Лекция 9. Тема Введение в теорию оценок.

Save this PDF as:
 WORD  PNG  TXT  JPG

Размер: px
Начинать показ со страницы:

Download "Лекция 9. Тема Введение в теорию оценок."

Транскрипт

1 Лекция 9 Тема Введение в теорию оценок. Содержание темы Предмет, цель и метод задачи оценивания Точечные выборочные оценки, свойства оценок Теоремы об оценках Интервальные оценки и интеграл Лапласа Основные категории Понятие выборочной оценки (статистики). Критерии качества оценок: несмещенность, состоятельность, эффективность. Интервальное оценивание. Доверительный интервал и надежность оценки (доверительная вероятность). Интеграл Лапласа.

2 Постановка задачи Изучается случайная величина X с законом распределения, зависящим от неизвестного параметра θ. Например, дана равномерно распределенная случайная величина на неизвеcтном отрезке [a, b]. Требуется оценить математическое ожидание θ = M(X) = (a + b)/2. Цель определить по возможности точнее значение параметра θ или указать с определенной вероятностью интервал, в котором этот параметр лежит. Например, требуется найти такой промежуток (θ 1, θ 2), что с вероятностью 0,95 величина θ лежит в пределах θ 1 < θ < θ 2. Метод выборочный. Он состоит в том, что делается выборка значений случайной величины, по которой вычисляется приближенное значение θ.

3 Выборочная оценка статистика Приближенное значение θ n, полученное по выборке x 1,..., x n объема n, называется выборочной или статистической оценкой величины θ. Поскольку должен быть предложен метод ее вычисления, то фактически мы получаем формулу для некоторой функции θ n (X 1,..., X n ) от n экземпляров случайной величины X, взятых в качестве независимых, вычисляемых экспериментально показателей. В итоге, любая оценка сама становится случайной величиной (любая функция от одной случайной величины или нескольких случайных величин сама является случайной величиной). Определение. Формула для выборочной оценки θ n (X 1,..., X n ) называется статистикой. В связи с этим, термины «выборочная оценка», «статистическая оценка», «оценка» и «статистика» считаем синонимами.

4 Свойства выборочных оценок. Несмещенность Качество оценки характеризуется наличием или отсутствием некоторых важных свойств несмещенности, состоятельности и эффективности. Далее для краткости пишем θ или θ n, подразумевая θ n (X 1,..., X n ). Определение. Оценка θ параметра θ называется несмещенной, если M( θ) = θ. Требование несмещенности означает отсутствие некоторой системной, постоянно присутствующей ошибки, которая бы завышала оценку (M θ > θ) или занижала ее (M θ < θ). Требование несмещенности особо важно при малом количестве наблюдений. Определение. Если M( θ n ) θ при n, то оценка называется асимптотически несмещенной.

5 Свойства выборочных оценок. Состоятельность Определение. Оценка θ n параметра θ называется состоятельной, если для любого сколь угодно малого положительного числа ε имеем lim P { θ n θ < ε} = 1. n Требование состоятельности означает, что при увеличении объема выборки мы все ближе приближаемся к истинному значению параметра. Такое стремление называется сходимостью по вероятности вероятность больших отличий между θ n и θ стремится к нулю. Теорема. Если оценка θ n является несмещенной и ее дисперсия стремится к нулю lim D( θ n ) = 0, n то оценка является и состоятельной.

6 Свойства выборочных оценок. Эффективность Определение. Оценка θ n параметра θ называется эффективной, если ее дисперсия D( θ n ) является наименьшей из всех возможных оценок параметра θ по выборкам объема n. Требование эффективности означает наименьший разброс вокруг своего среднего. Это требование важно для несмещенных оценок, когда их среднее (то есть математическое ожидание) совпадает с истинным значением параметра. Тогда и наименьший разброс оказывается по отношению к истинному значению параметра. Пример. Рассмотрим некоторое событие A и в качестве параметра θ возьмем вероятность этого события: θ = P (A). Проведем n экспериментов, и пусть событие A произошло m раз. Тогда в качестве оценки вероятности естественно взять фактическую частоту появления события A: θ n = m n. Тогда такая оценка будет несмещенной, состоятельной и эффективной. Это следует из того, что здесь можно все моделировать схемой Бернулли (см. след. слайд).

7 Пример схема Бернулли В результате эксперимента проверяется произошло или нет некоторое событие A. То есть результат эксперимента это успех (событие произошло) или неудача (событие не произошло). Как обычно обозначаем вероятность успеха p = P (A) и вероятность неудачи q = P (A) = 1 p. В одном эксперимента получаем случайную величину X (количество успехов в одном испытании) с рядом распределения X 0 1 P q p = M(X) = p, D(X) = pq, σ(x) = pq. В качестве оценки вероятности p принимается среднее арифметическое количества успехов в n испытаниях: Тогда M( θ n) = 1 (nm(x)) = p, n D( θ θ n = 1 (X Xn). n n) = 1 pq (nd(x)) = 0 при n. n2 n Значит, такая оценка несмещенная и состоятельная. Можно доказать, что она эффективная.

8 Общие теоремы Теорема 1. Пусть X 1,..., X n выборка из генеральной совокупности X и M(X i) = M(X) = µ, D(X i) = D(X) = σ 2. Тогда выборочная средняя арифметическая x = 1 (X Xn) n является несмещенной и состоятельной оценкой математического ожидания M(X). Теорема 2. Пусть X 1,..., X n выборка из генеральной совокупности X и M(X i) = M(X) = µ, D(X i) = D(X) = σ 2. Тогда величина s 2 H = n n 1 s2, где s 2 = 1 n n (X i x) 2 выборочная дисперсия, является несмещенной и состоятельной оценкой дисперсии D(X). Примечание. Именно поэтому величину s 2 H и называют несмещенной оценкой дисперсии. i=1

9 Интервальное оценивание параметров Оценки, о которых говорилось выше, называются точечными, так как они дают конкретное число одну точку на вещественной оси. Их недостаток в том, что они ничего не говорят о точности такого оценивания при заданном n. Более того, при малых выборках расхождения между оценкой и истинным значением может быть очень велико. Поэтому возникает задача указать интервал (θ 1, θ 2), в который с заданной вероятностью попадает истинное значение параметра θ. Определение. Оценка неизвестного параметра называется интервальной, если она определяется двумя числами началом и концом интервала, в который должен попадать искомый параметр. Определение. Если указан интервал (θ 1, θ 2), в который с заданной вероятностью γ попадает истинное значение параметра θ, то такой интервал называется доверительным интервалом, а вероятность γ называется надежностью оценки или доверительной вероятностью.

