0 = 0, y j yj 1 = t j, j = 0, 1,..., M. Рассмотрим алгоритм решения системы.4. При j = 0 значения y j известны из начального условия. Следовательно, при каждом фиксированном j = 0, 1,..., M 1 неизвестными являются. Найти их можно следующим образом: 1 при = 1,,..., 1 из первого уравнения системы.4 находим = y j + y j +1 yj + yj 1 + x ; при = 0 и = пользуемся граничными условиями, учитывая, что 1 и 1 уже известны: 0 = 0, = yj t j+1; 3 переходим на новый слой по времени, увеличивая j на единицу и повторяем действия 1 и. На рис.4-6 приведены результаты решения системы.4 для = 50 и M = Рис. 4: Аналитическое решение задачи.1. Если мы хотим, чтобы явная схема аппроксимировала исходную задачу с погрешностью O +, то можно использовать тот же прием, который применялся ранее для ап- 7

8 Рис. 5: Численное решение задачи.1 с помощью явной схемы. Рис. 6: Погрешность численного решения задачи.1 с помощью явной схемы. проксимации граничного условия, содержащего производную, в краевой задаче для обыкновенного дифференциального уравнения на отрезке. Пусть ux, t решение задачи.1. Рассмотрим выражение: u x = ux, t ux, t ux, t = ux, t + O = x x ux, t = ux, t x + O. x t Заменяя в нем производную u t конечной разностью: ux, t t = ux, t ux, t + O, 8

9 получим ux, t ux, t = ux, t x ux, t ux, t x + O +. Переходя в полученном равенстве к пределу при x 1 и учитывая, что по условию u x = t, x=1 находим, что при t = t j+1 имеет место равенство: u j+1 uj+1 1 = t j+1 u j+1 uj 1 + O +. Следовательно, разностное уравнение yj+1 1 = t j+1 yj 1.5 аппроксимирует граничное условие Неймана при x = 1 с погрешностью O +. Таким образом, меняя в схеме.4 уравнение.3 на.5, мы получим схему, аппроксимирующую исходную задачу на ее решении с погрешностью O +. Уравнение.5 удобно переписать в виде: 1 = t j yj, j = 0, 1,..., M 1, и использовать при уже найденных 1, yj для завершения перехода на слой j + 1. Результаты расчетов по соответствующей явной схеме на той же сетке, что и в предыдущем случае, приведены на рис Рис. 7: Численное решение задачи с помощью явной схемы с граничным условием.5. 9

10 Рис. 8: Погрешность решения задачи с помощью явной схемы с граничным условием.5. Также для получения схемы, имеющей погрешность аппроксимации O +, можно аппроксимировать граничное условие Неймана при x = 1 с помощью трехточечной первой разностной производной: 3 4yj yj+1 Переписывая это уравнение в виде = t j+1, j = 0, 1,..., M 1. = 4 3 yj yj+1 + t j+1 3,.6 мы можем использовать его для завершения перехода на слой j + 1 при уже найденных 1 и yj+1. Погрешность вычислений по схеме с условием.6 приведена на рис. 9. Рис. 9: Погрешность решения задачи с помощью явной схемы с граничным условием.6. 10

11 Пример.. Постройте чисто неявную разностную схему для начально-краевой задачи.1. Сравните численное решение с аналитическим и исследуйте зависимость погрешности от шагов сетки. Решение. Используем ту же сетку, что и в предыдущем примере с той лишь разницей, что соотношение шагов и теперь может быть любым. Разностная аппроксимация уравнения в соответствии с неявной схемой имеет вид: y j = yj+1 1 yj x, = 1,,..., 1, j = 0, 1,..., M 1..7 Дополним разностное уравнение.7 начальными и граничными условиями на сетке. Как и в случае явной схемы, начальное условие и граничное условие Дирихле при x = 0 аппроксимируются точно: y 0 3πx = sn, = 0, 1,..., ; 0 = 0, j = 1,..., M 1. Для аппроксимации граничного условия при x = 1 используем те же три способа, что и в случае явной схемы, разобранной в предыдущем примере. Первый вариант аппроксимации граничного условия Неймана при x = 1: yj+1 1 = t j+1, j = 1,..., M 1. Получающаяся при этом неявная разностная схема: y 0 3πx = sn, = 0, 1,...,, 0 = 0, j = 0, 1,..., M 1, y j yj+1 1 = yj+1 1 yj x, = 1,,..., 1, j = 0, 1,..., M 1, = t j+1, j = 0, 1,..., M 1.8 имеет погрешность аппроксимации O +. Значения сеточной функции y j на нулевом слое по времени известны из начального условия, поэтому при каждом фиксированном j = 0, 1,..., M 1 неизвестными являются. Система уравнений, которым они удовлетворяют, имеет вид: 0 = 0, yj = yj t j+1, + yj+1 +1 = y j + x, = 1,,..., 1,.9 11

12 то есть является системой с трехдиагональной матрицей: 0 = κ µ 1, A 1 C + B +1 = F, = 1,,..., 1, = κ 1 + µ,.10 где κ 1 = 0, µ 1 = 0, A = B =, C = 1 +, F = y j + x, κ = 1, µ = t j+1. Очевидно, что достаточные условия устойчивости прогонки: A > 0, B > 0, C A + B, C A + B, = 1,,..., 1, 0 κ p 1, p = 1, для системы.9 выполнены. Решая систему.9 методом прогонки и последовательно увеличивая значения j на единицу, мы полностью решим систему.8. Результаты вычислений по неявной схеме.8 в случае = M = 50 приведены на рис Рис. 10: Численное решение задачи.1 с помощью неявной схемы.8. Рис. 11: Погрешность численного решения задачи.1 с помощью неявной схемы.8. 1

13 Второй вариант аппроксимации граничного условия Неймана при x = 1: 1 = t j yj, j = 0, 1,..., M В этом случае для неизвестных при каждом фиксированном j получаем трехдиагональную систему вида.10, где κ = 1 1 +, µ = κ t j yj Погрешность расчетов по соответствующей неявной схеме в случае = M = 50 приведена на рис. 1.. Рис. 1: Погрешность решения задачи.1 с помощью неявной схемы с граничным условием.11. Третий вариант аппроксимации граничного условия Неймана при x = 1: = 4 3 yj yj+1 + t j+1 3 Для того, чтобы получить для неизвестных.1 систему с трехдиагональной матрицей при каждом фиксированном j, исключим из уравнения.1 неизвестное. Для этого воспользуемся уравнением.7 при = 1: yj yj yj+1 = F 1. Следовательно, = + 1 yj+1 F 1, 13

