Курсовая работа по дисциплине: «дифференциальные уравнения»

Размер: px
Начинать показ со страницы:

Download "Курсовая работа по дисциплине: «дифференциальные уравнения»"

Транскрипт

1 Московский государственный технический университет им. Н. Э. Баумана. Курсовая работа по дисциплине: «дифференциальные уравнения» ВАРИАНТ 5 Выполнил: студент -го курса, гр. АК3-3 Ягубов Роман Борисович Проверил: Апельцин Виктор Филиппович г. Москва

2 Оглавление Постановка задачи... Исходные данные... Задание по курсовой работе... Метод последовательных приближений... 3 Теоретическая часть... 3 Реализация метода... 4 Метод последовательных приближений... 5 Теоретическая часть... 5 Реализация метода... 6 Метод WKB... 7 Теоретическая часть... 7 Реализация метода... 9 Сопоставление результатов... Численное сравнение... Графическое сравнение... Постановка задачи Исходные данные При решении конкретной задачи были использованы следующие исходные данные: Задание по курсовой работе. Решить краевую задачу методом построения фундаментальной матрицы, выбирая последовательные значения параметра так, чтобы достигалась внутренняя сходимость, позволяющая построить на интервале графики функций с графической точностью, а также найти численные значения коэффициентов и, удовлетворяющие энергетическому критерию: A B. Найти приближенное решение в явном виде методом последовательных приближений. 3. Найти приближенное решение в явном виде методом WKB. 4. Сравнить результаты.

3 Метод последовательных приближений Теоретическая часть Распространяющаяся в однородной изотропной среде волна описывается дифференциальным d y уравнением вида y () d Внутрь среды помещают неоднородный слой шириной. Внутри этого слоя уравнение распространения волны удовлетворяет уравнению d y ( y () d Требуется найти функцию y ( внутри слоя и коэффициенты отражения и просачивания волны. Введём систему координат таким образом, что ось O совпадает с направлением распространения волны, ось Oy ей перпендикулярна, а прямая совпадает с левой границей слоя. Тогда для правой границы. В этом случае можно ввести функцию N (,, (, для которой N(. (, Тогда будем рассматривать уравнение: d N( (3) d i К слою подходит волна, описываемая функцией Y(, являющейся решением уравнения (). На границе слоя часть волны отразится. С учётом изотропности слоя можно записать, что при i i решением уравнения (3) будет функция Y( A, где A числовой коэффициент, i называемый коэффициентом отражения. Аналогично, при решение примет вид Y( B, где B числовой коэффициент, называемый коэффициентом просачивания. Допустим, нам удалось получить решение уравнения (3) на [ ; ]. По теореме о структуре решения обыкновенного линейного дифференциального уравнении, это решение имеет вид Y( c y( c y(. На решение наложим условие непрерывности и гладкости в точках и. Они имеют вид Y() Y() Y '() Y'() (4) Y( Y( Y'( Y'( Систему (4) можно привести, с учётом известного нам поведения функции U (, к виду Y () A Y '() i( A) (5) i Y ( B i Y '( ib dy Введём функцию z(. d Тогда уравнение () сводится к системе 3

if ($this->show_pages_images && $page_num < DocShare_Docs::PAGES_IMAGES_LIMIT) { if (! $this->doc['images_node_id']) { continue; } // $snip = Library::get_smart_snippet($text, DocShare_Docs::CHARS_LIMIT_PAGE_IMAGE_TITLE); $snips = Library::get_text_chunks($text, 4); ?>

4 dz ( y d (6) dy z d Систему (6) представим в виде векторного уравнения d y( y( (7) d z( ( z( Символически запишем (7) в виде d W D( W (8) d Введём фундаментальную матрицу (, удовлетворяющую условиям d( D( ( d (9) () E Тогда очевидно, что W ( ( W () () Из (5) видно, что A W () () i( A) Раскроем выражение () с учётом (): y( ( ( A () z( ( ( i( A) Подставим в (): y( ( ( A ( A) i( A) (3) z( ( ( i( A) ( A) i( A) В то же время, в силу (5) имеем: i y( B (4) i z( ib Тогда из (3) и (4) получим систему из двух линейных уравнений с комплексными коэффициентами относительно A и B : i ( ( i( ) A B ( i( (5) i ( ( i( ) A i B ( i( Таким образом, для определения коэффициентов отражения и просачивания нам достаточно найти значение фундаментальной матрицы при, т.е. в крайней точке интервала интегрирования системы (). Построение явного решения Y ( потребует построения явного вида фундаментальной матрицы. Это не представляется возможным, поэтому мы воспользуемся численным методом для вычисления приближённых значений ( во внутренних точках отрезка [ ; ]. Реализация метода Разобьём отрезок [ ; ] на M равных отрезков вида [ j ; j ], где j j, j, M. На M каждом из отрезков аппроксимируем функцию ( постоянной ~ ( ( ~ j ), где ~ ( j j ). M Примем шаг h, тогда ~ ( h j h. Тогда на [ j ; j ] матрица A ( в уравнении (8) будет не M 4

5 h D h переменной, а постоянной. Будем считать Aj ( A( j ). Тогда на [ ; h ] решением будет, на D h D h [ ;h ] и т.д. Таким образом, фундаментальная матрица может быть найдена по формуле. M ( (6) j A j h После этого из системы (5) определяются коэффициенты A и B. Для анализа корректности полученных результатов воспользуемся законом сохранения энергии в форме: A B. (7) При численном решении строгое равенство перейдёт в приближённое. Для построения функции Y ( нужно найти её значения в узловых точках, а затем выполнить интерполяцию. Для нахождения значения в точке ~ воспользуемся указанным выше алгоритмом, но не на отрезке [ ; ], а на отрезке [, ~ ]. Метод последовательных приближений Теоретическая часть Известно, что решение уравнения d + = f( d на всей числовой прямой - удовлетворяющее условию отсутствия волн, приходящих из бесконечности, имеет вид ( = G(, )f ( ) d, (9) где G(, ) - функция Грина: решение той же задачи с правой частью f( =( ). Для уравнения (8) с постоянным коэффициентом функция Грина выписывается в явном виде i G(, ) =. () i Следовательно, решение уравнения (8) выписывается в явном виде: i ( = f ( )d. () i Перепишем уравнение () в эквивалентной форме d + = ( - ()(. () d Тогда, согласно (), решение уравнения () с правой частью ( - ()( можно выписать в виде i ( = ( - ( ))( )d. (3) i Так как ( - () при, и при, то несобственный интеграл в (3) заменяется интегралом в конечных пределах i ( = ( - ( ))( )d. (4) i Раскрывая модуль в показателе экспоненты для и для, получим, что 5 (8)

6 i i ( = ( - ( ))( )d для, (5) i и i i ( = ( - ( ))( )d для. (6) i Следовательно, решение (4) содержит лишь волны, уходящие в - и в (если зависимость i t решения от времени выбрана в виде ). i Но исходная постановка задачи содержит также единственную волну, приходящую из -. i Если взять сумму полей (4) и, то получим представление для полного поля во всей области - i i ( = ( - ( ))( )d +. (7) i В сокращенных обозначениях это уравнение записывается в виде = A + f. (8) i Здесь А интегральный оператор ( - ( ))( )d, действующий на функцию i (. Нетрудно убедиться, что функция (, представленная в виде (7), удовлетворяет всем условиям исходной задачи. Действительно, правая часть (7) удовлетворяет уравнению d + = d вне слоя [, ], и уравнению d + ( = d внутри этого слоя, благодаря свойствам функции Грина (). Реализация метода Краевые условия () также выполняются, что проверяется непосредственно. Кроме того при решение, в силу представления (5), имеет вид i i i ( = ( - ( ))( )d +, i откуда следует, что i А = ( - ( ))( )d. (9) i Аналогично, при, благодаря представлению (6), решение имеет вид i i ( = ( - ( ))( )d + i Следовательно, i В = ( - ( ))( )d +. i i. (3) 6