10 Пример использование интеграла Лапласа Пусть дано нормальное распределение N(µ, σ) с известной дисперсией σ 2, но неизвестным математическим ожиданием µ. Возьмем в качестве оценки для µ выборочное среднее (среднюю арифметическую выборки) x = 1 (X Xn). n Эта величина также имеет нормальное распределение, ее математическое ожидание совпадает с искомым параметром M(x) = µ (оценка несмещенная), а ее дисперсия равна, как легко подсчитать по свойствам дисперсии Тогда величина D(x) = σ2 n (оценка состоятельная). Y = x µ σ n имеет стандартное нормальное распределение N(0, 1).

11 Пример использование интеграла Лапласа - II Ищем доверительный интервал в виде (x a, x + a). Тогда µ x < a Y < a σ n, а вероятность последнего события равна по формуле Ньютона Лейбница где F (a σ n ) F ( a σ n ) = 2 f(t) = 1 2π e t2 2 a σ n 0 f(t)dt, есть плотность стандартного нормального распределения. Интеграл Φ(x) = x 0 f(t)dt называется интегралом Лапласа (функцией Лапласа). Для его вычисления имеются удобные таблицы. Итак, в нашем примере вероятность попадания в доверительный интервал (x a, x + a) равна 2Φ(a σ n ).

12 Контрольные вопросы 1 Предмет, цель и метод задачи оценивания. 2 Понятие выборочной оценки (статистики). 3 Несмещенная оценка. 4 Состоятельная оценка. Теорема о состоятельности оценки. 5 Эффективность оценки. 6 Несмещенность и состоятельность оценки вероятности успеха в схеме Бернулли. 7 Две теоремы об оценках математического ожидания и дисперсии. 8 Интервальное оценивание. Доверительный интервал и надежность оценки (доверительная вероятность). 9 Интеграл Лапласа. Вычисление доверительной вероятности для оценки математического ожидания нормального распределения.


Генеральная совокупность и выборка. Центральная предельная теорема

Генеральная совокупность и выборка. Центральная предельная теорема Генеральная совокупность и выборка Точечные оценки и их свойства Центральная предельная теорема Выборочное среднее, выборочная дисперсия Генеральная совокупность Генеральная совокупность множество всех

Подробнее

Теория вероятностей и статистика

Теория вероятностей и статистика Теория вероятностей и статистика Тема 7. Статистические оценки параметров распределения Белов А.И. Уральский федеральный университет Екатеринбург, 2018 Содержание 1 Точечные оценки 2 Характеристики положения

Подробнее

Тема: Статистические оценки параметров распределения

Тема: Статистические оценки параметров распределения Раздел: Теория вероятностей и математическая статистика Тема: Статистические оценки параметров распределения Лектор Пахомова Е.Г. 05 г. 5. Точечные статистические оценки параметров распределения Статистическое

Подробнее

Лекция 15 СТАТИСТИЧЕСКОЕ ОЦЕНИВАНИЕ ПАРАМЕТРОВ РАСПРЕДЕЛЕНИЯ

Лекция 15 СТАТИСТИЧЕСКОЕ ОЦЕНИВАНИЕ ПАРАМЕТРОВ РАСПРЕДЕЛЕНИЯ Лекция 5 СТАТИСТИЧЕСКОЕ ОЦЕНИВАНИЕ ПАРАМЕТРОВ РАСПРЕДЕЛЕНИЯ ЦЕЛЬ ЛЕКЦИИ: ввести понятие оценки неизвестного параметра распределения и дать классификацию таких оценок; получить точечные оценки математического

Подробнее

Теория вероятностей и математическая статистика

Теория вероятностей и математическая статистика Теория вероятностей и математическая статистика Доктор физ.-мат. наук профессор Михаил Павлович Харламов «Страница» с методическими материалами http://vlgr.ranepa.ru/pp/hmp Часть II. Начала математической

Подробнее

Математическая статистика. Тема: «Статистическое оценивание параметров распределения»

Математическая статистика. Тема: «Статистическое оценивание параметров распределения» Математическая статистика Тема: «Статистическое оценивание параметров распределения» Введение Математическая статистика наука, занимающаяся методами обработки экспериментальных данных, полученных в результате

Подробнее

Экзаменационный билет 3

Экзаменационный билет 3 Экзаменационный билет 1 1. Принцип умножения. 2. Построение функции распределения для дискретной случайной величины. 3. Генеральная и выборочная совокупности, свойство репрезентативности. Экзаменационный

Подробнее

Интервальные оценки.

Интервальные оценки. Лекция 1. Интервальные оценки. Точечные оценки параметров генеральной совокупности могут быть приняты в качестве ориентировочных, первоначальных результатов обработки выборочных данных. Их недостаток заключается

Подробнее

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ЮЖНЫЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ. О.Ю.Пелевин

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ЮЖНЫЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ. О.Ю.Пелевин МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ЮЖНЫЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ О.Ю.Пелевин МЕТОДИЧЕСКАЯ РАЗРАБОТКА по курсу «Теория вероятностей и математическая статистика» для студентов физического

Подробнее

1. (10;20) 2. (15;25) 3. (10;15) 4. (5;25) 5. (0;20) Тогда статистическая оценка математического ожидания равна

1. (10;20) 2. (15;25) 3. (10;15) 4. (5;25) 5. (0;20) Тогда статистическая оценка математического ожидания равна Тема: Математическая статистика Дисциплина: Математика Авторы: Нефедова Г.А.. Точечная оценка параметра равна 5. Укажите, какой вид может иметь интервальная оценка:. (0;0). (5;5) 3. (0;5) 4. (5;5) 5. (0;0).