14 и уравнение.1 принимает вид: = 1 В результате для неизвестных.10, где κ = 1, 1 + F 1 + t j+1. приходим к системе с трехдиагональной матрицей вида µ = F 1 + t j+1. Погрешность расчетов по соответствующей схеме в случае = M = 50 приведена на рис. 13. Рис. 13: Погрешность численного решения задачи.1 с помощью неявной схемы с граничным условием.1. Пример.3. Постройте симметричную разностную схему схему с весом σ = 0.5 для начально-краевой задачи.1. Сравните численное решение с аналитическим и исследуйте зависимость погрешности от шагов сетки. Решение. Аппроксимация уравнения u t = u x + x в соответствии с симметричной разностной схемой имеет вид: y j = 1 y j+1 1 yj yj 1 yj + yj +1 + x,.13 где = 1,,..., 1, j = 0, 1,..., M 1. Разностное уравнение.13 аппроксимирует исходное дифференциальное уравнение теплопроводности с погрешностью O + на всех внутренних узлах сетки. 14

15 Начальное условие и условие Дирихле при x = 0 аппроксимируются так же, как и в двух рассмотренных ранее случаях. Граничное условие Неймана при x = 1 можно аппроксимировать как с первым, так и со вторым порядком по. Если в качестве аппроксимации условия при x = 1 берется разностное уравнение yj+1 1 = t j+1, j = 1,..., M 1, то схема будет иметь погрешность аппроксимации O +. Соответствующая система для неизвестных будет трехдиагональной: 0 = 0, A 1 C + B +1 = F, = 1,,..., 1, = yj t j+1,.14 где A = B =, C = 1 + A, F = y j + x + yj 1 yj + yj +1. Достаточные условия устойчивости прогонки для системы.14 выполнены. Погрешность решения задачи по схеме.14 для = M = 50 приведена на рис. 14. Рис. 14: Погрешность численного решения задачи.1 с помощью симметричной схемы. Построим аппроксимацию граничного условия Неймана при x = 1 с погрешностью O +. Рассмотрим равенство: ux, t ux, t = ux, t x ux, t t x + O,.15 где ux, t решение исходной задачи.1. Положим в равенстве.15 t = t j Так как ux, t j ux, t j =

16 и получаем: 1 = 1 u j uj 1 + uj+1 ux, tj ux, t j ux, t t t=tj +0.5 u j+1 1 = ux, t x + ux, t j+1 ux, t j+1 + O = ux, t j+1 ux, t j x,t j O, u j+1 u j x + O +. Перейдем в полученном равенстве к пределу при x 1 то есть при, учитывая граничные условия задачи: 1 u j uj 1 + uj+1 uj = t j Следовательно, разностное уравнение y j yj 1 + yj+1 yj+1 1 = t j +0.5 будет аппроксимировать условие u x = t x=1 yj u j+1 uj с погрешностью O +. Соответствующая система для вид: где 0 = 0, 1 1 A 1 C + B +1 = F, = 1,,..., 1, = κ 1 + µ, 1 κ = 1 +, µ = κ 1 + yj + O +., j = 0, 1,..., M 1.16 при фиксированном j имеет + t j + y j + yj Погрешность, получаемая при численном решении задачи с использованием граничного условия.16, для = M = 50 приведена на рис. 15. Такой же порядок погрешности аппроксимации можно получить, используя граничное условие = 4 3 yj yj+1 + t j Исключим из этого уравнения неизвестное, используя уравнение.13 при = 1: Так как yj yj+1 = F 1. = + 1 yj+1 F 1, 16

17 Рис. 15: Погрешность численного решения задачи.1 с помощью симметричной схемы с граничным условием.16. уравнение.18 можно переписать в виде: = F 1 + t j+1. В результате мы снова придем к системе с трехдиагональной матрицей вида.17 для неизвестных при каждом фиксированном j = 0, 1,..., M 1, где теперь κ = 1, µ = F 1 + t j+1. Погрешность решения по предложенной схеме при = M = 50 приведена на рис. 16. Рис. 16: Погрешность решения задачи с помощью симметричной схемы с граничным условием

18 3 Задачи для самостоятельного решения Решите аналитически и численно при помощи явной, неявной и симметричной схем начальнокраевую задачу для уравнения теплопроводности на отрезке: u t = u a + fx, t, x 0, l, t 0, T ], x ux, 0 = u 0 x, u γ 0 x + δ 0u = g 0 t, x=0 u γ 1 x + δ 1u = g 1 t, x=l где: x а a =, f = cos e t, u 0 = π x, γ 0 = 1, δ 0 = 0, γ 1 = 0, δ 1 = 1, g 0 = 1, g 1 = 0, l = π; б a = 1, f = e t x / 1, u 0 = 1 + e t x /, γ 0 = 1, δ 0 = 0, γ 1 = 1, δ 1 = 0, g 0 = 0, g 1 = e t, l = 1; в a = 0.5, f = e t, u 0 = 1 + sn 3x, γ 0 = 0, δ 0 = 1, γ 1 = 1, δ 1 = 0, g 0 = e t, g 1 = 0, l = π/; 3πx г a = 1, f = 0, u 0 = 3 x + cos, γ 0 = 1, δ 0 = 0, γ 1 = 0, δ 1 = 1, g 0 = 1, g 1 = 1, l = ; 4 д a = 0.1, f = 0, u 0 = cosπx + x + x, γ 0 = 1, δ 0 = 0, γ 1 = 1, δ 1 = 0, g 0 = 1, g 1 = 5, l =. Сравните результаты численного решения по разным схемам между собой и с аналитическим решением задачи. 18

Разностная аппроксимация начально-краевой задачи для уравнения колебаний. Явная (схема «крест») и неявная разностные схемы.

Разностная аппроксимация начально-краевой задачи для уравнения колебаний. Явная (схема «крест») и неявная разностные схемы. Разностная аппроксимация начально-краевой задачи для уравнения колебаний. Явная (схема «крест») и неявная разностные схемы. Рассмотрим несколько вариантов разностной аппроксимации линейного уравнения колебаний:

Подробнее

Основные понятия теории разностных схем. Примеры построения разностных схем для начально-краевых задач.

Основные понятия теории разностных схем. Примеры построения разностных схем для начально-краевых задач. Основные понятия теории разностных схем. Примеры построения разностных схем для начально-краевых задач. Большое количество задач физики и техники приводит к краевым либо начальнокраевым задачам для линейных

Подробнее

Разностные схемы для уравнения колебаний в многомерном случае

Разностные схемы для уравнения колебаний в многомерном случае Разностные схемы для уравнения колебаний в многомерном случае Для многомерных уравнений колебаний можно составить аналог схемы «крест» и неявной схемы. При этом явная схема «крест» так же, как и в одномерном

Подробнее

1 Метод переменных направлений для уравнения теплопроводности

1 Метод переменных направлений для уравнения теплопроводности Экономичные разностные схемы для многомерных задач математической физики. Схема переменных направлений для начально-краевой задачи для уравнения теплопроводности в прямоугольнике. Как уже было показано

Подробнее

Понятие разностной схемы. Аппроксимация. Устойчивость. Сходимость.