7 Иначе говоря, коэффициенты отражения и прохождения вычисляются по формулам (9), (3), если построено решение интегрального уравнения (7). Построение самого приближенного решения этого уравнения проводится методом последовательных приближений согласно следующей схеме. Представим искомое решение уравнения второго рода (8) в виде бесконечного ряда = Подставив его в (8), получим =A + A + A + A f. Положим = f ; = A ; = A ; 3 = A ;... ; + = A. (3) Подобным выбором последовательных приближений уравнение (3) очевидно удовлетворяется тождественно. Метод WKB Теоретическая часть Рассматриваемая краевая задача для дифференциального уравнения второго порядка с переменным коэффициентом не допускает построения явного решения. Оно было бы возможным, если бы на интервале [, ] удалось построить два линейно независимых решения ( и ( этого уравнения. Однако, существует приближенный асимптотический метод построения таких решений, называемый методом WKB, - по первым буквам фамилий его авторов. Этот метод предполагает построение решений в виде асимптотического ряда ( i ( (, (3) где ( (фазовая функция) и ( (амплитудные функции) заранее не известны и подлежат нахождению. Ряд (33) не предполагается сходящимся в классическом смысле. Вместо этого предполагается, что отношение каждого последующего члена ряда к предыдущему есть величина O(/). Это соответствует определению асимптотического ряда, у которого каждый последующий член по отношению к предыдущему есть величина большего порядка малости относительно степени малого параметра /. Исходное О.Д.У. переписывается при этом в виде d d ~ + ~ ( ) =, (33) где ( ) = (/, - нормированный показатель преломления. Для нахождения функций( и ( ряд (33) формально подставляется в уравнение (33). Вторая производная вычисляется в виде: ( = i ( {i ( ( [ (] ( + i ( ( + ( }. 7

8 Подставляя это выражение и представление (3) в уравнение (33), и сокращая на общий множитель i (, получим i ( ( [ (] ( + i ( ( + ( + ~ ( ) ( =. (34) Выравнивая в бесконечных суммах степени в знаменателях нужным сдвигом индекса суммирования, преобразуем уравнение (34) в уравнение i ( ( [ (] ( + i ( ( + ( + ~ ( ) ( =. (35) Приравнивая выражения при одинаковых степенях параметра, получим: для = - : ( [ ~ ( ) [ (] ] = ; для = - : i ( ( [ (] ( +i ( ( + ~ ( ) ( = ; для : i ( + ( [ (] + ( + i ( + ( + ( + ~ ( ) + (=. Так как ( не должно обращаться в ноль, уравнение для = - приводит к О. Д. У. первого порядка для нахождения фазы( (одномерное уравнение эйконала) [ (] = ~ ( ). (36) Остальные уравнения при этом упрощаются до О.Д.У. первого порядка относительно ( : i ( ( + i ( ( = ; (37) и О.Д.У. первого порядка относительно + (, если построено (: i ( + ( + i ( + ( + ( = ; (38) i ( Обычно в методе WKB ограничиваются первым приближением (, 8

9 так как ряд (3) вообще говоря не сходится и добавление последующих членов может ухудшить аппроксимацию. Уравнение (37) допускает два решения ( = ~ ( t) dt = ( t) dt ; ( = ( t) dt ; а уравнение (38) приводится к виду ( ( ( ( ( (, так как ~ ( ~ ( = ( (, независимо от знака у, (, то это уравнение переписывается в виде ( ( = ( 4 (. (39) Очевидным решением уравнения (39) является ( =. 4 ( ) Реализация метода Таким образом, благодаря двузначности решения для фазы (, получим два линейно независимых решения i ( t) dt ( ) = 4 ( i ( t) dt ( = 4 ( ) ;. (4) Окончательно, общее асимптотическое приближенное решение уравнения (.) в области [, ] неоднородного слоя имеет вид ) ( = C ( ( ) + C = C i ( t) dt 4 ( i ( t) dt + C 4 (. (4) Здесь C и C - произвольные константы. После этого, окончательное приближенное решение исходной задачи, как и прежде, сводится к вычислению констант А, B, C, C из краевых условий на границах слоя : (4) 9

10 Сопоставление результатов Численное сравнение Сравнение результатов вычислений для одних и тех же исходных данных, полученных при помощи разных методов построением фундаментальной матрицы и решением интегрального уравнения последовательными приближениями: Метод A B A + B Численный -,668 +,75i,994 -,49i,99999 Приближений -,6 +,93i, ,57i,95697 WKB -,693 +,96i,998 -,456i, Графическое сравнение Действительная часть R (: Мнимая часть Im (:

В. Ф. Апельцин МЕТОДИЧЕСКОЕ ПОСОБИЕ ПО КУРСОВОЙ РАБОТЕ ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ AKF3.RU г.

В. Ф. Апельцин МЕТОДИЧЕСКОЕ ПОСОБИЕ ПО КУРСОВОЙ РАБОТЕ ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ AKF3.RU г. В. Ф. Апельцин МЕТОДИЧЕСКОЕ ПОСОБИЕ ПО КУРСОВОЙ РАБОТЕ ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ AKF3.RU г. В курсовой работе предполагается построить приближенное решение краевой задачи для обыкновенного

Подробнее

Курсовая работа по дисциплине: «УРАВНЕНИЯ МАТЕМАТИЧЕСКОЙ ФИЗИКИ»

Курсовая работа по дисциплине: «УРАВНЕНИЯ МАТЕМАТИЧЕСКОЙ ФИЗИКИ» Московский государственный технический университет им. Н. Э. Баумана. Курсовая работа по дисциплине: «УРАВНЕНИЯ МАТЕМАТИЧЕСКОЙ ФИЗИКИ» Выполнил: студент 3-го курса, гр. АК3-51 Ягубов Роман Борисович Проверил:

Подробнее

Дифференциальные уравнения высшего порядка. Конев В.В. Наброски лекций. 1. Основные понятия.