Подробнее

1. СТАТИСТИЧЕСКАЯ ОЦЕНКА ПАРАМЕТРОВ РАСПРЕДЕЛЕНИЯ Понятие о статистической оценке параметров

1. СТАТИСТИЧЕСКАЯ ОЦЕНКА ПАРАМЕТРОВ РАСПРЕДЕЛЕНИЯ Понятие о статистической оценке параметров . СТАТИСТИЧЕСКАЯ ОЦЕНКА ПАРАМЕТРОВ РАСПРЕДЕЛЕНИЯ.. Понятие о статистической оценке параметров Методы математической статистики используются при анализе явлений, обладающих свойством статистической устойчивости.

Подробнее

Тема 11. Неравенство Чебышева. Теорема Чебышева. Теорема Бернулли. Центральная предельная теорема. Интегральная теорема Муавра-Лапласа

Тема 11. Неравенство Чебышева. Теорема Чебышева. Теорема Бернулли. Центральная предельная теорема. Интегральная теорема Муавра-Лапласа Тема. Неравенство Чебышева. Теорема Чебышева. Теорема Бернулли. Центральная предельная теорема. Интегральная теорема Муавра-Лапласа Содержание Предельные теоремы теории вероятности 2 Неравенство Чебышева

Подробнее

ТЕМА 10. Статистическое оценивание Точечные и интервальные оценки параметров распределения

ТЕМА 10. Статистическое оценивание Точечные и интервальные оценки параметров распределения ТЕМА 10. Статистическое оценивание. Цель контента темы 10 изучить практически необходимые методы нахождения точечных и интервальных оценок неизвестных параметров распределения. Задачи контента темы 10:

Подробнее

ТЕМА 10. ОЦЕНКА ФУНКЦИИ РАСПРЕДЕЛЕНИЯ И ПАРАМЕТРОВ ЗАКОНА РАСПРЕДЕЛЕНИЯ

ТЕМА 10. ОЦЕНКА ФУНКЦИИ РАСПРЕДЕЛЕНИЯ И ПАРАМЕТРОВ ЗАКОНА РАСПРЕДЕЛЕНИЯ ТЕМА 10. ОЦЕНКА ФУНКЦИИ РАСПРЕДЕЛЕНИЯ И ПАРАМЕТРОВ ЗАКОНА РАСПРЕДЕЛЕНИЯ Точечные оценки. Понятие статистики и достаточной статистики. Отыскание оценок методом моментов, неравенство Рао-Крамера. Эффективность

Подробнее

{ выборка из генеральной совокупности - эмпирическая (выборочная) функция распределения гистограмма статистические оценки точечные оценки параметров

{ выборка из генеральной совокупности - эмпирическая (выборочная) функция распределения гистограмма статистические оценки точечные оценки параметров { выборка из генеральной совокупности - эмпирическая (выборочная функция распределения гистограмма статистические оценки точечные оценки параметров и их критерии методы получения оценок параметров метод

Подробнее

2 Статистические оценки неизвестных параметров распределения

2 Статистические оценки неизвестных параметров распределения Статистические оценки неизвестных параметров распределения Статистическая оценка неизвестного параметра теоретического распределения Виды статистических оценок 3 Нахождение оценок неизвестных параметров

Подробнее

Лекция 3. Генеральная средняя. Выборочная средняя. Оценка генеральной средней по выборочной средней. Устойчивость выборочных средних

Лекция 3. Генеральная средняя. Выборочная средняя. Оценка генеральной средней по выборочной средней. Устойчивость выборочных средних Лекция 3. Генеральная средняя. Выборочная средняя. Оценка генеральной средней по выборочной средней. Устойчивость выборочных средних 1. Генеральная средняя. Пусть изучается дискретная генеральная совокупность

Подробнее

ТЕОРИЯ ВЕРОЯТНОСТЕЙ И МАТЕМАТИЧЕСКАЯ СТАТИСТИКА

ТЕОРИЯ ВЕРОЯТНОСТЕЙ И МАТЕМАТИЧЕСКАЯ СТАТИСТИКА Кафедра математики и информатики ТЕОРИЯ ВЕРОЯТНОСТЕЙ И МАТЕМАТИЧЕСКАЯ СТАТИСТИКА Учебно-методический комплекс для студентов ВПО, обучающихся с применением дистанционных технологий Модуль 3 МАТЕМАТИЧЕСКАЯ

Подробнее

Тема Основные понятия математической статистики

Тема Основные понятия математической статистики Лекция 6 Тема Основные понятия математической статистики Содержание темы Задача математической статистики Научные предпосылки математической статистики Основные понятия математической статистики Основные

Подробнее

М.В.Дубатовская Теория вероятностей и математическая статистика. Лекция 10. Неравенства Маркова и Чебышева.Закон больших чисел.

М.В.Дубатовская Теория вероятностей и математическая статистика. Лекция 10. Неравенства Маркова и Чебышева.Закон больших чисел. МВДубатовская Теория вероятностей и математическая статистика Лекция 0 Неравенства Маркова и ЧебышеваЗакон больших чисел Предельные теоремы теории вероятностей В теории вероятностей часто изучаются случайные

Подробнее

6.7. Статистические испытания

6.7. Статистические испытания Лекция.33. Статистические испытания. Доверительный интервал. Доверительная вероятность. Выборки. Гистограмма и эмпирическая 6.7. Статистические испытания Рассмотрим следующую общую задачу. Имеется случайная

Подробнее

Лекция 5 Тема. Содержание темы. Основные категории. Непрерывные случайные величины (НСВ)

Лекция 5 Тема. Содержание темы. Основные категории. Непрерывные случайные величины (НСВ) Лекция 5 Тема Непрерывные случайные величины (НСВ) Содержание темы Способы задания: интегральный закон распределения, плотность распределения. Связь между ними. Свойства плотности распределения. Применение

Подробнее

Лекция 6 Тема: Интервальный статистический ряд 1. Основные определения

Лекция 6 Тема: Интервальный статистический ряд 1. Основные определения Лекция 6 Тема: Интервальный статистический ряд 1. Основные определения В случае, когда число значений признака Х велико или признак является непрерывным, составляют интервальный ряд. Опр. Интервальный

