2.6. Эксцесс и асимметрия

Save this PDF as:
 WORD  PNG  TXT  JPG

Размер: px
Начинать показ со страницы:

Download "2.6. Эксцесс и асимметрия"

Транскрипт

1 Лекция 9 План лекции.5.6. Распределение Симпсона (треугольное распределение)..6 Эксцесс и асимметрия.7 Теорема Ляпунова и её следствия 3. Системы случайных величин (случайные векторы) 3.1 Закон распределения вероятностей дискретной двумерной системы. 3. Интегральная функция распределения двумерной случайной величины 3..1 Свойства функции, 3.3Дифференциальная функция распределения непрерывной двумерной случайной системы (двумерная плотность вероятности).5.6. Распределение Симпсона (треугольное распределение) Случайная величина распределена по треугольному распределению, если f, 1, при при ;. Такое распределение наблюдается тогда, когда суммируются две или вычитаются две случайные величины, которые имеют равномерный закон распределения. m ;..6. Эксцесс и асимметрия Эксцессом называется численная характеристика случайной величины, которая определяется выражением: E 3 ; m f d k k

2 Для нормального закона 3. Отсюда следует, что для нормального закона E. Смысл термина «эксцесс» состоит в том, что он показывает, как быстро уменьшается плотность распределения вблизи её максимального значения. f() E> f m E = (для нормального закона) E< Асимметрией, или коэффициентом асимметрии, называется числовая характеристика, определяемая выражением: S 3 3. Для всех без исключения симметричных распределений нечётные центральные моменты равны, поэтому и коэффициент асимметрии S для симметричных распределений также равен нулю. f ( ) S= S> f ( ) f ( ) S< Симметричное распределение M m m M.7 Теорема Ляпунова и её следствия Если сумма X X1 X... X представлена независимыми случайными величинами, то при интегральная функция распределения суммы определяется соотношением: X 1 e t dt,

3 где и - мат. ожидание и дисперсия суммы. При этом третий начальный момент суммы C, а третьи начальные моменты каждого слагаемого имеют конечное значение. Следствие: Если случайная величина X представлена суммой очень большого числа взаимно независимых случайных величин, влияние каждой из которых на сумму ничтожно мало, то X имеет распределение, близкое к нормальному. 3. СИСТЕМЫ СЛУЧАЙНЫХ ВЕЛИЧИН (CЛУЧАЙНЫЕ ВЕКТОРЫ) Мы рассматривали случайные одномерные величины, которые можно отобразить точкой на числовой оси. Этой величине ставилась в соответствие то, что мы называли вероятностью появления возможного значения случайной величины. Но кроме одномерных существуют и другие величины, которые для своего полного описания требуют большего набора переменных. Например, чтобы отобразить положение точки на плоскости, или положение точки в пространстве. Соответственно потребуются двух- и трехмерные величины. Их называют векторами или системами случайных величин. Существуют и N-мерные величины, и их по аналогии называют N-мерными векторами или N-мерными системами. Принято для двумерной системы использовать обозначение (X,Y), трехмерной - (X,Y,Z), N- мерной - (X 1, X,... X ). Каждую из величин X,Y,Z называют составляющими системы. Если составляющие дискретны, то система называется дискретной ; если составляющие непрерывны, то система называется непрерывной. Отметим, что по одному из определений система это целое, состоящее из частей, связанных единой функцией. 3.1 Закон распределения вероятностей дискретной двумерной системы. Закон распределения такой системы может быть задан таблицей возможных значений составляющих и вероятностей их совместного появления. 1 1 p 11 p 1 p 1 p 1 p p m p 1 p p m

4 p i Сумма элементов таблицы равна 1. Сумма элементов строки. Сумма элементов в столбце i равняется p i. 3. Интегральная функция распределения двумерной случайной величины i равняется Интегральной функцией распределения двумерной случайной величины X,Y называют функцию (,), определяющую для каждой пары чисел, вероятность того, что X примет значения меньше, чем х, а Y меньше. В геометрической интерпретации функция (,) определяет вероятность попадания случайной величины (X,Y) в полубесконечный прямоугольник с вершиной,.,,,, Полубесконечный прямоугольник Свойства функции, 1) Значение интегральной функции, удовлетворяет двойному неравенству, 1. ) Функция, есть неубывающая функция по каждому аргументу ;, 1,, 1,, 1, 1. 3),, т.к. событие - событие невозможное;,, т.к. событие - событие невозможное;, ;, 1. При функция, становится функцией только одного аргумента, а именно х. При функция, становится функцией только аргумента у.

5 3. Дифференциальная функция распределения непрерывной двумерной случайной системы (двумерная плотность вероятности) Плотностью распределения вероятности двумерной системы называется предел отношения вероятности попадания этой случайной величины в бесконечно малый прямоугольник к площади этого прямоугольника. + C + Обозначим Р(А) вероятность появления значений функции (Х,Y) в полубесконечном прямоугольнике с вершиной х,у. Согласно определения Соответственно Р(А) = (,)., ; C, ;,. Найдём вероятность C попадания двумерной случайной величины (X,Y) в прямоугольник C, считая, что, C C,,,,,,, Таким образом,. f X,Y lim C, Дифференциальной функцией двумерной непрерывной случайной величины называют вторую смешанную производную от интегральной функции

СИСТЕМЫ СЛУЧАЙНЫХ ВЕЛИЧИН. Лекция 9

СИСТЕМЫ СЛУЧАЙНЫХ ВЕЛИЧИН. Лекция 9 ЧАСТЬ 5 СИСТЕМЫ СЛУЧАЙНЫХ ВЕЛИЧИН Лекция 9 ЗАКОН РАСПРЕДЕЛЕНИЯ СИСТЕМЫ ДВУХ СЛУЧАЙНЫХ ВЕЛИЧИН ЦЕЛЬ ЛЕКЦИИ: ввести понятие системы случайных величин и закона распределения систем двух случайных величин;

Подробнее

Лекция 10 ЧИСЛОВЫЕ ХАРАКТЕРИСТИКИ СИСТЕМЫ ДВУХ СЛУЧАЙНЫХ ВЕЛИЧИН.