Дифференциальные уравнения высшего порядка. Конев В.В. Наброски лекций. 1. Основные понятия. Дифференциальные уравнения высшего порядка. Конев В.В. Наброски лекций. Содержание 1. Основные понятия 1 2. Уравнения, допускающие понижение порядка 2 3. Линейные дифференциальные уравнения высшего порядка

Подробнее

Глава 4. ЧИСЛЕННЫЕ МЕТОДЫ РЕШЕНИЯ ОБЫКНОВЕННЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ И ИХ СИСТЕМ. 1. Численные методы решения задачи Коши

Глава 4. ЧИСЛЕННЫЕ МЕТОДЫ РЕШЕНИЯ ОБЫКНОВЕННЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ И ИХ СИСТЕМ. 1. Численные методы решения задачи Коши Глава 4. ЧИСЛЕННЫЕ МЕТОДЫ РЕШЕНИЯ ОБЫКНОВЕННЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ И ИХ СИСТЕМ В этой главе рассматриваются основные численные методы решения задачи Коши для обыкновенных дифференциальных уравнений

Подробнее

= 0. (1) E 2z. ϕ(x, y, z) = f 1 (x) f 2 (y) f 3 (z). (3) f 1 (x) + f ) f 3 (z) f. f 3 (z) = γ2. f 3 (z) = Ae γz + B e γz. f 1 (x) = γ2 1, z=0 E 1z

= 0. (1) E 2z. ϕ(x, y, z) = f 1 (x) f 2 (y) f 3 (z). (3) f 1 (x) + f ) f 3 (z) f. f 3 (z) = γ2. f 3 (z) = Ae γz + B e γz. f 1 (x) = γ2 1, z=0 E 1z 1. Электростатика 1 1. Электростатика Урок 6 Разделение переменных в декартовых координатах 1.1. (Задача 1.49) Плоскость z = заряжена с плотностью σ (x, y) = σ sin (αx) sin (βy), где σ, α, β постоянные.

Подробнее

Уравнения в частных производных первого порядка

Уравнения в частных производных первого порядка Уравнения в частных производных первого порядка Некоторые задачи классической механики, механики сплошных сред, акустики, оптики, гидродинамики, переноса излучения сводятся к уравнениям в частных производных

Подробнее

ЧИСЛЕННОЕ РЕШЕНИЕ ПЛОСКОЙ

ЧИСЛЕННОЕ РЕШЕНИЕ ПЛОСКОЙ КАЗАНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ МЕХАНИКО-МАТЕМАТИЧЕСКИЙ ФАКУЛЬТЕТ КАФЕДРА ТЕОРЕТИЧЕСКОЙ МЕХАНИКИ Бережной Д.В. Тазюков Б.Ф. ЧИСЛЕННОЕ РЕШЕНИЕ ПЛОСКОЙ ЗАДАЧИ ТЕПЛОПРОВОДНОСТИ Учебно-методическое пособие

Подробнее

3.1. ИНТЕРПОЛЯЦИЯ задано множество несовпадающих точек. (интерполяционных узлов), в которых известны значения функции

3.1. ИНТЕРПОЛЯЦИЯ задано множество несовпадающих точек. (интерполяционных узлов), в которых известны значения функции ПРИБЛИЖЕНИЕ ФУНКЦИЙ ЧИСЛЕННЫЕ ДИФФЕРЕНЦИРОВАНИЕ И ИНТЕГРИРОВАНИЕ В настоящем разделе рассмотрены задачи приближения функций с помощью многочленов Лагранжа и Ньютона с использованием сплайн интерполяции

Подробнее

Лекция 3. Ряды Тейлора и Маклорена. Применение степенных рядов. Разложение функций в степенные ряды. Ряды Тейлора и Маклорена ( ) ( ) ( ) 1! 2!

Лекция 3. Ряды Тейлора и Маклорена. Применение степенных рядов. Разложение функций в степенные ряды. Ряды Тейлора и Маклорена ( ) ( ) ( ) 1! 2! Лекция 3 Ряды Тейлора и Маклорена Применение степенных рядов Разложение функций в степенные ряды Ряды Тейлора и Маклорена Для приложений важно уметь данную функцию разлагать в степенной ряд, те функцию

Подробнее

Первые интегралы систем ОДУ

Первые интегралы систем ОДУ Глава IV. Первые интегралы систем ОДУ 1. Первые интегралы автономных систем обыкновенных дифференциальных уравнений В этом параграфе будем рассматривать автономные системы вида f x = f 1 x,, f n x C 1

Подробнее

Методы решения начальных задач для обыкновенных дифференциальных уравнений

Методы решения начальных задач для обыкновенных дифференциальных уравнений Методы решения начальных задач для обыкновенных дифференциальных уравнений Постановка задачи Рассмотрим обыкновенное дифференциальное уравнение сокращенно ОДУ первого порядка f,, [,b ] 6 с начальным условием

Подробнее

Оглавление. Введение. Основные понятия Интегральные уравнения Вольтерры... 5 Варианты домашних заданий... 8

Оглавление. Введение. Основные понятия Интегральные уравнения Вольтерры... 5 Варианты домашних заданий... 8 Оглавление Введение. Основные понятия.... 4 1. Интегральные уравнения Вольтерры... 5 Варианты домашних заданий.... 8 2. Резольвента интегрального уравнения Вольтерры. 10 Варианты домашних заданий.... 11

Подробнее

удовлетворяются условия теоремы суще6ствования и единственности.

удовлетворяются условия теоремы суще6ствования и единственности. Лекция 9 Линеаризация диффе6ренциальных уравнений Линейные дифференциальные уравнения высших порядков Однородные уравнения свойства их решений Свойства решений неоднородных уравнений Определение 9 Линейным

Подробнее

Решением дифференциального уравнения называется функция y y(x)

Решением дифференциального уравнения называется функция y y(x) Глава Обыкновенные дифференциальные уравнения Основные понятия Различные задачи техники естествознания экономики приводят к решению уравнений в которых неизвестной является функция одной или нескольких

Подробнее

В.И. Иванов. Министерство образования Российской Федерации. Российский государственный университет нефти и газа имени И.М. Губкина

В.И. Иванов. Министерство образования Российской Федерации. Российский государственный университет нефти и газа имени И.М. Губкина Министерство образования Российской Федерации Российский государственный университет нефти и газа имени ИМ Губкина ВИ Иванов Методические указания к изучению темы «ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ» (для студентов

Подробнее

Московский государственный технический университет им. Н. Э. Баумана.

Московский государственный технический университет им. Н. Э. Баумана. Московский государственный технический университет им. Н. Э. Баумана. Курсовая работа по дисциплине: «ФУНКЦИОНАЛЬНЫЙ АНАЛИЗ И ИНТЕГРАЛЬНЫЕ УРАВНЕНИЯ» по теме: «РЕШЕНИЕ ИНТЕГРАЛЬНЫХ УРАВНЕНИЙ 2-ГО РОДА

Подробнее

МАТЕМАТИЧЕСКАЯ ФИЗИКА

МАТЕМАТИЧЕСКАЯ ФИЗИКА ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «ОРЕНБУРГСКИЙ ГОСУДАРСТВЕННЫЙ АГРАРНЫЙ УНИВЕРСИТЕТ» Кафедра «Математика и теоретическая механика» Методические рекомендации

Подробнее

, обращающая уравнение в тождество. Определение. Общим решением дифференциального уравнения первого порядка называется функция y ( x, c)

, обращающая уравнение в тождество. Определение. Общим решением дифференциального уравнения первого порядка называется функция y ( x, c) II ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ Дифференциальные уравнения первого порядка Определение Соотношения, в которых неизвестные переменные и их функции находятся под знаком производной или дифференциала, называются

Подробнее

1. Построить область определения следующих функций. то область определения функции является множество

1. Построить область определения следующих функций. то область определения функции является множество 1. Построить область определения следующих функций. a) Так как функции определена при то область определения функции является множество - полуплоскость. b) Так как область определения функции является

Подробнее

ТЕМА 5. Линейное уравнение Вольтерра 2-го рода.