Понятие разностной схемы. Аппроксимация. Устойчивость. Сходимость. Понятие разностной схемы. Аппроксимация. Устойчивость. Сходимость. Большое количество задач физики и техники приводит к краевым либо начальнокраевым задачам для линейных и нелинейных дифференциальных уравнений

Подробнее

Уравнения переноса. Схемы «бегущего» счета

Уравнения переноса. Схемы «бегущего» счета Уравнения переноса. Схемы «бегущего» счета Рассмотрим ряд наиболее часто используемых разностных схем, аппроксимирующих начально-краевые задачи для линейного уравнения переноса: u t + c(x, t) u x = f(x,

Подробнее

Разностные схемы для нелинейных задач. Квазилинейное уравнение переноса.

Разностные схемы для нелинейных задач. Квазилинейное уравнение переноса. Разностные схемы для нелинейных задач. Квазилинейное уравнение переноса. Для численного решения нелинейных задач в различных ситуациях используют как линейные, так и нелинейные схемы. Устойчивость соответствующих

Подробнее

Экономичные разностные схемы для многомерных задач математической физики

Экономичные разностные схемы для многомерных задач математической физики Экономичные разностные схемы для многомерных задач математической физики Как известно, явные схемы, в которых оператор, содержащий производные по пространственным координатам, аппроксимируется на слое,

Подробнее

Теория устойчивости разностных схем

Теория устойчивости разностных схем Теория устойчивости разностных схем 1 Устойчивость решения задачи Коши по начальным данным и правой части Пусть B банахово (то есть полное нормированное) пространство функций, заданных в некоторой области

Подробнее

Простейшие способы исследования разностных схем на устойчивость

Простейшие способы исследования разностных схем на устойчивость Простейшие способы исследования разностных схем на устойчивость Напомним, что разностная схема L h y h = ϕ h (x), x ω h, l h y h = χ h (x), x γ h, аппроксимирующая краевую или начально-краевую задачу Lu

Подробнее

Предварительные сведения теории разностных схем

Предварительные сведения теории разностных схем Предварительные сведения теории разностных схем 1 Формулы суммирования по частям и разностные формулы Грина для сеточных функций Получим ряд соотношений, которые в дальнейшем будем использовать при исследовании

Подробнее

20. Метод установления решения задачи Дирихле для уравнения Пуассона. Схема переменных направлений

20. Метод установления решения задачи Дирихле для уравнения Пуассона. Схема переменных направлений Варианты заданий 0. Метод установления решения задачи Дирихле для уравнения Пуассона. Схема переменных направлений 0.1. Постановка задачи Рассматривается задача Дирихле для эллиптического уравнения Lu

Подробнее

5. Метод Эйлера: явные разностные схемы

5. Метод Эйлера: явные разностные схемы 5. Метод Эйлера: явные разностные схемы 5. Метод Эйлера: явные разностные схемы Вернемся к модели взаимодействия световых пучков (см. 2) и рассмотрим наиболее универсальный метод решения краевых задач

Подробнее

Однородные разностные схемы. Консервативность.

Однородные разностные схемы. Консервативность. Однородные разностные схемы. Консервативность. Достаточно часто на практике встречаются задачи, которые содержат дифференциальные операторы с переменными коэффициентами. При построении разностных схем

Подробнее

Глава 4. ЧИСЛЕННЫЕ МЕТОДЫ РЕШЕНИЯ ОБЫКНОВЕННЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ И ИХ СИСТЕМ. 1. Численные методы решения задачи Коши

Глава 4. ЧИСЛЕННЫЕ МЕТОДЫ РЕШЕНИЯ ОБЫКНОВЕННЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ И ИХ СИСТЕМ. 1. Численные методы решения задачи Коши Глава 4. ЧИСЛЕННЫЕ МЕТОДЫ РЕШЕНИЯ ОБЫКНОВЕННЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ И ИХ СИСТЕМ В этой главе рассматриваются основные численные методы решения задачи Коши для обыкновенных дифференциальных уравнений

Подробнее

ЧИСЛЕННЫЕ АЛГОРИТМЫ. ПОСТРОЕНИЕ И АНАЛИЗ (конспект лекций) Преподаватель: Игнатьев Михаил Юрьевич

ЧИСЛЕННЫЕ АЛГОРИТМЫ. ПОСТРОЕНИЕ И АНАЛИЗ (конспект лекций) Преподаватель: Игнатьев Михаил Юрьевич ЧИСЛЕННЫЕ АЛГОРИТМЫ. ПОСТРОЕНИЕ И АНАЛИЗ конспект лекций) Преподаватель: Игнатьев Михаил Юрьевич Саратов, 203 205 Уравнения в частных производных Решение одномерного уравнения теплопроводности с постоянными

Подробнее

Методы решения сеточных уравнений

Методы решения сеточных уравнений Методы решения сеточных уравнений 1 Прямые и итерационные методы В результате разностной аппроксимации краевых задач математической физики получаются СЛАУ, матрицы которых обладают следующими свойствами:

Подробнее

Численное решение смешанной краевой задачи явным методом сеток. Методическая разработка по курсу Численные методы

Численное решение смешанной краевой задачи явным методом сеток. Методическая разработка по курсу Численные методы Численное решение смешанной краевой задачи явным методом сеток Методическая разработка по курсу Численные методы. Постановка задачи Г.К. Измайлов Решить методом сеток смешанную краевую задачу для дифференциального

Подробнее

5. ЧИСЛЕННОЕ РЕШЕНИЕ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ С ЧАСТНЫМИ ПРОИЗВОДНЫМИ

5. ЧИСЛЕННОЕ РЕШЕНИЕ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ С ЧАСТНЫМИ ПРОИЗВОДНЫМИ 5. ЧИСЛЕННОЕ РЕШЕНИЕ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ С ЧАСТНЫМИ ПРОИЗВОДНЫМИ В настоящем разделе рассматривается метод конечных разностей который является одним из наиболее распространенных численных методов

Подробнее

Спектральный анализ разностных схем

Спектральный анализ разностных схем Спектральный анализ разностных схем 1 Исследование схем на устойчивость по начальным данным методом гармоник Одним из достаточно простых и эффективных способов исследования линейных разностных схем на

Подробнее

ГЛАВА: Метод конечных разностей. Лекция 3: Разностные схемы аппроксимаций ДУ в ЧП (6 слайдов)

ГЛАВА: Метод конечных разностей. Лекция 3: Разностные схемы аппроксимаций ДУ в ЧП (6 слайдов) ГЛАВА: Метод конечных разностей. Лекция 3: Разностные схемы аппроксимаций ДУ в ЧП (6 слайдов) Слайд 1: Построение разностных схем. В исходном дифференциальном уравнении f (x, y,, x, y, xx,...) = 0 применительно

Подробнее

ВВЕДЕНИЕ , (1) Простейшая прямая задача состоит в нахождении функции, удовлетворяющей уравнению (1) и условиям

ВВЕДЕНИЕ , (1) Простейшая прямая задача состоит в нахождении функции, удовлетворяющей уравнению (1) и условиям РЕФЕРАТ Выпускная квалификационная работа по теме «Численная идентификация правой части параболического уравнения» содержит 45 страниц текста 4 приложения 6 использованных источников 4 таблицы ОБРАТНАЯ