Лекция 10 ЧИСЛОВЫЕ ХАРАКТЕРИСТИКИ СИСТЕМЫ ДВУХ СЛУЧАЙНЫХ ВЕЛИЧИН. Лекция ЧИСЛОВЫЕ ХАРАКТЕРИСТИКИ СИСТЕМЫ ДВУХ СЛУЧАЙНЫХ ВЕЛИЧИН -МЕРНЫЙ СЛУЧАЙНЫЙ ВЕКТОР ЦЕЛЬ ЛЕКЦИИ: определить числовые характеристики системы двух случайных величин: начальные и центральные моменты ковариацию

Подробнее

случайных величин f(x) и ее свойства Дифференциальной функцией распределения называется 1-я производная от интегральной

случайных величин f(x) и ее свойства Дифференциальной функцией распределения называется 1-я производная от интегральной Лекция 6 План лекции.3.3 Дифференциальная функция распределения непрерывных случайных величин.4 Числовые характеристики случайных.4. Математическое ожидание и его свойства..4. Дисперсия случайных величин

Подробнее

Системы случайных величин

Системы случайных величин Corght ОАО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис» Министерство образования и науки Российской Федерации Ивановский государственный химико-технологический университет Системы случайных величин Методические

Подробнее

6.4. Системы случайных величин

6.4. Системы случайных величин Лекция 4.9. Системы случайных величин. Функция распределения системы двух случайных величин (СДСВ). Свойства функции 6.4. Системы случайных величин В практике часто встречаются задачи которые описываются

Подробнее

Тема3. «Функция распределения вероятностей случайной величины» Минестерство образования Республики Беларусь

Тема3. «Функция распределения вероятностей случайной величины» Минестерство образования Республики Беларусь Минестерство образования Республики Беларусь УО «Витебский государственный технологический университет» Тема3. «Функция распределения вероятностей случайной величины» Кафедра теоретической и прикладной

Подробнее

ТЕОРИЯ ВЕРОЯТНОСТЕЙ: СИСТЕМЫ СЛУЧАЙНЫХ ВЕЛИЧИН И ФУНКЦИИ СЛУЧАЙНЫХ ВЕЛИЧИН

ТЕОРИЯ ВЕРОЯТНОСТЕЙ: СИСТЕМЫ СЛУЧАЙНЫХ ВЕЛИЧИН И ФУНКЦИИ СЛУЧАЙНЫХ ВЕЛИЧИН Т А Матвеева В Б Светличная С А Зотова ТЕОРИЯ ВЕРОЯТНОСТЕЙ: СИСТЕМЫ СЛУЧАЙНЫХ ВЕЛИЧИН И ФУНКЦИИ СЛУЧАЙНЫХ ВЕЛИЧИН ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ ВОЛГОГРАДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

Подробнее

ЛЕКЦИЯ 12. НЕПРЕРЫВНАЯ СЛУЧАЙНАЯ ВЕЛИЧИНА. 1 Плотность вероятности.

ЛЕКЦИЯ 12. НЕПРЕРЫВНАЯ СЛУЧАЙНАЯ ВЕЛИЧИНА. 1 Плотность вероятности. 1 ЛЕКЦИЯ 12. НЕПРЕРЫВНАЯ СЛУЧАЙНАЯ ВЕЛИЧИНА. 1 Плотность вероятности. Помимо дискретных случайных величин на практике приходятся иметь дело со случайными величинами, значения которых сплошь заполняет некоторые

Подробнее

ТЕМА 7. НЕПРЕРЫВНЫЕ СЛУЧАЙНЫЕ ВЕЛИЧИНЫ

ТЕМА 7. НЕПРЕРЫВНЫЕ СЛУЧАЙНЫЕ ВЕЛИЧИНЫ ТЕМА 7. НЕПРЕРЫВНЫЕ СЛУЧАЙНЫЕ ВЕЛИЧИНЫ Понятие непрерывной случайной величины. Функция распределения, плотность распределения, их взаимосвязь и свойства. Математическое ожидание непрерывной случайной величины

Подробнее

МНОГОМЕРНЫЕ СЛУЧАЙНЫЕ ВЕЛИЧИНЫ

МНОГОМЕРНЫЕ СЛУЧАЙНЫЕ ВЕЛИЧИНЫ МНОГОМЕРНЫЕ СЛУЧАЙНЫЕ ВЕЛИЧИНЫ 1 Многомерная случайная величина X = (X 1,X 2,,X n ) это совокупность случайных величин X i (i =1,2,,n), заданных на одном и том же вероятностном пространстве Ω. Закон распределения

Подробнее

Типовой расчет по теме «Теория вероятностей» разработан преподавателями. кафедры «Высшая математика»

Типовой расчет по теме «Теория вероятностей» разработан преподавателями. кафедры «Высшая математика» Типовой расчет по теме «Теория вероятностей» разработан преподавателями кафедры «Высшая математика» Руководство к решению типового расчета выполнила преподаватель Тимофеева Е.Г. Основные определения и

Подробнее

Глава 3. Непрерывные случайные величины

Глава 3. Непрерывные случайные величины Глава 3. Непрерывные случайные величины. Функция распределения. Если множество значений случайной величины X не конечно и не счетно, то такая случайная величина не может характеризоваться вероятностью

Подробнее

Глава 4. Основные законы распределения непрерывной случайной величины Равномерный закон распределения

Глава 4. Основные законы распределения непрерывной случайной величины Равномерный закон распределения 53 Глава 4. Основные законы распределения непрерывной случайной величины. 4.. Равномерный закон распределения Определение. Непрерывная случайная величина Х имеет равномерное распределение на промежутке

Подробнее

Непрерывная случайная величина

Непрерывная случайная величина Непрерывная случайная величина Непрерывная случайная величина принимает бесконечное количество значений из определенного интервала числовой прямой. 0 6 месяцев Срок службы лампочки 2 Пример. Рост человека

Подробнее

Формулы по теории вероятностей

Формулы по теории вероятностей Формулы по теории вероятностей I. Случайные события. Основные формулы комбинаторики а) перестановки P =! = 3...( ). б) размещения A m = ( )...( m + ). A! в) сочетания C = =. P ( )!!. Классическое определение

Подробнее

Понятие случайной величины и её закона распределения. Одномерные дискретные случайные величины. Случайной величиной (СВ) называется функция ξ (ω)

Понятие случайной величины и её закона распределения. Одномерные дискретные случайные величины. Случайной величиной (СВ) называется функция ξ (ω) Понятие и её закона Одномерные дискретные случайные Определение случайной Случайной величиной (СВ) называется функция (ω), определённая на пространстве элементарных событий Ω, со значениями в одномерном