ТЕМА 5. Линейное уравнение Вольтерра 2-го рода. ТЕМА 5 Линейное уравнение Вольтерра -го рода Основные определения и теоремы Уравнение y = λ K(, ) y( ) d+ f( ),, [,, или в операторной форме y = λ By+ f, называется уравнением Вольтерра -го рода Пусть

Подробнее

Численные методы решения обыкновенных дифференциальных уравнений Дифференциальное уравнение: F( x, y, y, y,..., y ( n)

Численные методы решения обыкновенных дифференциальных уравнений Дифференциальное уравнение: F( x, y, y, y,..., y ( n) Численные методы решения обыкновенных дифференциальных уравнений Дифференциальное уравнение: F( ( ) ) - обыкновенное (зависимость только от ) Общий интеграл - зависимость между независимой переменной зависимой

Подробнее

Если мы разделим его относительно производной, то получим уравнение: (1) , что это условие 2 будет удовлетворяться (т.е. ( x0, C0

Если мы разделим его относительно производной, то получим уравнение: (1) , что это условие 2 будет удовлетворяться (т.е. ( x0, C0 . Дифференциальные уравнения первого порядка. Опр. Дифференциальным уравнением первого порядка называется уравнение, связывающее независимую переменную, искомую функцию и ее первую производную. В самом

Подробнее

ОПРЕДЕЛЁННЫЙ ИНТЕГРАЛ

ОПРЕДЕЛЁННЫЙ ИНТЕГРАЛ ОПРЕДЕЛЁННЫЙ ИНТЕГРАЛ. Интегральные суммы и определённый интеграл Пусть дана функция y = f (), определённая на отрезке [, b ], где < b. Разобьём отрезок [, b ] с помощью точек деления на n элементарных

Подробнее

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ. 1. Основные понятия

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ. 1. Основные понятия ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ 1. Основные понятия Дифференциальным уравнением относительно некоторой функции называется уравнение, связывающее эту функцию с её независимыми перемпнными и с её производными.

Подробнее

Аксёнов А.П. СИСТЕМЫ ОБЫКНОВЕННЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ. Учебное пособие

Аксёнов А.П. СИСТЕМЫ ОБЫКНОВЕННЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ. Учебное пособие Министерство общего и профессионального образования Российской Федерации Санкт-Петербургский государственный технический университет Аксёнов АП СИСТЕМЫ ОБЫКНОВЕННЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ Учебное пособие

Подробнее

2. Дифференциальные уравнения первого порядка, разрешенные относительно производной Теорема существования и единственности решения.

2. Дифференциальные уравнения первого порядка, разрешенные относительно производной Теорема существования и единственности решения. Дифференциальные уравнения первого порядка разрешенные относительно производной Теорема существования и единственности решения В общем случае дифференциальное уравнение первого порядка имеет вид F ( )

Подробнее

Лекция. Преобразование Фурье

Лекция. Преобразование Фурье С А Лавренченко wwwwrckoru Лекция Преобразование Фурье Понятие интегрального преобразования Метод интегральных преобразований один из мощных методов математической физики является мощным средством решения

Подробнее

Гл.1. Степенные ряды., постоянные, называемые коэффициентами ряда. Иногда рассматривают степенной ряд более

Гл.1. Степенные ряды., постоянные, называемые коэффициентами ряда. Иногда рассматривают степенной ряд более Гл Степенные ряды a a a Ряд вида a a a a a () называется степенным, где,,,, a, постоянные, называемые коэффициентами ряда Иногда рассматривают степенной ряд более общего вида: a a( a) a( a) a( a) (), где

Подробнее

Глава 2 УРАВНЕНИЯ С ЧАСТНЫМИ ПРОИЗВОДНЫМИ

Глава 2 УРАВНЕНИЯ С ЧАСТНЫМИ ПРОИЗВОДНЫМИ Глава 2 УРАВНЕНИЯ С ЧАСТНЫМИ ПРОИЗВОДНЫМИ Уравнение с частными производными это уравнение, содержащее частные производные. В отличие от обыкновенных дифференциальных уравнений (ОДУ), в которых неизвестная

Подробнее

2. РЕШЕНИЕ НЕЛИНЕЙНЫХ УРАВНЕНИЙ И СИСТЕМ НЕЛИНЕЙНЫХ УРАВНЕНИЙ 2.1. РЕШЕНИЕ НЕЛИНЕЙНЫХ УРАВНЕНИЙ

2. РЕШЕНИЕ НЕЛИНЕЙНЫХ УРАВНЕНИЙ И СИСТЕМ НЕЛИНЕЙНЫХ УРАВНЕНИЙ 2.1. РЕШЕНИЕ НЕЛИНЕЙНЫХ УРАВНЕНИЙ . РЕШЕНИЕ НЕЛИНЕЙНЫХ УРАВНЕНИЙ И СИСТЕМ НЕЛИНЕЙНЫХ УРАВНЕНИЙ.. РЕШЕНИЕ НЕЛИНЕЙНЫХ УРАВНЕНИЙ вида Численное решение нелинейных алгебраических или трансцендентных уравнений. заключается в нахождении значений

Подробнее

Если существует предел y этой последовательности, она и будет решением исходной задачи, так как будет законен предельный переход.

Если существует предел y этой последовательности, она и будет решением исходной задачи, так как будет законен предельный переход. Метод Ритца Выделяют два основных типа методов решения вариационных задач. К первому типу относятся методы, сводящие исходную задачу к решению дифференциальных уравнений. Эти методы очень хорошо развиты

Подробнее

9. Принцип сжимающих отображений. Теоремы о неподвижной точке.

9. Принцип сжимающих отображений. Теоремы о неподвижной точке. Лекция 6 9 Принцип сжимающих отображений Теоремы о неподвижной точке Пусть D оператор, вообще говоря, нелинейный, действующий из банахова пространства B в себя Определение Оператор D, действующий из банахова

Подробнее

Численное решение смешанной краевой задачи явным методом сеток. Методическая разработка по курсу Численные методы

Численное решение смешанной краевой задачи явным методом сеток. Методическая разработка по курсу Численные методы Численное решение смешанной краевой задачи явным методом сеток Методическая разработка по курсу Численные методы. Постановка задачи Г.К. Измайлов Решить методом сеток смешанную краевую задачу для дифференциального

Подробнее

Дифференциально-разностный метод исследования процессов диффузии материалов.

Дифференциально-разностный метод исследования процессов диффузии материалов. УДК 6780153083 Дифференциально-разностный метод исследования процессов диффузии материалов Мартышенко ВА (Военная академия радиационной, химической и бактериологической защиты и инженерных войск) Процессы

Подробнее

Линейные уравнения первого порядка, уравнение Бернулли. Уравнение в полных дифференциалах

Линейные уравнения первого порядка, уравнение Бернулли. Уравнение в полных дифференциалах ПРАКТИЧЕСКОЕ ЗАНЯТИЕ 1 Линейные уравнения первого порядка, уравнение Бернулли Уравнение в полных дифференциалах Линейным дифференциальным уравнением первого порядка называется уравнение + p( = q( Если

Подробнее

1. РЯДЫ ФУРЬЕ РЕШЕНИЕ ТИПОВЫХ ЗАДАЧ СПИСОК ЛИТЕРАТУРЫ ОГЛАВЛЕНИЕ

1. РЯДЫ ФУРЬЕ РЕШЕНИЕ ТИПОВЫХ ЗАДАЧ СПИСОК ЛИТЕРАТУРЫ ОГЛАВЛЕНИЕ ОГЛАВЛЕНИЕ РЯДЫ ФУРЬЕ 4 Понятие о периодической функции 4 Тригонометрический полином 6 3 Ортогональные системы функций 4 Тригонометрический ряд Фурье 3 5 Ряд Фурье для четных и нечетных функций 6 6 Разложение

Подробнее

Math-Net.Ru Общероссийский математический портал

Math-Net.Ru Общероссийский математический портал Math-Net.Ru Общероссийский математический портал А. М. Ильин, М. А. Меленцов, Асимптотика решений систем дифференциальных уравнений с малым параметром при больших значениях времени, Тр. ИММ УрО РАН, 25,

Подробнее

4.Метод парциальных амплитуд. 1. Вернемся к исходной постановке задачи рассеяния. Имеем уравнение Шредингера: (1.16) (1.17)!