Подробнее

Численные методы Тема 2. Интерполяция

Численные методы Тема 2. Интерполяция Численные методы Тема 2 Интерполяция В И Великодный 2011 2012 уч год 1 Понятие интерполяции Интерполяция это способ приближенного или точного нахождения какой-либо величины по известным отдельным значениям

Подробнее

ЧИСЛЕННОЕ РЕШЕНИЕ ОБЫКНОВЕННЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ И ИХ СИСТЕМ. 1. Численные методы решения задачи Коши

ЧИСЛЕННОЕ РЕШЕНИЕ ОБЫКНОВЕННЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ И ИХ СИСТЕМ. 1. Численные методы решения задачи Коши ЧИСЛЕННОЕ РЕШЕНИЕ ОБЫКНОВЕННЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ И ИХ СИСТЕМ В этой главе рассматриваются основные численные методы решения задачи Коши для обыкновенных дифференциальных уравнений (ОДУ) первого

Подробнее

Численное решение задач с уравнениями параболического типа

Численное решение задач с уравнениями параболического типа Численное решение задач с уравнениями параболического типа. Постановка задачи в общем виде.. Разностные схемы для одномерного линейного параболического уравнения. 3. Схема для уравнения теплопроводности

Подробнее

2. Разностные схемы Разностные схемы

2. Разностные схемы Разностные схемы 2. Разностные схемы 1 2. Разностные схемы В качестве численных алгоритмов решения уравнений в частных производных наиболее часто используют метод сеток (разностные схемы). Его математический смысл чрезвычайно

Подробнее

Решение дифференциальных уравнений в частных производных

Решение дифференциальных уравнений в частных производных Нижегородский государственный университет им. Н.И.Лобачевского Факультет Вычислительной математики и кибернетики Решение дифференциальных уравнений в частных производных При поддержке компании Inel Баркалов

Подробнее

Решение дифференциальных уравнений в частных производных

Решение дифференциальных уравнений в частных производных Нижегородский государственный университет им. Н.И.Лобачевского Факультет Вычислительной математики и кибернетики Параллельные численные методы Решение дифференциальных уравнений в частных производных При

Подробнее

8. Критерии алгоритмов решения ОДУ

8. Критерии алгоритмов решения ОДУ 8. Критерии алгоритмов решения ОДУ 1 8. Критерии алгоритмов решения ОДУ Теперь, когда мы уже чуть больше знаем об алгоритмах решения задач Коши для ОДУ, продолжим разговор об их классификации. Остановимся

Подробнее

19. Разностные схемы для уравнений эллиптического типа. Итерационные методы решений сеточных уравнений

19. Разностные схемы для уравнений эллиптического типа. Итерационные методы решений сеточных уравнений Варианты заданий 9. Разностные схемы для уравнений эллиптического типа. Итерационные методы решений сеточных уравнений 9.. Постановка задачи Рассматривается задача Дирихле для эллиптического уравнения:

Подробнее

Теория устойчивости разностных схем

Теория устойчивости разностных схем Теория устойчивости разностных схем 1 Операторно-разностные схемы 1.1 Введение Пусть B банахово (то есть полное нормированное) пространство функций, заданных в некоторой области G R m, и пусть u(t) абстрактная

Подробнее

Министерство образования и науки Российской Федерации Федеральное агентство по образованию. Государственное образовательное учреждение высшего

Министерство образования и науки Российской Федерации Федеральное агентство по образованию. Государственное образовательное учреждение высшего Министерство образования и науки Российской Федерации Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования «УФИМСКИЙ ГОСУДАРСТВЕННЫЙ НЕФТЯНОЙ

Подробнее

Уравнение Лапласа в декартовой системе координат.

Уравнение Лапласа в декартовой системе координат. Линейные и нелинейные уравнения физики Уравнение Лапласа в декартовой системе координат. Старший преподаватель кафедры ВММФ Левченко Евгений Анатольевич 25. Разделение переменных в уравнении Лапласа 511

Подробнее

Г. С. Хакимзянов, С. Г. Черный

Г. С. Хакимзянов, С. Г. Черный ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ НОВОСИБИРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ Механико-математический факультет Г. С. Хакимзянов, С. Г. Черный МЕТОДЫ ВЫЧИСЛЕНИЙ Часть 3. Численные методы решения задач

Подробнее

9. Устойчивость . (66)

9. Устойчивость . (66) 9. Устойчивость 1 9. Устойчивость В прошлом разделе мы разобрали основные критерии разностных схем для ОДУ, но пока не касались, пожалуй, основного их свойства устойчивости. В качестве примера при рассмотрении

Подробнее

Задача Коши для обыкновенного дифференциального уравнения. Скалько Юрий Иванович Цыбулин Иван

Задача Коши для обыкновенного дифференциального уравнения. Скалько Юрий Иванович Цыбулин Иван Задача Коши для обыкновенного дифференциального уравнения Скалько Юрий Иванович Цыбулин Иван Задача Коши Задача Коши для ОДУ Дано обыкновенное дифференциальное уравнение 1го порядка и начальное условие

Подробнее

Способы учета граничных условий I рода при решении задач методом конечных элементов

Способы учета граничных условий I рода при решении задач методом конечных элементов УДК 519.624.1 Способы учета граничных условий I рода при решении задач методом конечных элементов Введение Корчагова В.Н., студент Россия, 105005, г. Москва, МГТУ им. Н.Э. Баумана кафедра «Прикладная математика»

Подробнее

А.А. Дегтярев ЧИСЛЕННЫЕ МЕТОДЫ МАТЕМАТИЧЕСКОЙ ФИЗИКИ. Тесты для самоконтроля знаний студентов

А.А. Дегтярев ЧИСЛЕННЫЕ МЕТОДЫ МАТЕМАТИЧЕСКОЙ ФИЗИКИ. Тесты для самоконтроля знаний студентов МИНОБРНАУКИ РОССИИ Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «САМАРСКИЙ ГОСУДАРСТВЕННЫЙ АЭРОКОСМИЧЕСКИЙ УНИВЕРСИТЕТ имени академика С.П. КОРОЛЕВА

Подробнее

4. ЧИСЛЕННЫЕ МЕТОДЫ РЕШЕНИЯ ОБЫКНОВЕННЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ

4. ЧИСЛЕННЫЕ МЕТОДЫ РЕШЕНИЯ ОБЫКНОВЕННЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ . ЧИСЛЕННЫЕ МЕТОДЫ РЕШЕНИЯ ОБЫКНОВЕННЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ.. ЧИСЛЕННЫЕ МЕТОДЫ РЕШЕНИЯ ЗАДАЧИ КОШИ... Задача Коши для одного обыкновенного дифференциального уравнения. Рассматривается задача Коши

Подробнее

ЧИСЛЕННЫЕ МЕТОДЫ Лабораторные работы по дисциплине «Численные методы» для группы АК3 Лектор: доцент кафедры ФН-11, Кутыркин В.А.