Подробнее

Лекция 8 РАСПРЕДЕЛЕНИЯ НЕПРЕРЫВНЫХ СЛУЧАЙНЫХ ВЕЛИЧИН

Лекция 8 РАСПРЕДЕЛЕНИЯ НЕПРЕРЫВНЫХ СЛУЧАЙНЫХ ВЕЛИЧИН Лекция 8 РАСПРЕДЕЛЕНИЯ НЕПРЕРЫВНЫХ СЛУЧАЙНЫХ ВЕЛИЧИН ЦЕЛЬ ЛЕКЦИИ: определить функции плотности и числовые характеристики случайных величин имеющих равномерное показательное нормальное и гамма-распределение

Подробнее

Лекция 12. Понятие о системе случайных величин. Законы распределения системы случайных величин

Лекция 12. Понятие о системе случайных величин. Законы распределения системы случайных величин МВДубатовская Теория вероятностей и математическая статистика Лекция Понятие о системе случайных величин Законы распределения системы случайных величин Часто возникают ситуации когда каждому элементарному

Подробнее

Лекция 6 ЧИСЛОВЫЕ ХАРАКТЕРИСТИКИ СЛУЧАЙНЫХ ВЕЛИЧИН

Лекция 6 ЧИСЛОВЫЕ ХАРАКТЕРИСТИКИ СЛУЧАЙНЫХ ВЕЛИЧИН Лекция 6 ЧИСЛОВЫЕ ХАРАКТЕРИСТИКИ СЛУЧАЙНЫХ ВЕЛИЧИН ЦЕЛЬ ЛЕКЦИИ: определить числовые характеристики положения и моменты непрерывных и дискретных случайных величин Числовые характеристики положения Закон

Подробнее

Лекция 12 ХАРАКТЕРИСТИЧЕСКАЯ ФУНКЦИЯ. Метод линеаризации функций случайных величин

Лекция 12 ХАРАКТЕРИСТИЧЕСКАЯ ФУНКЦИЯ. Метод линеаризации функций случайных величин Лекция ХАРАКТЕРИСТИЧЕСКАЯ ФУНКЦИЯ ЦЕЛЬ ЛЕКЦИИ: построить метод линеаризации функций случайных величин; ввести понятие комплексной случайной величины и получить ее числовые характеристики; определить характеристическую

Подробнее

(, ) (, ) ( ) x y. F x y = P X Y D

(, ) (, ) ( ) x y. F x y = P X Y D 4 СИСТЕМА ДВУХ СЛУЧАЙНЫХ ВЕЛИЧИН КОРРЕЛЯЦИОННЫЙ АНАЛИЗ Многомерной случайной величиной (векторной случайной величиной, случайным вектором или случайной точкой) называют упорядоченный набор нескольких случайных

Подробнее

ТЕМА 8. СИСТЕМЫ СЛУЧАЙНЫХ ВЕЛИЧИН. ЗАКОН БОЛЬШИХ ЧИСЕЛ

ТЕМА 8. СИСТЕМЫ СЛУЧАЙНЫХ ВЕЛИЧИН. ЗАКОН БОЛЬШИХ ЧИСЕЛ ТЕМА 8. СИСТЕМЫ СЛУЧАЙНЫХ ВЕЛИЧИН. ЗАКОН БОЛЬШИХ ЧИСЕЛ Случайные векторы. Закон распределения. Условные распределения случайных величин. Числовые характеристики случайных векторов. Условные математические

Подробнее

ТЕМА 2. ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИЙ ДВУХ И ТРЕХ ПЕРЕМЕННЫХ

ТЕМА 2. ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИЙ ДВУХ И ТРЕХ ПЕРЕМЕННЫХ МЕТОДИЧЕСКИЕ УКАЗАНИЯ К РАСЧЕТНЫМ ЗАДАНИЯМ ПОКУРСУ ВЫСШЕЙ МАТЕМАТИКИ «ИНТЕГРАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИИ ОДНОГО ПЕРЕМЕННОГО ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИЙ ДВУХ И ТРЕХ ПЕРЕМЕННЫХ» ЧАСТЬ II ТЕМА ДИФФЕРЕНЦИАЛЬНОЕ

Подробнее

Непрерывные случайные величины.

Непрерывные случайные величины. Непрерывные случайные величины. Случайная величина, значения которой заполняют некоторый промежуток, называется непрерывной. В частных случаях это может быть не один промежуток, а объединение нескольких

Подробнее

, - вероятность того, что из n бросков t раз выпадет «пятерка»,

, - вероятность того, что из n бросков t раз выпадет «пятерка», .6 Бросают три игральных кубика. Найти ряд и функцию распределения числа выпавших «пятерок» Х, а также M(X), D(X) и вероятность того, что Х>. Решение: Пусть Х число выпавших «пятерок». Перечислим все возможные

Подробнее

ДИСКРЕТНЫЕ И НЕПРЕРЫВНЫЕ СЛУЧАЙНЫЕ ВЕЛИЧИНЫ ЗАКОНЫ РАСПРЕДЕЛЕНИЯ

ДИСКРЕТНЫЕ И НЕПРЕРЫВНЫЕ СЛУЧАЙНЫЕ ВЕЛИЧИНЫ ЗАКОНЫ РАСПРЕДЕЛЕНИЯ 1 ДИСКРЕТНЫЕ И НЕПРЕРЫВНЫЕ СЛУЧАЙНЫЕ ВЕЛИЧИНЫ ЗАКОНЫ РАСПРЕДЕЛЕНИЯ Одним из важнейших понятий теории вероятностей является понятие случайной величины. Случайной величиной называется переменная, которая

Подробнее

Многомерная случайная величина Функция распределения многомерной случайной величины

Многомерная случайная величина Функция распределения многомерной случайной величины СИСТЕМА СЛУЧАЙНЫХ ВЕЛИЧИН В практических применениях теории вероятностей часто приходится сталкиваться с задачами, в которых результат опыта описывается не одной, а двумя или более случайными величинами

Подробнее

СИСТЕМЫ СЛУЧАЙНЫХ ВЕЛИЧИН

СИСТЕМЫ СЛУЧАЙНЫХ ВЕЛИЧИН Министерство образования и науки Российской Федерации Федеральное агентство по образованию Саратовский государственный технический университет СИСТЕМЫ СЛУЧАЙНЫХ ВЕЛИЧИН Методические указания к практическим