Подробнее

Числовые характеристики нормального распределения

Числовые характеристики нормального распределения Числовые характеристики нормального распределения X Если случайная величина, имеющая нормальное распределение с параметрами a и, то математическое ожидание совпадает с параметром, дисперсия с M X a, D

Подробнее

1. Срединная формула прямоугольников

1. Срединная формула прямоугольников Срединная формула прямоугольников Введем обозначение I d Пусть -непрерывны на [ ] Разделим отрезок [ ] равных частичных отрезков [ ] где на Введем обозначения ( ) ( ) ( ) интеграл I в виде Представим где

Подробнее

def Интервал ( 1 ; 2 ) называют доверительным интервалом для

def Интервал ( 1 ; 2 ) называют доверительным интервалом для .0. Определение доверительного интервала Пусть θ некоторый неизвестный параметр распределения. По выборке X,..., Х из данного распределения построим интервальную оценку параметра θ распределения, то есть

Подробнее

5. ОЦЕНКА ГЕНЕРАЛЬНЫХ ПАРАМЕТРОВ

5. ОЦЕНКА ГЕНЕРАЛЬНЫХ ПАРАМЕТРОВ Оценка параметров 30 5. ОЦЕНКА ГЕНЕРАЛЬНЫХ ПАРАМЕТРОВ 5.. Введение Материал, содержащийся в предыдущих главах, можно рассматривать как минимальный набор сведений, необходимых для использования основных

Подробнее

Лекция 16 ИНТЕРВАЛЬНЫЕ ОЦЕНКИ ПАРАМЕТРОВ РАСПРЕДЕЛЕНИЯ

Лекция 16 ИНТЕРВАЛЬНЫЕ ОЦЕНКИ ПАРАМЕТРОВ РАСПРЕДЕЛЕНИЯ Лекция 6 ИНТЕРВАЛЬНЫЕ ОЦЕНКИ ПАРАМЕТРОВ РАСПРЕДЕЛЕНИЯ ЦЕЛЬ ЛЕКЦИИ: ввести понятие доверительной вероятности и доверительного интервала, получить интервальные оценки математического ожидания и дисперсии.

Подробнее

Математическая статистика

Математическая статистика Математическая статистика 1 Выборка X x, x,, x Опр.1 Пусть одномерная с.в., а 1 значения с.в.,полученные в результате испытания. Будем называть полученные значения выборкой из генеральной совокупности

Подробнее

Измерения и обработка результатов измерений Случайные погрешности

Измерения и обработка результатов измерений Случайные погрешности В теории вероятностей изучаются различные законы распределения, каждому из которых соответствует определенная функция плотности вероятности Они получены путем обработки большого числа наблюдений над случайными

Подробнее

Вариационный ряд делится тремя квартилями Q 1, Q 2, Q 3 на 4 равные части. Q 2 медиана. Показатели рассеивания. Выборочная дисперсия.

Вариационный ряд делится тремя квартилями Q 1, Q 2, Q 3 на 4 равные части. Q 2 медиана. Показатели рассеивания. Выборочная дисперсия. Квантили Выборочная квантиль x p порядка p (0 < p < 1) определяется как элемент вариационного ряда выборки x (1),, x () с номером [p]+1, где [a] целая часть числа а В статистической практике используется

Подробнее

17 ГрГУ им. Я. Купалы - ФМ и И - СА и ЭМ - «Экономическая кибернетика» - Эконометрика

17 ГрГУ им. Я. Купалы - ФМ и И - СА и ЭМ - «Экономическая кибернетика» - Эконометрика Лекция 3 7 6 Разложение оценок коэффициентов на неслучайную и случайную компоненты Регрессионный анализ позволяет определять оценки коэффициентов регрессии Чтобы сделать выводы по полученной модели необходимы

Подробнее

8. ПРИМЕРНЫЕ ВОПРОСЫ ДЛЯ ПОДГОТОВКИ К ЭКЗАМЕНУ (ЗАЧЕТУ) ПО ДИСЦИПЛИНЕ

8. ПРИМЕРНЫЕ ВОПРОСЫ ДЛЯ ПОДГОТОВКИ К ЭКЗАМЕНУ (ЗАЧЕТУ) ПО ДИСЦИПЛИНЕ 8. ПРИМЕРНЫЕ ВОПРОСЫ ДЛЯ ПОДГОТОВКИ К ЭКЗАМЕНУ (ЗАЧЕТУ) ПО ДИСЦИПЛИНЕ 1. Основные понятия и определения теории вероятностей. Виды случайных событий. Классическое и статистическое определение вероятности

Подробнее

12. Интервальные оценки параметров распределения

12. Интервальные оценки параметров распределения МВДубатовская Теория вероятностей и математическая статистика Лекция 7 Интервальные оценки параметров распределения Для выборок малого объема точечные оценки могут значительно отличаться от оцениваемых

Подробнее

Лекция 2. Доверительный интервал в программе «Описательная статистика» Распределение Стьюдента

Лекция 2. Доверительный интервал в программе «Описательная статистика» Распределение Стьюдента Лекция 2 Доверительный интервал в программе «Описательная статистика» Распределение Стьюдента Доверительный интервал Задача на практике - при ограниченной выборке оценить точность и надежность вычисления

Подробнее

ЭЛЕМЕНТЫ МАТЕМАТИЧЕСКОЙ СТАТИСТИКИ

ЭЛЕМЕНТЫ МАТЕМАТИЧЕСКОЙ СТАТИСТИКИ ЭЛЕМЕНТЫ МАТЕМАТИЧЕСКОЙ СТАТИСТИКИ Основные понятия математической статистики Совокупность - это множество объектов (элементов совокупности), обладающих общим свойством. Объем совокупности - это число

Подробнее

План лекции. Статистики, свойства оценок. Методы оценки параметров. Доверительные интервалы, оценка статистических ошибок

План лекции. Статистики, свойства оценок. Методы оценки параметров. Доверительные интервалы, оценка статистических ошибок План лекции Статистики, свойства оценок. Методы оценки параметров метод моментов метод максимума правдоподобия метод наименьших квадратов Доверительные интервалы, оценка статистических ошибок Функция результатов

Подробнее

указывать, непрерывной или дискретной является исследуемая случайная величина.