4.Метод парциальных амплитуд. 1. Вернемся к исходной постановке задачи рассеяния. Имеем уравнение Шредингера: (1.16) (1.17)! 4.Метод парциальных амплитуд.. Вернемся к исходной постановке задачи рассеяния. Имеем уравнение Шредингера: ( +! m ( +! ( + φ ( V ( φ ( (.6 и соответствующее ему граничное условие :!! e! φ ( { e + f (

Подробнее

Глава 7. Понятие об асимптотических методах

Глава 7. Понятие об асимптотических методах Глава 7 Понятие об асимптотических методах Лекция Регулярно и сингулярно возмущенные задачи При построении математических моделей физических объектов, характеризующихся различными масштабами по пространству,

Подробнее

Глава 4. Системы линейных уравнений

Глава 4. Системы линейных уравнений Глава 4 Системы линейных уравнений Лекция 7 Общие свойства Определение Нормальной системой (НС) линейных дифференциальных уравнений называется система вида x A () x + F () () где A( ) квадратная матрица

Подробнее

Дифференциальные уравнения

Дифференциальные уравнения Глава 1 Дифференциальные уравнения 1.1 Понятие о дифференциальном уравнении 1.1.1 Задачи, приводящие к дифференциальным уравнениям. В классической физике каждой физической величине ставится в соответствие

Подробнее

ЧАСТЬ 2 КРАЕВЫЕ ЗАДАЧИ И ВАРИАЦИОННОЕ ИСЧИСЛЕНИЕ.

ЧАСТЬ 2 КРАЕВЫЕ ЗАДАЧИ И ВАРИАЦИОННОЕ ИСЧИСЛЕНИЕ. 8 Глава VI ЧАСТЬ КРАЕВЫЕ ЗАДАЧИ И ВАРИАЦИОННОЕ ИСЧИСЛЕНИЕ. ГЛАВА VI Краевые задачи для обыкновенны дифференциальных уравнений 9. Постановка краевых задач для обыкновенных дифференциальных уравнений В отличие

Подробнее

2. Теорема существования и единственности решения скалярного уравнения. , т.е. (, ) f xy M в D.

2. Теорема существования и единственности решения скалярного уравнения. , т.е. (, ) f xy M в D. Лекция 3 Теорема существования и единственности решения скалярного уравнения Постановка задачи Основной результат Рассмотрим задачу Коши d f ( ) d =,, () = Функция f (, ) задана в области G плоскости (,

Подробнее

ГЛАВА 1. УСТОЙЧИВОСТЬ ЛИНЕЙНЫХ СИСТЕМ. 1. Основные понятия теории устойчивости

ГЛАВА 1. УСТОЙЧИВОСТЬ ЛИНЕЙНЫХ СИСТЕМ. 1. Основные понятия теории устойчивости ГЛАВА УСТОЙЧИВОСТЬ ЛИНЕЙНЫХ СИСТЕМ В этой главе исследуется устойчивость самого простого класса дифференциальных систем линейных систем В частности, устанавливается, что для линейных систем с постоянными

Подробнее

Под численным интегрированием понимают набор численных методов для нахождения значения определенного интеграла. При решении инженернотехнических

Под численным интегрированием понимают набор численных методов для нахождения значения определенного интеграла. При решении инженернотехнических Под численным интегрированием понимают набор численных методов для нахождения значения определенного интеграла. При решении инженернотехнических задач порой бывает необходимо вычислить среднее значение

Подробнее

ИНТЕГРИРОВАНИЕ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ С ПОМОЩЬЮ СТЕПЕННЫХ РЯДОВ

ИНТЕГРИРОВАНИЕ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ С ПОМОЩЬЮ СТЕПЕННЫХ РЯДОВ С П ПРЕОБРАЖЕНСКИЙ, СР ТИХОМИРОВ ИНТЕГРИРОВАНИЕ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ С ПОМОЩЬЮ СТЕПЕННЫХ РЯДОВ 987 ОГЛАВЛЕНИЕ Предисловие Формулировка задания 3 Варианты задания 3 Пример выполнения задания и комментарии

Подробнее

Решение типового варианта ИДЗ «Дифференциальные уравнения». Найдём производную данной функции.

Решение типового варианта ИДЗ «Дифференциальные уравнения». Найдём производную данной функции. Решение типового варианта ИДЗ «Дифференциальные уравнения» Задание Убедиться, что функция = (ln + C) удовлетворяет уравнению = Найдём производную данной функции = ln + C + = ln + C + Подставим данное выражение

Подробнее

Московский государственный технический университет им. Н. Э. Баумана.

Московский государственный технический университет им. Н. Э. Баумана. Московский государственный технический университет им. Н. Э. Баумана. Курсовая работа по дисциплине: «ЧИСЛЕННЫЕ МЕТОДЫ» по теме: «Численные методы регуляризации для решения интегрального уравнения Фредгольма

Подробнее

СИСТЕМЫ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ (СДУ) Основные понятия. Нормальные системы

СИСТЕМЫ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ (СДУ) Основные понятия. Нормальные системы СИСТЕМЫ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ (СДУ Основные понятия Нормальные Системой называется совокупность в каждое из которых входят независимая переменная искомые функции и их производные Всегда предполагается

Подробнее

1. Краевая задача для линейного дифференциального уравнения второго порядка. (2)

1. Краевая задача для линейного дифференциального уравнения второго порядка. (2) Глава 4 Краевые задачи Лекция 8 Краевыми задачами для ОДУ называются задачи в которых дополнительные условия ставятся в нескольких точках Далее мы рассмотрим двухточечные краевые задачи для линейных ОДУ

Подробнее

МИНИСТЕРСТВО НАУКИ и ОБРАЗОВАНИЯ РФ МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ОТКРЫТЫЙ УНИВЕРСИТЕТ им. В.С. Черномырдина КОЛОМЕНСКИЙ ИНСТИТУТ

МИНИСТЕРСТВО НАУКИ и ОБРАЗОВАНИЯ РФ МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ОТКРЫТЫЙ УНИВЕРСИТЕТ им. В.С. Черномырдина КОЛОМЕНСКИЙ ИНСТИТУТ МИНИСТЕРСТВО НАУКИ и ОБРАЗОВАНИЯ РФ МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ОТКРЫТЫЙ УНИВЕРСИТЕТ им ВС Черномырдина КОЛОМЕНСКИЙ ИНСТИТУТ КАФЕДРА ВЫСШЕЙ МАТЕМАТИКИ и ФИЗИКИ ЕФ КАЛИНИЧЕНКО ЛЕКЦИИ ПО ВЫЧИСЛЕНИЮ ОПРЕДЕЛЕННЫХ