Подробнее

М. М. Попов Теория вероятности Конспект лекций

М. М. Попов Теория вероятности Конспект лекций 2009 М. М. Попов Теория вероятности Конспект лекций Выполнил студент группы 712 ФАВТ А. В. Димент СПбГУКиТ Случайное событие всякий факт, который в результате опыта может произойти или не произойти, и

Подробнее

1. Срединная формула прямоугольников

1. Срединная формула прямоугольников Срединная формула прямоугольников Введем обозначение I d Пусть -непрерывны на [ ] Разделим отрезок [ ] равных частичных отрезков [ ] где на Введем обозначения ( ) ( ) ( ) интеграл I в виде Представим где

Подробнее

ФУНКЦИИ СЛУЧАЙНЫХ ВЕЛИЧИН. Лекция 11

ФУНКЦИИ СЛУЧАЙНЫХ ВЕЛИЧИН. Лекция 11 ЧАСТЬ 6 ФУНКЦИИ СЛУЧАЙНЫХ ВЕЛИЧИН Лекция ЗАКОН РАСПРЕДЕЛЕНИЯ И ЧИСЛОВЫЕ ХАРАКТЕРИСТИКИ ФУНКЦИЙ СЛУЧАЙНЫХ ВЕЛИЧИН ЦЕЛЬ ЛЕКЦИИ: ввести понятие функции случайной величины и провести классификацию возникающих

Подробнее

Практическая работа 7 Функция, плотность распределения и числовые характеристики непрерывной случайной величины

Практическая работа 7 Функция, плотность распределения и числовые характеристики непрерывной случайной величины Практическая работа 7 Функция плотность распределения и числовые характеристики непрерывной случайной величины Цель работы: Нахождение функции и плотности распределения числовых характеристик непрерывной

Подробнее

Зав. кафедрой математики, физики и медицинской информатики, доцент. /Авачева Т.Г./ «22» сентября 2017г.

Зав. кафедрой математики, физики и медицинской информатики, доцент. /Авачева Т.Г./ «22» сентября 2017г. Перечень Основных контрольных вопросов для зачета (экзамена) по дисциплине Физика, математика, модуль М атематика, для студентов 1 курса медикопрофилактического факультета 1. Понятие функции. Способы задания

Подробнее

4.1 Неравенство Чебышёва. Пусть случайная величина X имеет математическое ожидание m x и дисперсию

4.1 Неравенство Чебышёва. Пусть случайная величина X имеет математическое ожидание m x и дисперсию Лекция План лекции 4 Неравенство Чебышёва 4 Теорема Чебышёва 4 Применение теоремы Чебышёва на практике 43 Теорема Бернулли 4 Неравенство Чебышёва Пусть случайная величина имеет математическое ожидание

Подробнее

4 Основные свойства определенного интеграла

4 Основные свойства определенного интеграла 178 4 Основные свойства определенного интеграла Рассмотрим основные свойства определенного интеграла. 1) Если нижний и верхний пределы интегрирования равны (=), то интеграл равен нулю f ( ) d = 0 Данное

Подробнее

Теория вероятностей и математическая статистика. Случайные величины

Теория вероятностей и математическая статистика. Случайные величины Теория вероятностей и математическая статистика Случайные величины 1 Содержание Случайные величины Основные законы распределения 2 Случайные величины Понятие случайной величины и закона ее распределения

Подробнее

Современная Гуманитарная Академия Дистанционное образование. ТЕОРИЯ ВЕРОЯТНОСТЕЙ И МАТЕМАТИЧЕСКАЯ СТАТИСТИКА (курс 2)

Современная Гуманитарная Академия Дистанционное образование. ТЕОРИЯ ВЕРОЯТНОСТЕЙ И МАТЕМАТИЧЕСКАЯ СТАТИСТИКА (курс 2) 14030201;1 Современная Гуманитарная Академия Дистанционное образование Рабочий учебник Фамилия имя отчество обучающегося Направление подготовки Номер контракта ТЕОРИЯ ВЕРОЯТНОСТЕЙ И МАТЕМАТИЧЕСКАЯ СТАТИСТИКА

Подробнее

12. Определенный интеграл

12. Определенный интеграл 58 Определенный интеграл Пусть на промежутке [] задана функция () Будем считать функцию непрерывной, хотя это не обязательно Выберем на промежутке [] произвольные числа,, 3,, n-, удовлетворяющие условию:

Подробнее

Контрольная работа выполнена на сайте МатБюро: Специально для библиотеки материалов MathProfi.com. Вариант 15

Контрольная работа выполнена на сайте МатБюро:  Специально для библиотеки материалов MathProfi.com. Вариант 15 Специально для библиотеки материалов MathProf.com Российская академия народного хозяйства и государственной службы при Президенте РФ Международный институт государственной службы и управления Задание 2

Подробнее

Лекция 8. Числовые характеристики случайных величин. Основные свойства математического ожидания:

Лекция 8. Числовые характеристики случайных величин. Основные свойства математического ожидания: МВДубатовская Теория вероятностей и математическая статистика Лекция 8 Числовые характеристики случайных величин При изучении случайных величин важную роль играют их числовые характеристики Математическим

Подробнее

Лекция 5 Тема. Содержание темы. Основные категории. Непрерывные случайные величины (НСВ)

Лекция 5 Тема. Содержание темы. Основные категории. Непрерывные случайные величины (НСВ) Лекция 5 Тема Непрерывные случайные величины (НСВ) Содержание темы Способы задания: интегральный закон распределения, плотность распределения. Связь между ними. Свойства плотности распределения. Применение

Подробнее

1. СТАТИСТИЧЕСКИЕ МОДЕЛИ СЛУЧАЙНЫХ ЯВЛЕНИЙ Функции распределения вероятностей случайных величин

1. СТАТИСТИЧЕСКИЕ МОДЕЛИ СЛУЧАЙНЫХ ЯВЛЕНИЙ Функции распределения вероятностей случайных величин СТАТИСТИЧЕСКИЕ МОДЕЛИ СЛУЧАЙНЫХ ЯВЛЕНИЙ Случайные величины Функции распределения вероятностей случайных величин Простейшая модель физического эксперимента последовательность независимых опытов (испытаний