указывать, непрерывной или дискретной является исследуемая случайная величина. Раздел. Основы статистического анализа данных.. Определение случайной выборки Пусть исследуемая случайная величина, F ( x ) = P( < x) ее функция распределения, вообще говоря, неизвестная. В некоторых случаях

Подробнее

СТАТИСТИЧЕСКОЕ ОЦЕНИВАНИЕ ЧИСЛОВЫХ ХАРАКТЕРИСТИК СЛУЧАЙНОЙ ВЕЛИЧИНЫ

СТАТИСТИЧЕСКОЕ ОЦЕНИВАНИЕ ЧИСЛОВЫХ ХАРАКТЕРИСТИК СЛУЧАЙНОЙ ВЕЛИЧИНЫ СТАТИСТИЧЕСКОЕ ОЦЕНИВАНИЕ ЧИСЛОВЫХ ХАРАКТЕРИСТИК СЛУЧАЙНОЙ ВЕЛИЧИНЫ Точечное оценивание Как уже говорилось, наиболее полной и исчерпывающей характеристикой для случайной величины является закон распределения:

Подробнее

Лекция 17 ПРОВЕРКА СТАТИСТИЧЕСКИХ ГИПОТЕЗ. Определение статистической гипотезы

Лекция 17 ПРОВЕРКА СТАТИСТИЧЕСКИХ ГИПОТЕЗ. Определение статистической гипотезы Лекция 7 ПРОВЕРКА СТАТИСТИЧЕСКИХ ГИПОТЕЗ ЦЕЛЬ ЛЕКЦИИ: определить понятие статистических гипотез и правила их проверки; провести проверку гипотез о равенстве средних значений и дисперсий нормально распределенной

Подробнее

Теория вероятностей и математическая статистика Конспект лекций

Теория вероятностей и математическая статистика Конспект лекций Министерство образования и науки РФ ФБОУ ВПО Уральский государственный лесотехнический университет ИНСТИТУТ ЭКОНОМИКИ И УПРАВЛЕНИЯ Кафедра высшей математики Теория вероятностей и математическая статистика

Подробнее

АННОТАЦИЯ. Направление подготовки (специальность) Государственное и муниципальное управление

АННОТАЦИЯ. Направление подготовки (специальность) Государственное и муниципальное управление АННОТАЦИЯ к рабочей программе дисциплины «Теория вероятностей и математическая статистика» Направление подготовки (специальность) 38.03.04 Государственное и муниципальное управление 1. ЦЕЛИ И ЗАДАЧИ ДИСЦИПЛИНЫ

Подробнее

Доверительные интервалы: примеры решения задач

Доверительные интервалы: примеры решения задач Доверительные интервалы: примеры решения задач Л. В. Калиновская Кафедра высшей математики, Университет "Дубна" date Доверительные интервалы для оценки математического ожидания нормального распределения

Подробнее

Контрольная работа по математической статистике МЭСИ

Контрольная работа по математической статистике МЭСИ Контрольная работа по математической статистике МЭСИ Контрольная работа по теме «СТАТИСТИЧЕСКАЯ ОЦЕНКА ПАРАМЕТРОВ РАСПРЕДЕЛЕНИЯ» Задание. На основании вариационного ряда распределения длины плунжеров,

Подробнее

Математическая статистика.

Математическая статистика. Лекция. Математическая статистика. Основной задачей математической статистики является разработка методов получения научно обоснованных выводов о массовых явлениях и процессах из данных наблюдений и экспериментов.

Подробнее

ОГЛАВЛЕНИЕ ЧАСТЬ I. ЛЕКЦИИ... 8 ВВЕДЕНИЕ... 9 ЛЕКЦИЯ

ОГЛАВЛЕНИЕ ЧАСТЬ I. ЛЕКЦИИ... 8 ВВЕДЕНИЕ... 9 ЛЕКЦИЯ ОГЛАВЛЕНИЕ ЧАСТЬ I. ЛЕКЦИИ... 8 ВВЕДЕНИЕ... 9 ЛЕКЦИЯ 1... 13 ВВЕДЕНИЕ В ТЕОРИЮ ВЕРОЯТНОСТЕЙ... 13 1. Определение теории вероятностей... 13 2. Некоторые примеры... 14 3. Устойчивость частот в массовых статистических

Подробнее

Лекция 18. Интервальные оценки параметров распределения. Интервальные оценки. Точность. Надежность

Лекция 18. Интервальные оценки параметров распределения. Интервальные оценки. Точность. Надежность Лекция 18 Интервальные оценки параметров распределения Интервальные оценки Точность Надежность Точечные оценки могут значительно отличаться от оцениваемых параметров Достаточно часто это происходит в случае

Подробнее

Точечные оценки и их свойства. Грауэр Л.В.

Точечные оценки и их свойства. Грауэр Л.В. Точечные оценки и их свойства Грауэр Л.В. Статистика ξ генеральная совокупность c ф.р. F ξ (x; θ) θ = (θ 1,..., θ m ) неизвестные параметры X [n] = (X 1,..., X n ) выборка из ξ Статистикой будем называть

Подробнее

Лекция 6. Групповая, внутри групповая, межгрупповая и общая дисперсии. Сложение дисперсий. Оценка генеральной дисперсии по исправленной выборочной.