ЧИСЛЕННЫЕ МЕТОДЫ Лабораторные работы по дисциплине «Численные методы» для группы АК3 Лектор: доцент кафедры ФН-11, Кутыркин В.А. Оглавление Введение... Лабораторная работа Погрешности при решении СЛАУ... 3 Лабораторная работа Метод наименьших квадратов и модели регрессии... 7 Лабораторная работа 3 Методы простой итерации и Зейделя...

Подробнее

Численное решение задачи Коши для одного дифференциального уравнения

Численное решение задачи Коши для одного дифференциального уравнения Лабораторная работа 7 ( часа) Численное решение задачи Коши для одного дифференциального уравнения Цель работы: получение практических навыков построения алгоритмов численного решения обыкновенных дифференциальных

Подробнее

Метод разделения переменных (метод Фурье)

Метод разделения переменных (метод Фурье) Метод разделения переменных (метод Фурье) Общие принципы метода разделения переменных Для простейшего уравнения с частными производными разделение переменных это поиски решений вида только от t. u (x,t

Подробнее

Численные методы решения задачи Коши для обыкновенных дифференциальных уравнений. f f(x, y 1,..., y n ), (x, y) D. y(x 0 ) = y 0. (1.

Численные методы решения задачи Коши для обыкновенных дифференциальных уравнений. f f(x, y 1,..., y n ), (x, y) D. y(x 0 ) = y 0. (1. Численные методы решения задачи Коши для обыкновенных дифференциальных уравнений 1. Постановка задачи Пусть в области D = {a x b, y i y i 0 b i } R n+1 Необходимо найти решение удовлетворяющее начальному

Подробнее

1) Схема переменных направлений

1) Схема переменных направлений 4. Экономичные разностные схемы Схемы применяемые для решения многомерных задач и сочетающие в себе достоинства явных и неявных схем называются экономичными. Экономичная разностная схема: )является безусловно

Подробнее

Министерство образования Республики Беларусь БЕЛОРУССКИЙ НАЦИОНАЛЬНЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ Кафедра «Высшая математика 3» ЛАБОРАТОРНЫЕ РАБОТЫ

Министерство образования Республики Беларусь БЕЛОРУССКИЙ НАЦИОНАЛЬНЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ Кафедра «Высшая математика 3» ЛАБОРАТОРНЫЕ РАБОТЫ Министерство образования Республики Беларусь БЕЛОРУССКИЙ НАЦИОНАЛЬНЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ Кафедра «Высшая математика» ЛАБОРАТОРНЫЕ РАБОТЫ по уравнениям математической физики для студентов строительных

Подробнее

4. Численные методы решения обыкновенных дифференциальных уравнений

4. Численные методы решения обыкновенных дифференциальных уравнений . Численные методы решения обыкновенных дифференциальных уравнений.. Решение задачи Коши... Задача Коши для одного обыкновенного дифференциального уравнения. Рассматривается задача Коши для одного дифференциального

Подробнее

Об однородных разностных схемах

Об однородных разностных схемах Доклады Академии наук СССР Том 4 958 А Н Тихонов А А Самарский Об однородных разностных схемах В статье [] была поставлена задача об отыскании разностных схем пригодных для единообразного решения дифференциальных

Подробнее

Направление Компьютерные и информационные науки. Профиль «ВЫЧИСЛИТЕЛЬНАЯ МАТЕМАТИКА»

Направление Компьютерные и информационные науки. Профиль «ВЫЧИСЛИТЕЛЬНАЯ МАТЕМАТИКА» Направление 02.06.01 Компьютерные и информационные науки Профиль 01.01.07 «ВЫЧИСЛИТЕЛЬНАЯ МАТЕМАТИКА» 1. Определенный интеграл. Интегрируемость непрерывной функции. Первообразная непрерывной функции. 2.

Подробнее

Дифференциально-разностный метод исследования процессов диффузии материалов.

Дифференциально-разностный метод исследования процессов диффузии материалов. УДК 6780153083 Дифференциально-разностный метод исследования процессов диффузии материалов Мартышенко ВА (Военная академия радиационной, химической и бактериологической защиты и инженерных войск) Процессы

Подробнее

Под численным интегрированием понимают набор численных методов для нахождения значения определенного интеграла. При решении инженернотехнических

Под численным интегрированием понимают набор численных методов для нахождения значения определенного интеграла. При решении инженернотехнических Под численным интегрированием понимают набор численных методов для нахождения значения определенного интеграла. При решении инженернотехнических задач порой бывает необходимо вычислить среднее значение

Подробнее

При решении научных и инженерно-технических задач часто бывает необходимо математически описать какую-либо динамическую систему. Это можно сделать в

При решении научных и инженерно-технических задач часто бывает необходимо математически описать какую-либо динамическую систему. Это можно сделать в При решении научных и инженерно-технических задач часто бывает необходимо математически описать какую-либо динамическую систему. Это можно сделать в виде дифференциальных уравнений ДУ или системы дифференциальных

Подробнее

Под численным интегрированием понимают набор численных методов для нахождения значения определенного интеграла. При решении инженернотехнических

Под численным интегрированием понимают набор численных методов для нахождения значения определенного интеграла. При решении инженернотехнических Под численным интегрированием понимают набор численных методов для нахождения значения определенного интеграла. При решении инженернотехнических задач порой бывает необходимо вычислить среднее значение

Подробнее

4. Экономичные разностные схемы.

4. Экономичные разностные схемы. 4. Экономичные разностные схемы. Схема переменных направлений. Схемы применяемые для решения многомерных задач и сочетающие в себе достоинства явных и неявных схем называются экономичными. Экономичная

Подробнее

9. Вопросы устойчивости и численной реализации решения задачи Коши для линейных дифференциальных уравнений и систем

9. Вопросы устойчивости и численной реализации решения задачи Коши для линейных дифференциальных уравнений и систем Варианты задания 9. Вопросы устойчивости и численной реализации решения задачи Коши для линейных дифференциальных уравнений и систем 9.1. Задача Коши для обыкновенного дифференциального уравнения 1-го

Подробнее

Методы решения начальных задач для обыкновенных дифференциальных уравнений

Методы решения начальных задач для обыкновенных дифференциальных уравнений Методы решения начальных задач для обыкновенных дифференциальных уравнений Постановка задачи Рассмотрим обыкновенное дифференциальное уравнение сокращенно ОДУ первого порядка f,, [,b ] 6 с начальным условием

Подробнее

6. 1-е дифференциальное приближение

6. 1-е дифференциальное приближение 6. 1-е дифференциальное приближение 1 6. 1-е дифференциальное приближение Вернемся к уравнению переноса (34) с нулевым источником: u t c u x =0 (40) и разностной схеме (35) (см. рис. 18). Запишем ее в

Подробнее

Введение в численные методы решения задач гиперболического типа. МФТИ 27 августа 2012 А.И.Лобанов