Подробнее

ОГЛАВЛЕНИЕ Введение ЧАСТЬ ПЕРВАЯ СЛУЧАЙНЫЕ СОБЫТИЯ

ОГЛАВЛЕНИЕ Введение ЧАСТЬ ПЕРВАЯ СЛУЧАЙНЫЕ СОБЫТИЯ ОГЛАВЛЕНИЕ Введение...... 14 ЧАСТЬ ПЕРВАЯ СЛУЧАЙНЫЕ СОБЫТИЯ Глава первая. Основные понятия теории вероятностей... 17 1. Испытания и события... 17 2. Виды случайных событий... 17 3. Классическое определение

Подробнее

Случайные величины. Дискретная и непрерывная случайные величины

Случайные величины. Дискретная и непрерывная случайные величины Случайные величины Дискретная и непрерывная случайные величины Наряду с понятием случайного события в теории вероятности используется другое более удобное понятие случайной величины Случайной величиной

Подробнее

Основные понятия и определения

Основные понятия и определения 1 Основные понятия и определения Вспомним основные понятия и определения, которые употреблялись в курсе теории вероятностей. Вероятностный эксперимент (испытание) эксперимент, результат которого не предсказуем

Подробнее

8. Методические рекомендации по выполнению контрольных работ, курсовых работ. К О Н Т Р О Л Ь Н А Я Р А Б О Т А

8. Методические рекомендации по выполнению контрольных работ, курсовых работ. К О Н Т Р О Л Ь Н А Я Р А Б О Т А 8 Методические рекомендации по выполнению контрольны работ, курсовы работ К О Н Т Р О Л Ь Н А Я Р А Б О Т А Д и с ц и п л и н а «М а т е м а т и к а» ) Решить систему линейны уравнений методом Гаусса 7

Подробнее

Критерии и показатели оценивания компетенций на различных этапах их формирования

Критерии и показатели оценивания компетенций на различных этапах их формирования Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине (модулю) Общие сведения 1. Кафедра. Направление подготовки. Дисциплина (модуль) Математики, физики и информационных

Подробнее

Учебная дисциплина Б Математика Профиль подготовки: Производственный менеджмент

Учебная дисциплина Б Математика Профиль подготовки: Производственный менеджмент ОЦЕНОЧНЫЕ СРЕДСТВА ДЛЯ ТЕКУЩЕГО КОНТРОЛЯ УСПЕВАЕМОСТИ, ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ПО ИТОГАМ ОСВОЕНИЯ ДИСЦИПЛИНЫ Учебная дисциплина Б.2.1 - Математика Профиль подготовки: Производственный менеджмент Тематика

Подробнее

Вариант 1. Математический факультет ГОСУДАРСТВЕННЫЙ ЭКЗАМЕН уч.г., Вариант 2.

Вариант 1. Математический факультет ГОСУДАРСТВЕННЫЙ ЭКЗАМЕН уч.г., Вариант 2. Вариант 1. 1. Поле комплексных чисел. Его конструкция. Алгебраическая и тригонометрическая форма записи комплексных чисел. Формула Муавра и формула извлечения корней n ой степени из комплексного числа.

Подробнее

Riyaziyyat-2 Fənni üzrə İmtahan Sualları Rus Bölməsi. n n

Riyaziyyat-2 Fənni üzrə İmtahan Sualları Rus Bölməsi. n n Razat- Fə üzrə İmtaha Sualları Rus Bölməs. Исследовать сходимость ряда по признаку Даламбера: = 3 + 7. Исследовать сходимость ряда по интегральному признаку Коши: = 3 3. Найти радиус сходимости ряда: 3

Подробнее

b lim b a f x dx, то он называется несобственным f x dx, при этом говорят, что интеграл f x dx.

b lim b a f x dx, то он называется несобственным f x dx, при этом говорят, что интеграл f x dx. Тема курса лекций: НЕСОБСТВЕННЫЕ ИНТЕГРАЛЫ. Лекция 5. Понятие несобственного интеграла -го рода, его вычисление. Критерий сходимости. Интегралы от положительных функций. Признаки сравнения, абсолютная

Подробнее

Домашнее задание 2. Обработка результатов наблюдений двухмерного случайного вектора

Домашнее задание 2. Обработка результатов наблюдений двухмерного случайного вектора Домашнее задание. Обработка результатов наблюдений двухмерного случайного вектора.1. Содержание и порядок выполнения работы Дана парная выборка (x i ; y i ) объема 50 из двумерного нормально распределенного

Подробнее

2 Тесты промежуточной аттестации по дисциплине: Перечень вопросов к зачету по дисциплине «Математика» I семестр

2 Тесты промежуточной аттестации по дисциплине: Перечень вопросов к зачету по дисциплине «Математика» I семестр 2 Тесты промежуточной аттестации по дисциплине: Перечень вопросов к зачету по дисциплине «Математика» I семестр I Элементы линейной алгебры 1. Понятие определителей 2-го и 3-го порядка, их вычисление и

Подробнее

Курс: Статистические Методы Обработки Данных

Курс: Статистические Методы Обработки Данных Курс: Статистические Методы Обработки Данных Специальность: 1-53 01 02 Автоматизированные системы обработки информации УО «ГГУ им. Ф. Скорины» Преподаватель: Бабич К.С, ст. преподаватель, 2016 Курс: Статистические

Подробнее

Числовые характеристики случайной величины

Числовые характеристики случайной величины Числовые характеристики случайной величины Числовые характеристики случайной величины Применяются вместо закона распределения случайной величины В сжатой форме выражают наиболее существенные особенности

Подробнее

Лекция 7 РАСПРЕДЕЛЕНИЯ ДИСКРЕТНЫХ СЛУЧАЙНЫХ ВЕЛИЧИН. . Производящей функцией для случайной величины X называется функция вида

Лекция 7 РАСПРЕДЕЛЕНИЯ ДИСКРЕТНЫХ СЛУЧАЙНЫХ ВЕЛИЧИН. . Производящей функцией для случайной величины X называется функция вида Лекция 7 РАСПРЕДЕЛЕНИЯ ДИСКРЕТНЫХ СЛУЧАЙНЫХ ВЕЛИЧИН ЦЕЛЬ ЛЕКЦИИ: определить производящую функцию и вычислить параметры биномиального, пуассоновского, геометрического и гипергеометрического распределений;

Подробнее

М И Р Э А. Программа вступительного испытания по математике для поступающих в магистратуру