Лекция 6. Групповая, внутри групповая, межгрупповая и общая дисперсии. Сложение дисперсий. Оценка генеральной дисперсии по исправленной выборочной. 1 Лекция 6. Групповая, внутри групповая, межгрупповая и общая дисперсии. Сложение дисперсий. Оценка генеральной дисперсии по исправленной выборочной. 1. Групповая, внутри групповая, межгрупповая и общая

Подробнее

2 Распределение вероятностей N (a, σ)

2 Распределение вероятностей N (a, σ) А.Г. Дьячков, «Задания по математической статистике» Задание 2 2 Распределение вероятностей N (a, σ) 2. Определения и обозначения Согласно определению, непрерывная случайная величина ξ имеет стандартное

Подробнее

Лабораторная работа 4 Применения MATHCAD для решения задач по проверке статистических гипотез

Лабораторная работа 4 Применения MATHCAD для решения задач по проверке статистических гипотез МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное автономное образовательное учреждение высшего образования «НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Подробнее

МГАПИ. Типовой расчет по высшей математике. Раздел: «Теория вероятностей» Вариант 31

МГАПИ. Типовой расчет по высшей математике. Раздел: «Теория вероятностей» Вариант 31 МГАПИ Типовой расчет по высшей математике Раздел: «Теория вероятностей» Вариант 31 Задача 1. Наладчик обслуживает одновременно 3 автоматических станках. Вероятность того, что в течение часа станки будут

Подробнее

«Оптимизация и математические методы принятия решений»

«Оптимизация и математические методы принятия решений» «Оптимизация и математические методы принятия решений» ст. преп. каф. СС и ПД Владимиров Сергей Александрович Лекция 4 Методы математической статистики в задачах принятия решений Введение С О Д Е Р Ж А

Подробнее

Математика Статистика

Математика Статистика Лукьянова Е.А. Математика Статистика «Сестринское дело» Основные понятия статистики Генеральная совокупность и выборка Типы данных и их представление Точечное оценивание Интервальное оценивание 2015

Подробнее

n объектов, Раздел 3. Элементы математической статистики Литература. [5], гл.15, гл.16

n объектов, Раздел 3. Элементы математической статистики Литература. [5], гл.15, гл.16 Раздел 3. Элементы математической статистики Литература. [5], гл.15, гл.16 Математическая статистика занимается методами сбора и обработки статистического материала результатов наблюдений над объектами

Подробнее

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ДЛЯ ПРОВЕДЕНИЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ (МОДУЛЮ).

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ДЛЯ ПРОВЕДЕНИЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ (МОДУЛЮ). ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ДЛЯ ПРОВЕДЕНИЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ (МОДУЛЮ). 1. Кафедра Общие сведения 2. Направление подготовки 3. Дисциплина (модуль) 4. Количество этапов формирования

Подробнее

Оцените математическое ожидание М x и моду Мо. Задача 3 По данным выборки объема 100 получены следующие данные:

Оцените математическое ожидание М x и моду Мо. Задача 3 По данным выборки объема 100 получены следующие данные: Билет Объем выборки равен 60. определить значение 5 и моду Мо. 5 6 8? Точечная оценка параметра равна 5. Укажите, какой вид может иметь интервальная оценка: a. (5; 0); б. (0; 5); в. (; 7); г. (; 0). Получены

Подробнее

ПРОГРАММА ДИСЦИПЛИНЫ. Для подготовки дипломированных специалистов по направлению Менеджмент в организации Квалификация «Менеджер»

ПРОГРАММА ДИСЦИПЛИНЫ. Для подготовки дипломированных специалистов по направлению Менеджмент в организации Квалификация «Менеджер» Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Сибирская Государственная Геодезическая Академия»

Подробнее

УЧЕБНО МЕТОДИЧЕСКИЙ КОМПЛЕКС дисциплины «Математика»

УЧЕБНО МЕТОДИЧЕСКИЙ КОМПЛЕКС дисциплины «Математика» ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ Государственное образовательное учреждение высшего образования "УФИМСКИЙ ГОСУДАРСТВЕННЫЙ НЕФТЯНОЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ" (УГНТУ) Кафедра математики УЧЕБНО МЕТОДИЧЕСКИЙ

Подробнее

3. УЧЕБНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ ТЕОРИЯ ВЕРОЯТНОСТЕЙ. Раздел 1. Случайные события

3. УЧЕБНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ ТЕОРИЯ ВЕРОЯТНОСТЕЙ. Раздел 1. Случайные события 3. УЧЕБНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ Конспект лекций (сокращенный) по теории вероятностей и математической статистике ТЕОРИЯ ВЕРОЯТНОСТЕЙ Раздел 1. Случайные события Лекция 1 1. Основные понятия

Подробнее

Таким образом, искомый закон распределения: Проверка: 0, , , ,504 = 1

Таким образом, искомый закон распределения: Проверка: 0, , , ,504 = 1 Другие ИДЗ Рябушко можно найти на странице http://mathpro.ru/dz_ryabushko_besplatno.html ИДЗ-8. Найти закон распределения указанной случайной величины X и ее функцию распределения F (X ). Вычислить математическое

Подробнее

Лекция 2 дополнение. Распределение Стьюдента Доверительный интервал в программе «Описательная статистика»

Лекция 2 дополнение. Распределение Стьюдента Доверительный интервал в программе «Описательная статистика» Лекция 2 дополнение Распределение Стьюдента Доверительный интервал в программе «Описательная статистика» Распределение Стьюдента Это распределение получило свое название от псевдонима Student, которым

Подробнее

ü описание явлений упорядочивание статистического материала, представление в удобном для экспериментатора виде (таблица, график, диаграмма);

ü описание явлений упорядочивание статистического материала, представление в удобном для экспериментатора виде (таблица, график, диаграмма); Математическая статистика наука, занимающаяся методами обработки экспериментальных данных, полученных в результате наблюдений над случайными явлениями. При этом решаются следующие задачи: ü описание явлений

Подробнее

Лекция 1. Введение. Основные понятия и методы математической статистики.

Лекция 1. Введение. Основные понятия и методы математической статистики. 1 Лекция 1. Введение. Основные понятия и методы математической статистики. 1. Что изучают математическая статистика, теория случайных процессов. Изучение данного курса будет состоять из двух частей: «Математическая

Подробнее

Теория вероятностей и математическая статистика

Теория вероятностей и математическая статистика Теория вероятностей и математическая статистика Учебное пособие Часть Фарафонов В. Г., Фарафонов Вяч. Г., Устимов В. И., Бутенина Д. В. 009 г. i 1. ЗАКОН БОЛЬШИХ ЧИСЕЛ. ПРЕДЕЛЬНЫЕ ТЕОРЕМЫ Массовые случайные

Подробнее

Тема Свойства выборочных характеристик. Интервальные ряды

Тема Свойства выборочных характеристик. Интервальные ряды Лекция 7 Тема Свойства выборочных характеристик. Интервальные ряды Содержание темы Свойства средней арифметической Свойства выборочной дисперсии Интервальный ряд и его характеристики Основные категории

Подробнее

Лекция 5. Доверительные интервалы

Лекция 5. Доверительные интервалы Лекция 5. Доверительные интервалы Грауэр Л.В., Архипова О.А. CS Center Санкт-Петербург, 2014 Грауэр Л.В., Архипова О.А. (CSC) Лекция 5. Доверительные интервалы Санкт-Петербург, 2014 1 / 31 Cодержание Содержание

Подробнее

Математическое ожидание

Математическое ожидание Числовые характеристики непрерывных случайных величин 1 Математическое ожидание Математическим ожиданием непрерывной случайной величины с плотностью распределения называется число M X px ( ) xp( x) dx.