Подробнее

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ГРАЖДАНСКОЙ АВИАЦИИ. В.М. Любимов, Е.А. Жукова, В.А. Ухова, Ю.А. Шуринов М А Т Е М А Т И К А

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ГРАЖДАНСКОЙ АВИАЦИИ. В.М. Любимов, Е.А. Жукова, В.А. Ухова, Ю.А. Шуринов М А Т Е М А Т И К А МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ГРАЖДАНСКОЙ АВИАЦИИ В.М. Любимов, Е.А. Жукова, В.А. Ухова, Ю.А. Шуринов М А Т Е М А Т И К А Р Я Д Ы ПОСОБИЕ по изучению дисциплины и контрольные задания

Подробнее

РЕШЕНИЕ ОБЫКНОВЕННЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ

РЕШЕНИЕ ОБЫКНОВЕННЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ ФГБОУ ВПО «Саратовский государственный университет им НГ Чернышевского» РЕШЕНИЕ ОБЫКНОВЕННЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ ОВ Сорокина Учебное пособие для студентов нематематических направлений подготовки

Подробнее

Олемской И.В. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПО ВЫЧИСЛИТЕЛЬНОМУ ПРАКТИКУМУ. (ВЫЧИСЛЕНИЕ ОПРЕДЕЛЕННОГО ИНТЕГРАЛА)

Олемской И.В. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПО ВЫЧИСЛИТЕЛЬНОМУ ПРАКТИКУМУ. (ВЫЧИСЛЕНИЕ ОПРЕДЕЛЕННОГО ИНТЕГРАЛА) Олемской И.В. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПО ВЫЧИСЛИТЕЛЬНОМУ ПРАКТИКУМУ. (ВЫЧИСЛЕНИЕ ОПРЕДЕЛЕННОГО ИНТЕГРАЛА) Постановка задачи. Рассматривается задача о вычислении однократного интеграла J(F ) = F (x) dx. ()

Подробнее

2. РЕШЕНИЕ НЕЛИНЕЙНЫХ УРАВНЕНИЙ И СИСТЕМ НЕЛИНЕЙНЫХ УРАВНЕНИЙ 2.1. РЕШЕНИЕ НЕЛИНЕЙНЫХ УРАВНЕНИЙ

2. РЕШЕНИЕ НЕЛИНЕЙНЫХ УРАВНЕНИЙ И СИСТЕМ НЕЛИНЕЙНЫХ УРАВНЕНИЙ 2.1. РЕШЕНИЕ НЕЛИНЕЙНЫХ УРАВНЕНИЙ РЕШЕНИЕ НЕЛИНЕЙНЫХ УРАВНЕНИЙ И СИСТЕМ НЕЛИНЕЙНЫХ УРАВНЕНИЙ РЕШЕНИЕ НЕЛИНЕЙНЫХ УРАВНЕНИЙ вида Численное решение нелинейных алгебраических или трансцендентных) уравнений f = ) заключается в нахождении значений,

Подробнее

Уравнения с частными производными первого порядка и классификация линейных уравнений второго порядка

Уравнения с частными производными первого порядка и классификация линейных уравнений второго порядка Министерство образования Российской Федерации МАТИ - РОССИЙСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ им К Э ЦИОЛКОВСКОГО Кафедра Высшая математика В В Горбацевич К Ю Осипенко Уравнения с частными

Подробнее

Часть 4 МЕТОД РАЗДЕЛЕНИЯ ПЕРЕМЕННЫХ 1. Общие идеи метода

Часть 4 МЕТОД РАЗДЕЛЕНИЯ ПЕРЕМЕННЫХ 1. Общие идеи метода Часть 4 МЕТОД РАЗДЕЛЕНИЯ ПЕРЕМЕННЫХ 1. Общие идеи метода Метод разделения переменных применяется для решения линейных однородных уравнений с линейными однородными граничными условиями вида α 0, β0, 0,

Подробнее

ВЕСТНИК ТОМСКОГО ГОСУДАРСТВЕННОГО УНИВЕРСИТЕТА 2007 Управление, вычислительная техника и информатика 1

ВЕСТНИК ТОМСКОГО ГОСУДАРСТВЕННОГО УНИВЕРСИТЕТА 2007 Управление, вычислительная техника и информатика 1 ВЕСТНИК ТОМСКОГО ГОСУДАРСТВЕННОГО УНИВЕРСИТЕТА 007 Управление, вычислительная техника и информатика 1 УДК 519.865 В.В. Поддубный, О.В. Романович МОДИФИКАЦИЯ МЕТОДА ЭЙЛЕРА С УРАВНИВАНИЕМ ДЛЯ РЕШЕНИЯ ДИФФЕРЕНЦИАЛЬНЫХ

Подробнее

ЧИСЛЕННОЕ ИНТЕГРИРОВАНИЕ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ ПЕРВОГО ПОРЯДКА

ЧИСЛЕННОЕ ИНТЕГРИРОВАНИЕ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ ПЕРВОГО ПОРЯДКА 9.5.4. ЧИСЛЕННОЕ ИНТЕГРИРОВАНИЕ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ ПЕРВОГО ПОРЯДКА Вариант на отрезке [ ; ] с шагом методом Эйлера модифицированным методом Эйлера и методом Рунге-Кутта. Найти точное решение и

Подробнее

Метод разделения переменных (метод Фурье)

Метод разделения переменных (метод Фурье) Метод разделения переменных (метод Фурье) Общие принципы метода разделения переменных Для простейшего уравнения с частными производными разделение переменных это поиски решений вида только от t. u (x,t

Подробнее

Уравнения в частных производных

Уравнения в частных производных МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Государственное образовательное учреждение высшего профессионального образования «НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Подробнее

ЧИСЛЕННОЕ РЕШЕНИЕ ОБЫКНОВЕННЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ И ИХ СИСТЕМ. 1. Численные методы решения задачи Коши

ЧИСЛЕННОЕ РЕШЕНИЕ ОБЫКНОВЕННЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ И ИХ СИСТЕМ. 1. Численные методы решения задачи Коши ЧИСЛЕННОЕ РЕШЕНИЕ ОБЫКНОВЕННЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ И ИХ СИСТЕМ В этой главе рассматриваются основные численные методы решения задачи Коши для обыкновенных дифференциальных уравнений (ОДУ) первого

Подробнее

7. Преобразование Фурье.

7. Преобразование Фурье. 7. Преобразование Фурье. Преобразование Фурье занимает важнейшее место в теории распределений, теории дифференциальных уравнений и математике вообще. Хорошо известно, что преобразование Фурье интегрируемой

Подробнее

Дифференциальные уравнения

Дифференциальные уравнения ~ ~ Дифференциальные уравнения Общие сведения о дифференциальных уравнений Задача на составление дифференциальных уравнений Определение: дифференциальным уравнением называется такое уравнение, которое

Подробнее

Обыкновенные дифференциальные уравнения.