М И Р Э А. Программа вступительного испытания по математике для поступающих в магистратуру МИНОБРНАУКИ РОССИИ Государственное образовательное учреждение высшего профессионального образования «МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ИНСТИТУТ РАДИОТЕХНИКИ, ЭЛЕКТРОНИКИ И АВТОМАТИКИ (ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ)»

Подробнее

Рейтинг-план освоения дисциплины «Теория вероятностей и математическая статистика»

Рейтинг-план освоения дисциплины «Теория вероятностей и математическая статистика» Недели Дисциплина «Теория вероятностей и математическая Число недель 8 статистика» Институт кибернетики Кол-во кредитов 5 Кафедра вычислительной техники Лекции, час 27 Семестр 4 Практ. занятия, час. 45

Подробнее

ОПРЕДЕЛЁННЫЙ ИНТЕГРАЛ

ОПРЕДЕЛЁННЫЙ ИНТЕГРАЛ ОПРЕДЕЛЁННЫЙ ИНТЕГРАЛ. Интегральные суммы и определённый интеграл Пусть дана функция y = f (), определённая на отрезке [, b ], где < b. Разобьём отрезок [, b ] с помощью точек деления на n элементарных

Подробнее

Лекция. Преобразование Фурье

Лекция. Преобразование Фурье С А Лавренченко wwwwrckoru Лекция Преобразование Фурье Понятие интегрального преобразования Метод интегральных преобразований один из мощных методов математической физики является мощным средством решения

Подробнее

ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ. 1 Функции двух переменных.. Соответствие f, которое каждой паре чисел ( x;

ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ. 1 Функции двух переменных.. Соответствие f, которое каждой паре чисел ( x; ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ Функции одной независимой переменной не охватывают все зависимости, существующие в природе. Поэтому естественно расширить известное понятие функциональной зависимости и ввести

Подробнее

ГЛАВА 3. СТАНДАРТНЫЕ ЗАКОНЫ РАСПРЕДЕЛЕНИЯ. 1. Биномиальное распределение

ГЛАВА 3. СТАНДАРТНЫЕ ЗАКОНЫ РАСПРЕДЕЛЕНИЯ. 1. Биномиальное распределение ГЛАВА СТАНДАРТНЫЕ ЗАКОНЫ РАСПРЕДЕЛЕНИЯ Биномиальное распределение Пусть эксперимент проводится по схеме Бернулли Определение Дискретная случайная величина имеет биномиальное распределение с параметрами

Подробнее

Часть III. Двумерные случайные величины

Часть III. Двумерные случайные величины Geneated b Fot PDF Ceato Fot Softwa htt://wwwfotsoftwaecom Fo evaluaton on Предисловие Настоящее издание представляет собой продолжение пособия «Теория вероятностей» того же автора и сохраняет ту же структуру:

Подробнее

Введем понятие расстояния между точками этого пространства (метрику пространства R n ). Определение 2 Расстоянием ρ( PP, ) ρ PP,

Введем понятие расстояния между точками этого пространства (метрику пространства R n ). Определение 2 Расстоянием ρ( PP, ) ρ PP, 5 Глава ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ Пространство R n Понятие функции нескольких переменных Определение Множество всех упорядоченных наборов (,,, n ), где,,, n - действительные числа называется n-мерным

Подробнее

Дорогие студенты, данная презентация служит лишь наглядной иллюстрацией к одной из лекций по теории вероятностей для II курса факультета биоинженерии

Дорогие студенты, данная презентация служит лишь наглядной иллюстрацией к одной из лекций по теории вероятностей для II курса факультета биоинженерии Дорогие студенты, данная презентация служит лишь наглядной иллюстрацией к одной из лекций по теории вероятностей для II курса факультета биоинженерии и биоинформатики. ЗАКОНЫ РАСПРЕДЕЛЕНИЯ ВЕРОЯТНОСТЕЙ

Подробнее

Министерство образования и науки Российской Федерации

Министерство образования и науки Российской Федерации Министерство образования и науки Российской Федерации Государственное образовательное учреждение высшего профессионального образования «РОСТОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ» Г. М. Бездудный, В. А. Знаменский,

Подробнее

y отличны от нуля, то частным последовательностей

y отличны от нуля, то частным последовательностей Раздел 2 Теория пределов Тема Числовые последовательности Определение числовой последовательности 2 Ограниченные и неограниченные последовательности 3 Монотонные последовательности 4 Бесконечно малые и

Подробнее

Лекция 1. Выборочное пространство

Лекция 1. Выборочное пространство Лекция 1. Выборочное пространство Буре В.М., Грауэр Л.В. ШАД Санкт-Петербург, 2013 Буре В.М., Грауэр Л.В. (ШАД) Лекция 1. Выборочное пространство Санкт-Петербург, 2013 1 / 35 Cодержание Содержание 1 Выборка.

Подробнее

МАТЕМАТИКА МАТЕМАТИЧЕСКАЯ СТАТИСТИКА

МАТЕМАТИКА МАТЕМАТИЧЕСКАЯ СТАТИСТИКА ООО «Резольвента», www.resolventa.ru, resolventa@lst.ru, (495) 509-8-0 Учебный центр «Резольвента» Доктор физико-математических наук, профессор К. Л. САМАРОВ МАТЕМАТИКА Учебно-методическое пособие по разделу

Подробнее

Тройной интеграл. 1 Понятие тройного интеграла. Волченко Ю.М. Содержание лекции. f (P i ) V i (1) i=1

Тройной интеграл. 1 Понятие тройного интеграла. Волченко Ю.М. Содержание лекции. f (P i ) V i (1) i=1 Тройной интеграл Волченко Ю.М. Содержание лекции Понятие тройного интеграла. Условия его существования. Теорема о среднем. Вычисление тройного интеграла в декартовых и криволинейных координатах. Тройной

Подробнее

)? (Вероятность попадания непрерывной СВ

)? (Вероятность попадания непрерывной СВ Случайные величины. Определение СВ ( Случайной называется величина, которая в результате испытания может принимать то или иное значение, заранее не известное).. Какие бывают СВ? ( Дискретные и непрерывные.