Подробнее

Числовые характеристики непрерывных случайных величин

Числовые характеристики непрерывных случайных величин Числовые характеристики непрерывных случайных величин 1 Математическое ожидание Математическим ожиданием непрерывной случайной величины с плотностью распределения называется число M X + = px ( ) xp( x)

Подробнее

Курсовая работа «Исследование надежности систем» Курсовая работа должна содержать следующие разделы. Введение. Основные понятия надежности систем. 1.

Курсовая работа «Исследование надежности систем» Курсовая работа должна содержать следующие разделы. Введение. Основные понятия надежности систем. 1. Курсовая работа «Исследование надежности систем» Курсовая работа должна содержать следующие разделы. Введение. Основные понятия надежности систем.. Теория вероятности (задачи 7.0 7.80)... Теоремы умножения

Подробнее

Элементы теории оценок и проверки гипотез

Элементы теории оценок и проверки гипотез Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Сибирский государственный индустриальный университет»

Подробнее

Расчетно-графическая работа. Теория вероятностей

Расчетно-графическая работа. Теория вероятностей Расчетно-графическая работа Теория вероятностей Вариант n = 4 Задание 1. В урне 6 белых шаров и 6 черных шаров. Найти вероятность, что: А) вытащили белый шар; Б) вытащили белых шара; В) вытащили 3 черных

Подробнее

Контрольная работа 4

Контрольная работа 4 Контрольная работа 4 Тема: Теория вероятностей З а д а ч и 1-10 Задачи 1-10 посвящены вычислениям вероятности событий с использованием основных теорем теории вероятности и комбинаторики. Конкретный пример

Подробнее

Лекция 2. Статистики первого типа. Точеченые оценки и их свойства

Лекция 2. Статистики первого типа. Точеченые оценки и их свойства Лекция 2. Статистики первого типа. Точеченые оценки и их свойства Грауэр Л.В., Архипова О.А. CS center Санкт-Петербург, 2014 Грауэр Л.В., Архипова О.А. (CSC) Лекция 2. Статистики первого типа. Точеченые

Подробнее

Лекция 11. Метод наибольшего правдоподобия. Другие характеристики вариационного ряда.

Лекция 11. Метод наибольшего правдоподобия. Другие характеристики вариационного ряда. 1 Лекция 11 Метод наибольшего правдоподобия Другие характеристики вариационного ряда 1 Метод наибольшего правдоподобия Кроме метода моментов, который изложен в предыдущем параграфе, существуют и другие

Подробнее

ТЕОРИЯ ОЦЕНОК. Основные понятия в теории оценок Состоятельность и сходимость.

ТЕОРИЯ ОЦЕНОК. Основные понятия в теории оценок Состоятельность и сходимость. Поиск оценки может быть рассмотрен как измерение параметра (предполагается, что он имеет некоторое фиксированное, но неизвестное значение), основанное на ограниченном числе экспериментальных наблюдений.

Подробнее

Методические указания к практическим (семинарским) занятиям

Методические указания к практическим (семинарским) занятиям Методические указания к практическим (семинарским) занятиям Практические занятия (семинары) 3-й семестр п/п С1 С2 С3 С4 С5 С6 раздела дисциплины Наименование практических занятий (семинаров) Комбинаторика:

Подробнее

Расчетная работа Теория вероятностей

Расчетная работа Теория вероятностей Расчетная работа Теория вероятностей Задача 04. На экзамен по математике явилось N = студентов. Из них K = не знает ровным счетом ничего. Весьма доброжелательно настроенный преподаватель решил ставить

Подробнее

Лекция 4. Доверительные интервалы

Лекция 4. Доверительные интервалы Лекция 4. Доверительные интервалы Буре В.М., Грауэр Л.В. ШАД Санкт-Петербург, 2013 Буре В.М., Грауэр Л.В. (ШАД) Лекция 4. Доверительные интервалы Санкт-Петербург, 2013 1 / 49 Cодержание Содержание 1 Доверительные

Подробнее

Для удобства вычислений генеральной средней и среднего квадратического отклонения составляем таблицу. σ = 874,02 874,020 29,200 = 21,380

Для удобства вычислений генеральной средней и среднего квадратического отклонения составляем таблицу. σ = 874,02 874,020 29,200 = 21,380 Задание. По выборочным данным оценить генеральную среднюю, генеральную дисперсию и среднее квадратическое отклонение. Построить полигон относительных частот. Эти же данные разбить на 5 интервалов. По интервальному

Подробнее

Лекции 8 и 9 Тема: Закон больших чисел и предельные теоремы теории вероятностей

Лекции 8 и 9 Тема: Закон больших чисел и предельные теоремы теории вероятностей Лекции 8 и 9 Тема: Закон больших чисел и предельные теоремы теории вероятностей Закономерности в поведении случайных величин тем заметнее, чем больше число испытаний, опытов или наблюдений Закон больших

Подробнее

8) для непрерывной случайной величины построить график функции плотности вероятности и сравнить его с гистограммой, для дискретной

8) для непрерывной случайной величины построить график функции плотности вероятности и сравнить его с гистограммой, для дискретной Введение Статистические методы обработки результатов эксперимента используются в курсах численных методов специальными кафедрами без необходимого теоретического обоснования Это вызывает определенные затруднения

Подробнее

Статистическая обработка результатов измерений

Статистическая обработка результатов измерений Министерство образования Российской Федерации МАТИ Российский Государственный Технологический Университет им. К. Э. Циолковского. Кафедра «Высшая математика» Статистическая обработка результатов измерений

Подробнее

200 взятая деталь изготовлена первым, вторым и третьим цехами соответственно. Из условия следуют:

200 взятая деталь изготовлена первым, вторым и третьим цехами соответственно. Из условия следуют: . На складе 00 деталей, из которых 00 изготовлено цехом, 60 цехом и 40 цехом. Вероятность брака для цеха %, для цеха % и для цеха %. Наудачу взятая со слада деталь оказалась бракованной. Найти вероятность

Подробнее

11. Тесты по математической статистике. Тест Дана выборка ( 3,1,2,3,1,4, 5). Составьте вариационный ряд.