Введение в численные методы решения задач гиперболического типа. МФТИ 27 августа 2012 А.И.Лобанов Введение в численные методы решения задач гиперболического типа МФТИ 27 августа 2012 А.И.Лобанов Численные методы Конечные разности Производные по тем или иным правилам заменяются разностными отношениями

Подробнее

МАТЕМАТИЧЕСКАЯ ФИЗИКА

МАТЕМАТИЧЕСКАЯ ФИЗИКА ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «ОРЕНБУРГСКИЙ ГОСУДАРСТВЕННЫЙ АГРАРНЫЙ УНИВЕРСИТЕТ» Кафедра «Математика и теоретическая механика» Методические рекомендации

Подробнее

Уравнения в частных производных первого порядка

Уравнения в частных производных первого порядка Уравнения в частных производных первого порядка Некоторые задачи классической механики, механики сплошных сред, акустики, оптики, гидродинамики, переноса излучения сводятся к уравнениям в частных производных

Подробнее

Лекция 8 РАЗРЕШИМОСТЬ ЗАДАЧ ДИРИХЛЕ И НЕЙМАНА

Лекция 8 РАЗРЕШИМОСТЬ ЗАДАЧ ДИРИХЛЕ И НЕЙМАНА Лекция 8 РАЗРЕШИМОСТЬ ЗАДАЧ ДИРИХЛЕ И НЕЙМАНА В этой лекции мы введём альтернативы Фредгольма и докажем с их помощью существование классических решений задач Дирихле и Неймана в ограниченных и неограниченных

Подробнее

Уравнения математической в ОПИСАНИИ ПРОЦЕССОВ ГОРНОГО ПРОИЗВОДСТВА

Уравнения математической в ОПИСАНИИ ПРОЦЕССОВ ГОРНОГО ПРОИЗВОДСТВА Уравнения математической в ОПИСАНИИ ПРОЦЕССОВ ГОРНОГО ПРОИЗВОДСТВА Решение вопросов организации эффективной добычи полезных ископаемых требует изучения закономерностей движения воды, тепла, распределен

Подробнее

МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ СИСТЕМ И ПРОЦЕССОВ ММСП

МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ СИСТЕМ И ПРОЦЕССОВ ММСП МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ СИСТЕМ И ПРОЦЕССОВ ММСП 1 Содержание Введение. 3 1. Приближение табличных данных конкретной системой базисных функций по методу наименьших квадратов. 4. Численное решение задачи

Подробнее

U t = (εu x ) x (1) h 2. N ) (3) h. n+1 U m N

U t = (εu x ) x (1) h 2. N ) (3) h. n+1 U m N О разностных методах решения нелинейного уравнения теплопроводности. Одномерный случай. Васильев М.О. Московский физико-технический институт сентября 004 г. 1 Введение В существующих работах [3] к решинию

Подробнее

Решение обыкновенных дифференциальных уравнений.

Решение обыкновенных дифференциальных уравнений. Решение обыкновенных дифференциальных уравнений Инженеру часто приходится иметь дело с техническими системами и технологическими процессами, характеристики которых непрерывно меняются со временем t Эти

Подробнее

3.1. ИНТЕРПОЛЯЦИЯ задано множество несовпадающих точек. (интерполяционных узлов), в которых известны значения функции

3.1. ИНТЕРПОЛЯЦИЯ задано множество несовпадающих точек. (интерполяционных узлов), в которых известны значения функции ПРИБЛИЖЕНИЕ ФУНКЦИЙ ЧИСЛЕННЫЕ ДИФФЕРЕНЦИРОВАНИЕ И ИНТЕГРИРОВАНИЕ В настоящем разделе рассмотрены задачи приближения функций с помощью многочленов Лагранжа и Ньютона с использованием сплайн интерполяции

Подробнее

О. А. Махинова СВОЙСТВА КОНЕЧНО-РАЗНОСТНОГО АНАЛОГА ОДНОМЕРНОГО ОПЕРАТОРА ЛАПЛАСА НА ГРАФЕ

О. А. Махинова СВОЙСТВА КОНЕЧНО-РАЗНОСТНОГО АНАЛОГА ОДНОМЕРНОГО ОПЕРАТОРА ЛАПЛАСА НА ГРАФЕ ВЕСТНИК САНКТ-ПЕТЕРБУРГСКОГО УНИВЕРСИТЕТА Сер. 10. 01. Вып. 1 УДК 517.95 О. А. Махинова СВОЙСТВА КОНЕЧНО-РАЗНОСТНОГО АНАЛОГА ОДНОМЕРНОГО ОПЕРАТОРА ЛАПЛАСА НА ГРАФЕ 1. Введение. В последнее время в естествознании

Подробнее

Рыжиков Александр Вячеславович. Исследование явных методов решения задачи Коши основанных на разложении Лагранжа Бюрмана

Рыжиков Александр Вячеславович. Исследование явных методов решения задачи Коши основанных на разложении Лагранжа Бюрмана Санкт-Петербургский государственный университет Кафедра моделирования электромеханических и компьютерных систем Рыжиков Александр Вячеславович Выпускная квалификационная работа бакалавра Исследование явных

Подробнее

Лекция ЧИСЛЕННЫЕ МЕТОДЫ РЕШЕНИЯ СИСТЕМ ОБЫКНОВЕННЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ

Лекция ЧИСЛЕННЫЕ МЕТОДЫ РЕШЕНИЯ СИСТЕМ ОБЫКНОВЕННЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ Лекция 4 8 ЧИСЛЕННЫЕ МЕТОДЫ РЕШЕНИЯ СИСТЕМ ОБЫКНОВЕННЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ ПОСТАНОВКА ЗАДАЧИ Рассматривается проблема решения систем обыкновенных дифференциальных уравнений первого порядка связывающих

Подробнее

МЕТОДЫ ВЫЧИСЛЕНИЙ. Лекторы: проф. Б. И. Квасов, проф. Г. С. Хакимзянов. 5 6 семестры

МЕТОДЫ ВЫЧИСЛЕНИЙ. Лекторы: проф. Б. И. Квасов, проф. Г. С. Хакимзянов. 5 6 семестры МЕТОДЫ ВЫЧИСЛЕНИЙ Лекторы: проф. Б. И. Квасов, проф. Г. С. Хакимзянов 5 6 семестры 1. Математические модели и вычислительный эксперимент. Классификация уравнений математической физики. Примеры корректных

Подробнее

Методы решения сеточных уравнений

Методы решения сеточных уравнений Методы решения сеточных уравнений 1 Прямые и итерационные методы В результате разностной аппроксимации краевых и начально-краевых задач математической физики получаются СЛАУ матрицы которых обладают следующими

Подробнее

Оглавление. Введение. Основные понятия Интегральные уравнения Вольтерры... 5 Варианты домашних заданий... 8