Подробнее

Интегралы и дифференциальные уравнения. Лекция 22

Интегралы и дифференциальные уравнения. Лекция 22 кафедра «Математическое моделирование» проф. П. Л. Иванков Интегралы и дифференциальные уравнения конспект лекций для студентов 1-го курса -го семестра специальностей РЛ1,,3,6, БМТ1, Лекция Нормальные

Подробнее

Интегралы и дифференциальные уравнения. Лекция 17

Интегралы и дифференциальные уравнения. Лекция 17 кафедра «Математическое моделирование» проф. П. Л. Иванков Интегралы и дифференциальные уравнения конспект лекций для студентов 1-го курса 2-го семестра специальностей РЛ1,2,3,6, БМТ1,2 Лекция 17 Дифференциальные

Подробнее

Глава 3. Функция нескольких переменных. 1. Основные понятия

Глава 3. Функция нескольких переменных. 1. Основные понятия Глава 3 Функция нескольких переменных 1 Основные понятия Пусть имеется n+1 переменная 1,,, n,, которые связаны между собой так, что каждому набору числовых значений переменных 1,,, n соответствует единственное

Подробнее

СЛУЧАЙНЫЕ ВЕЛИЧИНЫ. Лекция 5

СЛУЧАЙНЫЕ ВЕЛИЧИНЫ. Лекция 5 ЧАСТЬ 4 СЛУЧАЙНЫЕ ВЕЛИЧИНЫ Лекция 5 СЛУЧАЙНЫЕ ВЕЛИЧИНЫ ЗАКОНЫ РАСПРЕДЕЛЕНИЯ СЛУЧАЙНЫХ ВЕЛИЧИН ЦЕЛЬ ЛЕКЦИИ: ввести понятие случайной величины и закона распределения; для дискретной случайной величины определить

Подробнее

Тема 5. Непрерывные случайные величины.

Тема 5. Непрерывные случайные величины. Тема 5. Непрерывные случайные величины. Цель и задачи. Цель контента темы 5 дать определение непрерывной случайной величины, ее функции распределения и функции распределения; рассмотреть особенности задания

Подробнее

Глава 5. Тройной интеграл.

Глава 5. Тройной интеграл. Глава 5. Тройной интеграл. 5.1. Определение тройного интеграла. После введения в предыдущей главе понятия двойного интеграла естественно было бы провести его дальнейшее обобщение на трехмерное пространство

Подробнее

Лекция 8 Тема. Содержание темы. Основные категории. Сравнение случайных величин или признаков.

Лекция 8 Тема. Содержание темы. Основные категории. Сравнение случайных величин или признаков. Лекция 8 Тема Сравнение случайных величин или признаков. Содержание темы Аналогия дискретных СВ и выборок Виды зависимостей двух случайных величин (выборок) Функциональная зависимость. Линии регрессии.

Подробнее

F x, F. Пример. Записать уравнение касательной к кривой x y 2xy 17 точке М(1, 2).

F x, F. Пример. Записать уравнение касательной к кривой x y 2xy 17 точке М(1, 2). Дифференцирование неявно заданной функции Рассмотрим функцию (, ) = C (C = const) Это уравнение задает неявную функцию () Предположим, мы решили это уравнение и нашли явное выражение = () Теперь можно

Подробнее

Лекция 7. Непрерывные случайные величины. Плотность вероятности.

Лекция 7. Непрерывные случайные величины. Плотность вероятности. Лекция 7. Непрерывные случайные величины. Плотность вероятности. Помимо дискретных случайных величин на практике приходятся иметь дело со случайными величинами, значения которых сплошь заполняет некоторые

Подробнее

СЛУЧАЙНЫЕ ВЕЛИЧИНЫ. ЗАКОНЫ РАСПРЕДЕЛЕНИЯ СЛУЧАЙНОЙ ВЕЛИЧИНЫ

СЛУЧАЙНЫЕ ВЕЛИЧИНЫ. ЗАКОНЫ РАСПРЕДЕЛЕНИЯ СЛУЧАЙНОЙ ВЕЛИЧИНЫ СЛУЧАЙНЫЕ ВЕЛИЧИНЫ ЗАКОНЫ РАСПРЕДЕЛЕНИЯ СЛУЧАЙНОЙ ВЕЛИЧИНЫ Понятие случайной величины Современная теория вероятностей предпочитает где только возможно оперировать не случайными событиями а случайными величинами

Подробнее

СТРУКТУРА АПИМ И ДЕМОНСТРАЦИОННЫЙ ВАРИАНТ

СТРУКТУРА АПИМ И ДЕМОНСТРАЦИОННЫЙ ВАРИАНТ СТРУКТУРА АПИМ И ДЕМОНСТРАЦИОННЫЙ ВАРИАНТ ООП: 120103.65 Космическая геодезия Дисциплина: Математика Время выполнения теста: 80 минут Количество заданий: 45 ТЕМАТИЧЕСКАЯ СТРУКТУРА АПИМ N ДЕ Наименование

Подробнее

ГЛАВА 4. Системы обыкновенных дифференциальных уравнений 1. ОБЩИЕ ПОНЯТИЯ И ОПРЕДЕЛЕНИЯ. 1. Основные определения

ГЛАВА 4. Системы обыкновенных дифференциальных уравнений 1. ОБЩИЕ ПОНЯТИЯ И ОПРЕДЕЛЕНИЯ. 1. Основные определения ГЛАВА 4 Системы обыкновенных дифференциальных уравнений ОБЩИЕ ПОНЯТИЯ И ОПРЕДЕЛЕНИЯ Основные определения Для описания некоторых процессов и явлений нередко требуется несколько функций Отыскание этих функций

Подробнее

ОГЛАВЛЕНИЕ. ЧАСТЬ 1. Случайные события и их вероятности XCQ ПРЕДИСЛОВИЕ 3 ВВЕДЕНИЕ 5

ОГЛАВЛЕНИЕ. ЧАСТЬ 1. Случайные события и их вероятности XCQ ПРЕДИСЛОВИЕ 3 ВВЕДЕНИЕ 5 ОГЛАВЛЕНИЕ ПРЕДИСЛОВИЕ 3 ВВЕДЕНИЕ 5 ЧАСТЬ 1. Случайные события и их вероятности Глава 1. Понятие вероятности 1.1. Виды случайных событий. Дискретное множество элементарных событий. Множество исходов опыта

Подробнее

Одномерные случайные величины

Одномерные случайные величины МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Государственное образовательное учреждение высшего профессионального образования «Нижегородский государственный университет им Н.И. Лобачевского» Факультет

Подробнее

Методические указания к выполнению курсовой работы

Методические указания к выполнению курсовой работы Методические указания к выполнению курсовой работы "СЛУЧАЙНЫЕ ВЕКТОРЫ" для студентов специальности 655Д «Роботы и робототехнические системы» Кафедра математики г Описание работы Курсовой проект предполагает

Подробнее

Доказать, что для и для любой случайной величины с конечным математическим ожиданием.