11. Тесты по математической статистике. Тест Дана выборка ( 3,1,2,3,1,4, 5). Составьте вариационный ряд. 11 Тесты по математической статистике Тест 1 P 1 Для любого x имеет место соотношение F x правую часть Заполните Дана выборка ( 3,1,,3,1,4, 5) Составьте вариационный ряд 3 Что оценивают x и выборочная

Подробнее

Кафедра прикладной математики. А.Г. Курицын КУРСОВАЯ РАБОТА ПО ТЕОРИИ ВЕРОЯТНОСТЕЙ И МАТЕМАТИЧЕСКОЙ СТАТИСТИКЕ. Методические указания

Кафедра прикладной математики. А.Г. Курицын КУРСОВАЯ РАБОТА ПО ТЕОРИИ ВЕРОЯТНОСТЕЙ И МАТЕМАТИЧЕСКОЙ СТАТИСТИКЕ. Методические указания Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования Санкт-Петербургский государственный технологический институт (Технический университет)

Подробнее

n 1 Когда значение измеряемой величины неизвестно, ее оценка Поэтому в случае б) несмещенная оценка дисперсии

n 1 Когда значение измеряемой величины неизвестно, ее оценка Поэтому в случае б) несмещенная оценка дисперсии Элементы математической статистики. Пример. Для определения точности измерительного прибора, систематическая ошибка которого практически равно нулю, было произведено пять независимых измерений, результаты

Подробнее

что и требовалось доказать. При доказательстве мы использовали свойство неотрицательности функции плотности и неравенство (*)).

что и требовалось доказать. При доказательстве мы использовали свойство неотрицательности функции плотности и неравенство (*)). Оглавление Глава 5 Предельные теоремы 5 Неравенство Чебышѐва 5 Типы сходимости случайных величин 3 Диаграмма зависимости видов сходимости 3 53 Суммы случайных величин 4 Среднее арифметическое случайных

Подробнее

Понятие ОЦЕНКИ ПАРАМЕТРА

Понятие ОЦЕНКИ ПАРАМЕТРА Лекция 2 Понятие оценки параметра распределения Оценка математического ожидания Оценка дисперсии и стандартного отклонения Мода Медиана Эксцесс Асимметрия Описательная статистика (программа «Анализ данных»)

Подробнее

Стратификация. Доверительные интервалы. Грауэр Л.В.

Стратификация. Доверительные интервалы. Грауэр Л.В. Стратификация. Доверительные интервалы Грауэр Л.В. Оценка параметров конечной генеральной совокупности x 1, x 2,..., x N генеральная совокупность конечного объема N. Математическое ожидание генеральной

Подробнее

6. Элементы математической статистики.

6. Элементы математической статистики. Минестерство образования Республики Беларусь УО «итебский государственный технологический университет» 6. Элементы математической статистики. Кафедра теоретической и прикладной математики. 90 80 70 60

Подробнее

Retinskaya.jimdo.com

Retinskaya.jimdo.com ЛЕКЦИЯ 1 Классификация экспериментальных исследований Определение и свойства функции распределения. Вероятность попадания случайной величины на заданный интервал Квантиль распределения Выборочная функция

Подробнее

Методические указания к решению контрольной работы 4 по дисциплине «Математика» для студентов второго курса строительных специальностей

Методические указания к решению контрольной работы 4 по дисциплине «Математика» для студентов второго курса строительных специальностей Методические указания к решению контрольной работы 4 по дисциплине «Математика» для студентов второго курса строительных специальностей Кафедра высшей математики 3 А.В. Капусто Минск 018 018 Кафедра высшей

Подробнее

Выборочные оценки параметров распределения

Выборочные оценки параметров распределения Выборочные оценки параметров распределения 1 Выборочные оценки параметров распределения Резюмируя, важно подчеркнуть, что, с точки зрения экспериментатора, функции распределения и статистические характеристики

Подробнее

По таблице приложения 4 по γ = 0,99 и n = 15 найдем q = 0,73. Искомый доверительный интервал

По таблице приложения 4 по γ = 0,99 и n = 15 найдем q = 0,73. Искомый доверительный интервал Лекция 9. Оценка точности измерений. Оценка вероятности (биномиального распределения) по относительной частоте. 1. Оценка точности измерений. В теории ошибок принято точность измерений (точность прибора)

Подробнее

Лабораторная работа 3 Оценки параметров распределения

Лабораторная работа 3 Оценки параметров распределения МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ

Подробнее

КОС включают контрольные материалы для проведения промежуточной аттестации в форме дифференцированного зачета

КОС включают контрольные материалы для проведения промежуточной аттестации в форме дифференцированного зачета 1. Общие положения Контрольно-оценочные средства (КОС) предназначены для контроля и оценки образовательных достижений обучающихся, освоивших программу учебной дисциплины «Теория вероятностей и математическая

Подробнее

Задачи по математической статистике

Задачи по математической статистике Задачи по математической статистике 1. Построить оценки неизвестных параметров по методу моментов для следующих распределений: а) B p, 0 < p < 1; б) Π λ, λ > 0; в) G p, 0 < p < 1; г) U[0, θ], θ > 0; д)

Подробнее

ТЕМА 11. Статистическая проверка гипотез Основные определения и идеи

ТЕМА 11. Статистическая проверка гипотез Основные определения и идеи ТЕМА 11. Статистическая проверка гипотез Цель контента темы 11 изложить основные критерии проверки статистических гипотез. Задачи контента темы 11: Сформулировать задачу проверки статистических гипотез.

Подробнее