Обыкновенные дифференциальные уравнения. Обыкновенные дифференциальные уравнения Решение различных геометрических физических инженерных и финансовых задач часто приводят к уравнениям которые связывают независимые переменные характеризующие ту

Подробнее

ГЛАВА 4. Системы обыкновенных дифференциальных уравнений 1. ОБЩИЕ ПОНЯТИЯ И ОПРЕДЕЛЕНИЯ. 1. Основные определения

ГЛАВА 4. Системы обыкновенных дифференциальных уравнений 1. ОБЩИЕ ПОНЯТИЯ И ОПРЕДЕЛЕНИЯ. 1. Основные определения ГЛАВА 4 Системы обыкновенных дифференциальных уравнений ОБЩИЕ ПОНЯТИЯ И ОПРЕДЕЛЕНИЯ Основные определения Для описания некоторых процессов и явлений нередко требуется несколько функций Отыскание этих функций

Подробнее

Лекция 14. Дифференциальные уравнения первого порядка

Лекция 14. Дифференциальные уравнения первого порядка Лекция 4 Дифференциальные уравнения первого порядка Общие понятия Дифференциальными уравнениями называются уравнения, в которых неизвестными являются функции одной или нескольких переменных, и в уравнения

Подробнее

ЛИНЕЙНАЯ ОПТИМАЛЬНАЯ ФИЛЬТРАЦИЯ ПРИ НЕ БЕЛЫХ ШУМАХ.

ЛИНЕЙНАЯ ОПТИМАЛЬНАЯ ФИЛЬТРАЦИЯ ПРИ НЕ БЕЛЫХ ШУМАХ. УДК 63966 ЛИНЕЙНАЯ ОПТИМАЛЬНАЯ ФИЛЬТРАЦИЯ ПРИ НЕ БЕЛЫХ ШУМАХ Г Ф Савинов В работе получен алгоритм оптимального фильтра для случая когда входные воздействия и шумы представляют собой случайные гауссовы

Подробнее

5. ЛИНЕЙНЫЕ ОДНОРОДНЫЕ УРАВНЕНИЯ С ПОСТОЯННЫМИ КОЭФФИЦИЕНТАМИ

5. ЛИНЕЙНЫЕ ОДНОРОДНЫЕ УРАВНЕНИЯ С ПОСТОЯННЫМИ КОЭФФИЦИЕНТАМИ 5 ЛИНЕЙНЫЕ ОДНОРОДНЫЕ УРАВНЕНИЯ С ПОСТОЯННЫМИ КОЭФФИЦИЕНТАМИ Рассмотрим линейное уравнение ( ) ( ) ( ) L[ ] p p p p f () () коэффициенты которого p p p постоянные вещественные числа а правая часть f ()

Подробнее

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование»

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ Московский государственный технический университет имени Н.Э. Баумана Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» À.Í. Êàíàòíèêîâ,

Подробнее

Линейные дифференциальные уравнения второго порядка с постоянными коэффициентами

Линейные дифференциальные уравнения второго порядка с постоянными коэффициентами МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное автономное образовательное учреждение высшего образования Национальный исследовательский Нижегородский государственный

Подробнее

Корень Итераций Корень Итераций. -- вывод о качестве методов после их сравнения по количеству выполненных итераций для достижения заданной точности.

Корень Итераций Корень Итераций. -- вывод о качестве методов после их сравнения по количеству выполненных итераций для достижения заданной точности. Methods.doc Методы приближенных вычислений Стр.1 из 6 Общее условие задачи: Двумя заданными численными методами вычислить приближенное значение корня 1 функционального уравнения вида f()=0 для N значений

Подробнее

Предварительные сведения теории разностных схем

Предварительные сведения теории разностных схем Предварительные сведения теории разностных схем 1 Формулы суммирования по частям и разностные формулы Грина для сеточных функций Получим ряд соотношений, которые в дальнейшем будем использовать при исследовании

Подробнее

ТЕМА 2. ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИЙ ДВУХ И ТРЕХ ПЕРЕМЕННЫХ

ТЕМА 2. ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИЙ ДВУХ И ТРЕХ ПЕРЕМЕННЫХ МЕТОДИЧЕСКИЕ УКАЗАНИЯ К РАСЧЕТНЫМ ЗАДАНИЯМ ПОКУРСУ ВЫСШЕЙ МАТЕМАТИКИ «ИНТЕГРАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИИ ОДНОГО ПЕРЕМЕННОГО ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИЙ ДВУХ И ТРЕХ ПЕРЕМЕННЫХ» ЧАСТЬ II ТЕМА ДИФФЕРЕНЦИАЛЬНОЕ

Подробнее

Глава 4. Обыкновенные дифференциальные уравнения

Глава 4. Обыкновенные дифференциальные уравнения Глава 4. Обыкновенные дифференциальные уравнения 1. Дифференциальные уравнения первого порядка Дифференциальными уравнениями называются уравнения, в которых неизвестными являются функции одной или нескольких

Подробнее

Дифференциальные уравнения

Дифференциальные уравнения Московский государственный технический университет им Н Э Баумана Соболев СК Дифференциальные уравнения Методические указания к решению задач Москва МГТУ им Баумана 008 СК Соболев Дифференциальные уравнения

Подробнее

Глава 8. Элементы квантовой механики

Глава 8. Элементы квантовой механики Глава 8 Элементы квантовой механики Задачи атомной физики решаются методами квантовой теории которая принципиально отличается от классической механики Решение задачи о движении тела макроскопических размеров

Подробнее

3.4. Потенциальные барьеры.

3.4. Потенциальные барьеры. 3.. Потенциальные барьеры. 3... Понятие потенциального барьера Одномерный потенциальный барьер определяется зависимостью потенциальной энергии от координаты. Если на каком-то участке координаты потенциальная

Подробнее

Матричный метод разложения вектора фазовых координат линейной механической системы по вариациям ее параметров /453286

Матричный метод разложения вектора фазовых координат линейной механической системы по вариациям ее параметров /453286 Матричный метод разложения вектора фазовых координат линейной механической системы по вариациям ее параметров 77-482/453286 # 9, сентябрь 22 Беляев А. В., Тушев О. Н. УДК 57.947.44 Россия, МГТУ им. Н.Э.

Подробнее

10. Векторный и скалярный потенциалы

10. Векторный и скалярный потенциалы Векторный и скалярный потенциалы Уравнения Максвелла это, в общем случае, сложные интегральнодифференциальные уравнения, поэтому непосредственно их решать относительно трудно Были введены две вспомогательные

Подробнее

МАТЕМАТИКА ЕГЭ Задания С5. Аналитические методы ЗАДАЧИ С ПАРАМЕТРАМИ. 27. Неравенства (метод областей)

МАТЕМАТИКА ЕГЭ Задания С5. Аналитические методы ЗАДАЧИ С ПАРАМЕТРАМИ. 27. Неравенства (метод областей) МАТЕМАТИКА ЕГЭ Задания С5 7 Неравенства (метод областей) Указания и решения Справочный материал Источники Корянов А Г г Брянск Замечания и пожелания направляйте по адресу: korynov@milru ЗАДАЧИ С ПАРАМЕТРАМИ

Подробнее

РЯДЫ. Методические указания

РЯДЫ. Методические указания Металлургический факультет Кафедра высшей математики РЯДЫ Методические указания Новокузнецк 5 Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования

Подробнее

28. Устойчивость решений систем обыкновенных дифференциальных уравнений. Прямой метод Ляпунова.

28. Устойчивость решений систем обыкновенных дифференциальных уравнений. Прямой метод Ляпунова. 8 Устойчивость решений систем обыкновенных дифференциальных уравнений Прямой метод Ляпунова ВДНогин 1 о Введение Для того чтобы можно было поставить задачу об устойчивости, необходимо располагать объектом,

Подробнее

( ) ( ) 1 x (*) 2. Проинтегрировать обе части равенства, то есть: 3. Найти полученные интегралы.