Доказать, что для и для любой случайной величины с конечным математическим ожиданием. Стр 1 из 12 Задача 1 Доказать, что для и для любой случайной величины с конечным математическим ожиданием из учебника: Королев ВЮ «Теория вероятностей и математическая статистика»(стр 43) Докажем, что

Подробнее

Измерения и обработка результатов измерений Случайные погрешности

Измерения и обработка результатов измерений Случайные погрешности В теории вероятностей изучаются различные законы распределения, каждому из которых соответствует определенная функция плотности вероятности Они получены путем обработки большого числа наблюдений над случайными

Подробнее

ОГЛАВЛЕНИЕ ЧАСТЬ ПЕРВАЯ СЛУЧАЙНЫЕ СОБЫТИЯ

ОГЛАВЛЕНИЕ ЧАСТЬ ПЕРВАЯ СЛУЧАЙНЫЕ СОБЫТИЯ ОГЛАВЛЕНИЕ ЧАСТЬ ПЕРВАЯ СЛУЧАЙНЫЕ СОБЫТИЯ Глава первая. Определение вероятности.. 8 1. Классическое и статистическое определения вероятности.. 8 2. Геометрические вероятности... 12 Глава вторая. Основные

Подробнее

ТЕОРИЯ ВЕРОЯТНОСТЕЙ И МАТЕМАТИЧЕСКАЯ СТАТИСТИКА

ТЕОРИЯ ВЕРОЯТНОСТЕЙ И МАТЕМАТИЧЕСКАЯ СТАТИСТИКА ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ БЮДЖЕТНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ ФИНАНСОВЫЙ УНИВЕРСИТЕТ ПРИ ПРАВИТЕЛЬСТВЕ РОССИЙСКОЙ ФЕДЕРАЦИИ (Пензенский филиал) Кафедра «Менеджмент, информатика и

Подробнее

ГЛАВА 4. ПРЕДЕЛЬНЫЕ ТЕОРЕМЫ. 1. Неравенства Чебышева

ГЛАВА 4. ПРЕДЕЛЬНЫЕ ТЕОРЕМЫ. 1. Неравенства Чебышева ГЛАВА 4 ПРЕДЕЛЬНЫЕ ТЕОРЕМЫ Неравенства Чебышева Доказательство теоремы Чебышева основывается на неравенстве Чебышева Докажем это неравенство Неравенство Чебышева Вероятность того что отклонение (СВ) ξ

Подробнее

Лекция 5. Случайные величины. Числовые характеристики случайных величин. Дискретная случайная величина.

Лекция 5. Случайные величины. Числовые характеристики случайных величин. Дискретная случайная величина. Лекция 5. Случайные величины. Числовые характеристики случайных величин. Дискретная случайная величина. Случайной называют величину, которая в результате испытания принимает одно и только одно, значение,

Подробнее

5.2. УРАВНЕНИЕ ШРЁДИНГЕРА

5.2. УРАВНЕНИЕ ШРЁДИНГЕРА 5 УРАВНЕНИЕ ШРЁДИНГЕРА Основным динамическим уравнением квантовой механики описывающим эволюцию состояния микрочастицы во времени является уравнение Шрѐдингера: () Ĥ оператор Гамильтона в общем случае

Подробнее

ПРЕДЕЛЬНЫЕ ТЕОРЕМЫ ТЕОРИИ ВЕРОЯТНОСТЕЙ. Лекция 13

ПРЕДЕЛЬНЫЕ ТЕОРЕМЫ ТЕОРИИ ВЕРОЯТНОСТЕЙ. Лекция 13 ЧАСТЬ 7 ПРЕДЕЛЬНЫЕ ТЕОРЕМЫ ТЕОРИИ ВЕРОЯТНОСТЕЙ Лекция 3 ЗАКОН БОЛЬШИХ ЧИСЕЛ И ЦЕНТРАЛЬНАЯ ПРЕДЕЛЬНАЯ ТЕОРЕМА ЦЕЛЬ ЛЕКЦИИ: доказать неравенство Чебышева; сформулировать и доказать закон больших чисел и

Подробнее

3. Используемые методы обучения

3. Используемые методы обучения 3.2 МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПРЕПОДАВАТЕЛЯМ К ПРАКТИЧЕСКИМ ЗАНЯТИЯМ Семестр I Раздел 1. Векторная и линейная алгебра. Практическое занятие 1 1. Цель: Рассмотреть задачи на вычисление определителей второго

Подробнее

называют пару гипотез. 9. Случаями называют равновозможные гипотезы. n событий A i, A i

называют пару гипотез. 9. Случаями называют равновозможные гипотезы. n событий A i, A i . ЭЛЕМЕНТЫ ТЕОРИИ ВЕРОЯТНОСТЕЙ. Основные понятия теории вероятностей Многие объекты в математике определяются указанием операций которые можно выполнять над объектами и перечислением свойств которым удовлетворяют

Подробнее

Дельта-функция. Определение дельта-функции

Дельта-функция. Определение дельта-функции Дельта-функция Определение дельта-функции Пусть финитная бесконечно дифференцируемая функция (т. е. основная функция),. Будем писать:. О. Дельта-функцией Дирака называется линейный непрерывный функционал

Подробнее

( x) Заметим, что мы можем отождествить линейную функцию с линейным отображением L в одномерное арифметическое пространство.

( x) Заметим, что мы можем отождествить линейную функцию с линейным отображением L в одномерное арифметическое пространство. 79 Линейные функции Определение и примеры линейных функций Определение Будем говорить, что на линейном пространстве L задана функция от одного вектора, если каждому вектору x L сопоставлено число ( x)

Подробнее

ГЛАВА 3 (продолжение). Функции случайных величин. Характеристическая функция.

ГЛАВА 3 (продолжение). Функции случайных величин. Характеристическая функция. Оглавление ГЛАВА 3 продолжение. Функции случайных величин. Характеристическая функция... Функция одного случайного аргумента.... Основные числовые характеристики функции случайного аргумента.... Плотность

Подробнее

Математическое ожидание

Математическое ожидание Числовые характеристики непрерывных случайных величин 1 Математическое ожидание Математическим ожиданием непрерывной случайной величины с плотностью распределения называется число M X px ( ) xp( x) dx.

Подробнее