Оглавление. Введение. Основные понятия Интегральные уравнения Вольтерры... 5 Варианты домашних заданий... 8 Оглавление Введение. Основные понятия.... 4 1. Интегральные уравнения Вольтерры... 5 Варианты домашних заданий.... 8 2. Резольвента интегрального уравнения Вольтерры. 10 Варианты домашних заданий.... 11

Подробнее

2. ЧИСЛЕННЫЕ МЕТОДЫ РЕШЕНИЯ ЗАДАЧИ КОШИ ДЛЯ ОБЫКНОВЕННЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ Общие замечания

2. ЧИСЛЕННЫЕ МЕТОДЫ РЕШЕНИЯ ЗАДАЧИ КОШИ ДЛЯ ОБЫКНОВЕННЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ Общие замечания . ЧИСЛЕННЫЕ МЕТОДЫ РЕШЕНИЯ ЗАДАЧИ КОШИ ДЛЯ ОБЫКНОВЕННЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ.. Общие замечания Математическое моделирование многих задач механики, физики, химии и других областей науки и техники

Подробнее

МЕТОД МОНТЕ-КАРЛО ДЛЯ РЕШЕНИЯ УРАВНЕНИЯ ФОККЕРА ПЛАНКА КОЛМОГОРОВА *

МЕТОД МОНТЕ-КАРЛО ДЛЯ РЕШЕНИЯ УРАВНЕНИЯ ФОККЕРА ПЛАНКА КОЛМОГОРОВА * СБОРНИК НАУЧНЫХ ТРУДОВ НГТУ 007 3(49) 41 46 УДК 51916 МЕТОД МОНТЕ-КАРЛО ДЛЯ РЕШЕНИЯ УРАВНЕНИЯ ФОККЕРА ПЛАНКА КОЛМОГОРОВА * КС КИРЯКИН Рассмотрен метод Монте-Карло для решения уравнения Фоккера Планка Колмогорова

Подробнее

Часть 4 МЕТОД РАЗДЕЛЕНИЯ ПЕРЕМЕННЫХ 1. Общие идеи метода

Часть 4 МЕТОД РАЗДЕЛЕНИЯ ПЕРЕМЕННЫХ 1. Общие идеи метода Часть 4 МЕТОД РАЗДЕЛЕНИЯ ПЕРЕМЕННЫХ 1. Общие идеи метода Метод разделения переменных применяется для решения линейных однородных уравнений с линейными однородными граничными условиями вида α 0, β0, 0,

Подробнее

РАЗНОСТНЫЕ СХЕМЫ ДЛЯ ОБЫКНОВЕННЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ Учебное пособие

РАЗНОСТНЫЕ СХЕМЫ ДЛЯ ОБЫКНОВЕННЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ Учебное пособие МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ Н.Н. Меркулова М.Д. Михайлов РАЗНОСТНЫЕ СХЕМЫ ДЛЯ ОБЫКНОВЕННЫХ ДИФФЕРЕНЦИАЛЬНЫХ

Подробнее

Решение типовых задач к разделу «Матрицы»

Решение типовых задач к разделу «Матрицы» Решение типовых задач к разделу «Матрицы» Вычислить сумму матриц и Р е ш е н и е 8 8 9 + + + + Вычислить произведение матрицы на число Р е ш е н и е Вычислить произведение матриц и Р е ш е н и е 8 Вычислить

Подробнее

ПРИБЛИЖЕННЫЕ МЕТОДЫ РЕШЕНИЯ КРАЕВЫХ ЗАДАЧ ДЛЯ ОБЫКНОВЕННЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ, УРАВНЕНИЙ С ЧАСТНЫМИ ПРОИЗВОДНЫМИ И ИНТЕГРАЛЬНЫХ УРАВНЕНИЙ

ПРИБЛИЖЕННЫЕ МЕТОДЫ РЕШЕНИЯ КРАЕВЫХ ЗАДАЧ ДЛЯ ОБЫКНОВЕННЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ, УРАВНЕНИЙ С ЧАСТНЫМИ ПРОИЗВОДНЫМИ И ИНТЕГРАЛЬНЫХ УРАВНЕНИЙ МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «САМАРСКИЙ ГОСУДАРСТВЕННЫЙ АЭРОКОСМИЧЕСКИЙ УНИВЕРСИТЕТ имени академика

Подробнее

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование»

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ Московский государственный технический университет имени Н.Э. Баумана Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» À.Í. Êàíàòíèêîâ,

Подробнее

Óðàâíåíèå òåïëîïðîâîäíîñòè

Óðàâíåíèå òåïëîïðîâîäíîñòè Óðàâíåíèå òåïëîïðîâîäíîñòè Âîë åíêî Þ.Ì. Ñîäåðæàíèå ëåêöèè Задача о нагреве стержня, вывод уравнения теплопроводности. Краевые условия. Метод Фурье решения уравнения теплопроводности для бесконечного стержня.

Подробнее

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование»

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ Московский государственный технический университет имени Н.Э. Баумана Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» À.Í. Êàíàòíèêîâ, À.Ï. Êðèùåíêî

Подробнее

Триангуляция и метод конечных элементов АВТОРЕФЕРАТ МАГИСТЕРСКОЙ РАБОТЫ. Ромзаевой Анастасии Сергеевны

Триангуляция и метод конечных элементов АВТОРЕФЕРАТ МАГИСТЕРСКОЙ РАБОТЫ. Ромзаевой Анастасии Сергеевны Министерство образования и науки Российской Федерации ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «САРАТОВСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

Подробнее

НЕЯВНАЯ ИТЕРАЦИОННАЯ СХЕМА НА ОСНОВЕ МЕТОДА НЬЮТОНА ДЛЯ ДВУМЕРНЫХ УРАВНЕНИЙ ЭЙЛЕРА

НЕЯВНАЯ ИТЕРАЦИОННАЯ СХЕМА НА ОСНОВЕ МЕТОДА НЬЮТОНА ДЛЯ ДВУМЕРНЫХ УРАВНЕНИЙ ЭЙЛЕРА МЕЖДУНАРОДНАЯ НАУЧНАЯ КОНФЕРЕНЦИЯ «Актуальные проблемы современной математики механики и информатики» «ТАРАПОВСКИЕ ЧТЕНИЯ -» НЕЯВНАЯ ИТЕРАЦИОННАЯ СХЕМА НА ОСНОВЕ МЕТОДА НЬЮТОНА ДЛЯ ДВУМЕРНЫХ УРАВНЕНИЙ

Подробнее

5. Примеры. Пример: Диффузия с нелинейным источником тепловые волны

5. Примеры. Пример: Диффузия с нелинейным источником тепловые волны 5. Примеры 1 5. Примеры Приведем теперь несколько примеров решения разных дифференциальных уравнений при помощи разностных схем. Начнем с нескольких вариантов нелинейного уравнения диффузии тепла, для

Подробнее

ГЛАВА: Метод конечных разностей. Лекция 2: Формулы аппроксимаций производных (7 слайдов, 2 рисунка)