( ) ( ) 1 x (*) 2. Проинтегрировать обе части равенства, то есть: 3. Найти полученные интегралы. Памятка для практических занятий по теме «Обыкновенные дифференциальные уравнения» Решение различных задач методом математического моделирования сводится к отысканию неизвестной функции из уравнения, содержащего

Подробнее

Глава 3. Линейные дифференциальные уравнения n-го порядка

Глава 3. Линейные дифференциальные уравнения n-го порядка Глава 3 Линейные дифференциальные уравнения -го порядка Лекция 6 В этой главе рассматриваются дифференциальные уравнения вида ( ) Ly y a y a y f + + + = () при условии что все функции a = а также f ( )

Подробнее

~ 1 ~ ФКП. Производная функции комплексного переменного (ФКП), условия Коши - Римана, понятие регулярности ФКП. Изображение и вид комплексного числа.

~ 1 ~ ФКП. Производная функции комплексного переменного (ФКП), условия Коши - Римана, понятие регулярности ФКП. Изображение и вид комплексного числа. ~ ~ ФКП Производная функции комплексного переменного ФКП условия Коши - Римана понятие регулярности ФКП Изображение и вид комплексного числа Вид ФКП: где действительная функция двух переменных действительная

Подробнее

Способы учета граничных условий I рода при решении задач методом конечных элементов

Способы учета граничных условий I рода при решении задач методом конечных элементов УДК 519.624.1 Способы учета граничных условий I рода при решении задач методом конечных элементов Введение Корчагова В.Н., студент Россия, 105005, г. Москва, МГТУ им. Н.Э. Баумана кафедра «Прикладная математика»

Подробнее

1 x y. y y. x y ТЕМА 7 «ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ПЕРВОГО ПОРЯДКА»

1 x y. y y. x y ТЕМА 7 «ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ПЕРВОГО ПОРЯДКА» ТЕМА 7 «ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ПЕРВОГО ПОРЯДКА» Задача 1. Найти общее решение дифференциального уравнения с разделяющимися переменными: 1. d d d d 1 1 0.. d d d. d d d 5. 6d 6d d d 6. d d 0 7. 8. (

Подробнее

PDF created with FinePrint pdffactory trial version

PDF created with FinePrint pdffactory trial version Лекция 7 Комплексные числа их изображение на плоскости Алгебраические операции над комплексными числами Комплексное сопряжение Модуль и аргумент комплексного числа Алгебраическая и тригонометрическая формы

Подробнее

Аттестационное тестирование в сфере профессионального образования

Аттестационное тестирование в сфере профессионального образования Стр. 1 из 17 26.10.2012 11:39 Аттестационное тестирование в сфере профессионального образования Специальность: 010300.62 Математика. Компьютерные науки Дисциплина: Дифференциальные уравнения Время выполнения

Подробнее

Элементы гармонического анализа

Элементы гармонического анализа Федеральное агентство железнодорожного транспорта Уральский государственный университет путей сообщения Кафедра «Высшая и прикладная математика» Н. П. Чуев Элементы гармонического анализа Методические

Подробнее

Лекция3. 3. Метод Ньютона (касательных).

Лекция3. 3. Метод Ньютона (касательных). Лекция3. 3. Метод Ньютона (касательных. Зададим некоторое начальное приближение [,b] и линеаризуем функцию f( в окрестности с помощью отрезка ряда Тейлора f( = f( + f '( ( -. (5 Вместо уравнения ( решим

Подробнее

значений x и y, при которых определена функция z = f ( x,

значений x и y, при которых определена функция z = f ( x, I Определение функции нескольких переменных Область определения При изучении многих явлений приходится иметь дело с функциями двух и более независимых переменных Например температура тела в данный момент

Подробнее

4. Численные методы решения обыкновенных дифференциальных уравнений

4. Численные методы решения обыкновенных дифференциальных уравнений . Численные методы решения обыкновенных дифференциальных уравнений.. Решение задачи Коши... Задача Коши для одного обыкновенного дифференциального уравнения. Рассматривается задача Коши для одного дифференциального

Подробнее

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ НОВОСИБИРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ СПЕЦИАЛИЗИРОВАННЫЙ УЧЕБНО-НАУЧНЫЙ ЦЕНТР

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ НОВОСИБИРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ СПЕЦИАЛИЗИРОВАННЫЙ УЧЕБНО-НАУЧНЫЙ ЦЕНТР МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ НОВОСИБИРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ СПЕЦИАЛИЗИРОВАННЫЙ УЧЕБНО-НАУЧНЫЙ ЦЕНТР Математика 0 класс ПРЕДЕЛЫ ПОСЛЕДОВАТЕЛЬНОСТЕЙ Новосибирск Интуитивно

Подробнее

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ НАЦИОНАЛЬНЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ХАРЬКОВСКИЙ ПОЛИТЕХНИЧЕСКИЙ ИНСТИТУТ»

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ НАЦИОНАЛЬНЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ХАРЬКОВСКИЙ ПОЛИТЕХНИЧЕСКИЙ ИНСТИТУТ» МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ НАЦИОНАЛЬНЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ХАРЬКОВСКИЙ ПОЛИТЕХНИЧЕСКИЙ ИНСТИТУТ» Методические указания к лабораторной работе «Вычисления корней трансцендентных уравнений»

Подробнее

4. ЧИСЛЕННЫЕ МЕТОДЫ РЕШЕНИЯ ОБЫКНОВЕННЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ

4. ЧИСЛЕННЫЕ МЕТОДЫ РЕШЕНИЯ ОБЫКНОВЕННЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ . ЧИСЛЕННЫЕ МЕТОДЫ РЕШЕНИЯ ОБЫКНОВЕННЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ.. ЧИСЛЕННЫЕ МЕТОДЫ РЕШЕНИЯ ЗАДАЧИ КОШИ... Задача Коши для одного обыкновенного дифференциального уравнения. Рассматривается задача Коши

Подробнее

Рассмотрим систему двух автономных обыкновенных ди ф- ференциальных уравнений общего вида: dx dt dy dt

Рассмотрим систему двух автономных обыкновенных ди ф- ференциальных уравнений общего вида: dx dt dy dt Семинар 4 Система двух обыкновенных дифференциальных уравнений (ОДУ). Фазовая плоскость. Фазовый портрет. Кинетические кривые. Особые точки. Устойчивость стационарного состояния. Линеаризация системы в

Подробнее

Комплексные числа. Операции над комплексными числами. Комплексная плоскость.

Комплексные числа. Операции над комплексными числами. Комплексная плоскость. Методическая разработка Решение задач по ТФКП Комплексные числа Операции над комплексными числами Комплексная плоскость Комплексное число можно представить в алгебраической и тригонометрической экспоненциальной

Подробнее

Раздел 1. ЛИНЕЙНЫЕ КРАЕВЫЕ ЗАДАЧИ. Тема 1. Существование и единственность решения краевой задачи. Матричные функции Грина.

Раздел 1. ЛИНЕЙНЫЕ КРАЕВЫЕ ЗАДАЧИ. Тема 1. Существование и единственность решения краевой задачи. Матричные функции Грина. 6 Раздел ЛИНЕЙНЫЕ КРАЕВЫЕ ЗАДАЧИ Тема Существование и единственность решения краевой задачи Матричные функции Грина Рассмотрим на отрезке по линейную краевую задачу для системы из обыкновенных дифференциальных

Подробнее