ГЛАВА: Метод конечных разностей. Лекция 2: Формулы аппроксимаций производных (7 слайдов, 2 рисунка) ГЛАВА: Метод конечных разностей. Лекция 2: Формулы аппроксимаций производных (7 слайдов, 2 рисунка) Слайд 1: Основные понятия. Геометрическая интерпретация задачи Если независимых переменных всего две

Подробнее

8. Численное решение задачи Коши для обыкновенного дифференциального уравнения 1-го порядка

8. Численное решение задачи Коши для обыкновенного дифференциального уравнения 1-го порядка Варианты задания 8. Численное решение задачи Коши для обыкновенного дифференциального уравнения -го порядка 8.. Постановка задачи Рассмотрим задачу Коши для обыкновеннго дифференциального уравнения y =

Подробнее

x 1 x 2 x 3 x k y 1 y 2 y 3 y k

x 1 x 2 x 3 x k y 1 y 2 y 3 y k ЛЕКЦИИ ПО ВЫЧИСЛИТЕЛЬНОЙ МАТЕМАТИКЕ Е. С. Тверская МГТУ им. Н.Э. Баумана Москва Методы аппроксимации функции. Постановка задачи приближения функции. Задачи, приводящие к задаче приближения функций. Функция

Подробнее

3. Устойчивость разностных схем

3. Устойчивость разностных схем 3. Устойчивость разностных схем 1 3. Устойчивость разностных схем Проведем расчеты по явной разностной схеме (6) сначала для линейного уравнения диффузии. Выберем (рис.5) определенные значения шага по

Подробнее

Курсовая работа по дисциплине: «дифференциальные уравнения»

Курсовая работа по дисциплине: «дифференциальные уравнения» Московский государственный технический университет им. Н. Э. Баумана. Курсовая работа по дисциплине: «дифференциальные уравнения» ВАРИАНТ 5 Выполнил: студент -го курса, гр. АК3-3 Ягубов Роман Борисович

Подробнее

I = b I = f(x) dx I = f(x) dx = f(x) dx I T = 0, 5(f n + f n+1 )h. = h(0, 5f 0 + f 1 + f f N 1 + 0, 5f N ), (2.1) N 1. n=0

I = b I = f(x) dx I = f(x) dx = f(x) dx I T = 0, 5(f n + f n+1 )h. = h(0, 5f 0 + f 1 + f f N 1 + 0, 5f N ), (2.1) N 1. n=0 Глава Вычисление определенных интегралов! " #%$&' %(" # )* +,- "#' dx. В общем виде задача решается путем аппроксимации функции другой функцией, для которой интеграл вычисляется аналитически. При этом

Подробнее

Math-Net.Ru Общероссийский математический портал

Math-Net.Ru Общероссийский математический портал Mat-Net.Ru Общероссийский математический портал О. А. Махинова Свойства конечно-разностного аналога одномерного оператора Лапласа на графе Вестн. С.-Петербург. ун-та. Сер. 10. Прикл. матем. Информ. Проц.

Подробнее

3. Явный алгоритм Эйлера

3. Явный алгоритм Эйлера 3. Явный алгоритм Эйлера 1 3. Явный алгоритм Эйлера Мы надеемся, что сделанные предварительные замечания дали читателю хорошее представление о рассматриваемом круге проблем. Перейдем теперь к обсуждению

Подробнее

ГЛАВА: Метод конечных разностей. Лекция 5: Устойчивость разностных схем (10 слайдов, 6 рисунков)

ГЛАВА: Метод конечных разностей. Лекция 5: Устойчивость разностных схем (10 слайдов, 6 рисунков) ГЛАВА: Метод конечных разностей. Лекция 5: Устойчивость разностных схем (10 слайдов, 6 рисунков) Слайд 1: Классификация РС по типам устойчивости. По типам устойчивости выделяют следующие РС: абсолютно

Подробнее

5. Теор. задача. Доказать, что среди явных многошаговых методов ( k=0

5. Теор. задача. Доказать, что среди явных многошаговых методов ( k=0 Прием заданий производится как правило в часы семинарских занятий ВЫЧИСЛИТЕЛЬНАЯ МАТЕМАТИКА 3 курс 6 семестр 6 Жесткие ОДУ Участки решения характеризующиеся быстрым его изменением Понятие методов Гира

Подробнее

du/dx=f(x, u), 0<x 1, u(0)=u 0, (1)

du/dx=f(x, u), 0<x 1, u(0)=u 0, (1) Министерство образования и науки Российской Федерации Федеральное агентство по образованию Дальневосточный государственный университет Л.А. МОЛЧАНОВА "Разностные методы решения дифференциальных уравнений"

Подробнее

Рассмотрим систему двух автономных обыкновенных ди ф- ференциальных уравнений общего вида: dx dt dy dt

Рассмотрим систему двух автономных обыкновенных ди ф- ференциальных уравнений общего вида: dx dt dy dt Семинар 4 Система двух обыкновенных дифференциальных уравнений (ОДУ). Фазовая плоскость. Фазовый портрет. Кинетические кривые. Особые точки. Устойчивость стационарного состояния. Линеаризация системы в

Подробнее

Интегралы и дифференциальные уравнения. Лекция 17

Интегралы и дифференциальные уравнения. Лекция 17 кафедра «Математическое моделирование» проф. П. Л. Иванков Интегралы и дифференциальные уравнения конспект лекций для студентов 1-го курса 2-го семестра специальностей РЛ1,2,3,6, БМТ1,2 Лекция 17 Дифференциальные

Подробнее

ТРЕХТОЧЕЧНАЯ РАЗНОСТНАЯ СХЕМА НА ПОЛУБЕСКОНЕЧНОМ ИНТЕРВАЛЕ

ТРЕХТОЧЕЧНАЯ РАЗНОСТНАЯ СХЕМА НА ПОЛУБЕСКОНЕЧНОМ ИНТЕРВАЛЕ Вычислительные технологии Том 5, 2, 2000 ТРЕХТОЧЕЧНАЯ РАЗНОСТНАЯ СХЕМА НА ПОЛУБЕСКОНЕЧНОМ ИНТЕРВАЛЕ А.И. Задорин Омский филиал института математики им. С.Л. Соболева СО РАН Омск, Россия e-mail: zadori@iitam.omsk.et.ru

Подробнее

Глава 6. Основы теории устойчивости

Глава 6. Основы теории устойчивости Глава 6 Основы теории устойчивости Лекция Постановка задачи Основные понятия Ранее было показано, что решение задачи Коши для нормальной системы ОДУ = f, () непрерывно зависит от начальных условий при

Подробнее

5 Методы приближения функций. Интерполяция табличных функций.

5 Методы приближения функций. Интерполяция табличных функций. 5 Методы приближения функций. Интерполяция табличных функций. 5.1 Постановка задачи приближения функций. Аппроксимация функций заключается в приближенной замене заданной функции f(x некоторой функцией

Подробнее

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование»

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ Московский государственный технический университет имени Н.Э. Баумана Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» À.Í. Êàíàòíèêîâ,

Подробнее