Контрольная работа выполнена на сайте МатБюро: Специально для библиотеки материалов MathProfi.com. Вариант 15

Save this PDF as:
 WORD  PNG  TXT  JPG

Размер: px
Начинать показ со страницы:

Download "Контрольная работа выполнена на сайте МатБюро: Специально для библиотеки материалов MathProfi.com. Вариант 15"

Транскрипт

1 Специально для библиотеки материалов MathProf.com Российская академия народного хозяйства и государственной службы при Президенте РФ Международный институт государственной службы и управления Задание 2 по теории вероятностей Вариант 15 Задача 1. Закон распределения двумерной дискретной величины ( X, Y ) задан таблицей: Найти условные законы распределения случайной величины Y при условии X = 0 и случайной величины X при условии Y = 0. Решение. Найдем условный закон распределения случайной величины Y при условии X = 0. P(, y ) Вероятности вычислим по формуле: P( y ) =. P( ) Найдем P ( X = 0) , 2 + 0,16 + 0,1 5. P( X Y = 0) 0, 04 P( Y = 0 X = 0) = = 08, P( X = 0) 0,5 P( X Y = 1) 0, 2 P( Y = 1 X = 0) = = 4, P( X = 0) 0,5 P( X Y = 2) 0,16 P( Y = 2 X = 0) = = 32, P( X = 0) 0,5 P( X Y = 3) 0,1 P( Y = 3 X = 0) = = 2. P( X = 0) 0, 5 y = Сумма 0,08 0,400 0,320 0,200 1 Найдем условный закон распределения случайной величины X при условии Y = 0. 1

2 Специально для библиотеки материалов MathProf.com P(, y ) Вероятности вычислим по формуле: P( y ) =. P( y ) Найдем P ( Y = 0) , , P( X = 1, Y = 0) 0, 02 P( X = 1 Y = 0) = = 0,182, P( Y = 0) 0,11 P( X Y = 0) 0, 04 P( X = 0 Y = 0) = = 0,364, P( Y = 0) 0,11 P( X Y = 0) 0, 05 P( X = 1 Y = 0) = = 0, 455. P( Y = 0) 0,11 y = Сумма 0,182 0,364 0,455 1 Задача 2. Найти ковариацию и коэффициент корреляции случайных величин X и Y. Решение. Найдем одномерные законы распределения составляющих X и Y, складывая вероятности по столбцам и строкам: X \ Y ,02 0,03 0,09 0,01 0,15 0 0,04 0,2 0,16 0,1 0,5 1 0,05 0,1 0,15 0,05 0,35 y 0,11 0,33 0,4 0, Сумма 0,15 0,5 0,35 1 y Сумма 0,11 0,33 0,4 0,16 1 Вычислим M ( X ), M ( Y ), D( X ), D ( Y ), ( X ), ( Y ) M ( X ) = 2. D X M X ( ) = ( ( )) 5 0,2 46. σ σ. 2

3 Специально для библиотеки материалов MathProf.com σ ( X ) Расчеты в таблице: Сумма 0,15 0,5 0,35 1-0,15 0 0,35 0,2 2 0,15 0 0,35 0,5 M ( Y) = y 61 D Y y M Y ( ) = ( ( )) = 3,37 1, σ ( Y ) Расчеты в таблице: y Сумма 0,11 0,33 0,4 0,16 1 y 0 0,33 0,8 0,48 1,61 2 y 0 0,33 1,6 1,44 3,37 Вычислим M ( XY ) = y 31. Расчеты в таблице ниже: X \ Y y y -1 0,02 0,03 0,09 0,01 0,24-0,24 0 0,04 0,2 0,16 0,1 0, ,05 0,1 0,15 0,05 0,55 0,55 Сумма 0,31 Тогда ковариация K = M ( XY ) M ( X ) M ( Y ) 31 0, 2 1, 61 = 0, 012 XY Коэффициент корреляции: r XY K XY 0,012 = = 0,02. σ ( X ) σ ( Y ) 0,678 0,882 Задача 3. Стоматологическая клиника распространяет рекламные листовки. Прежний опыт показывает, что на пятьдесят распространенных листовок приходится одно обращение в клинику. Найти вероятность того, что при распространении двух тысяч листовок число обращений будет равно 54. Решение. Имеем схему Бернулли с параметрами n = количество распространенных листовок, 1 = 02 - вероятность обращения в клинику после получения листовки, 50 q =

4 Специально для библиотеки материалов MathProf.com Так как n достаточно велико, будем использовать приближенную формулу локальную 1 формулу Лапласа: k n P n ( k) ϕ, где k = 54, значения функции ϕ nq ( ) берутся nq из таблицы. Подставляем: , 02 P2000 (54) ϕ 16 ϕ(2, 236) = ,02 0, ,02 0, ,033 0,005. Ответ: 0,005. Задача 4. Найти вероятность того, что в условиях задачи 3 число обращений в клинику будет находиться между 34 и 56. Решение. Имеем схему Бернулли с параметрами n = количество распространенных листовок, 1 = 02 - вероятность обращения в клинику после получения листовки, 50 q = Так как n достаточно велико, будем использовать приближенную формулу интегральную теорему Лапласа: m2 n m1 n P n ( m1, m2) Φ Φ, где m 1= 34, nq nq 1 z m 2 = 56, 2 / 2 Φ ( ) = e dz функция Лапласа (значения берутся из таблиц). 2π 0 Подставляем: , ,02 P2000 (34;56) Φ Φ = Φ(2,56) Φ( 0,96) = ,02 0, ,02 0,98 = Φ (2,56) + Φ (0,96) ,331 0,8257. Ответ: 0,8257. Задача 5. Найти стационарные вероятности для марковского процесса, заданного графом переходов состояний и значениями интенсивностей перехода: 4

5 Специально для библиотеки материалов MathProf.com λ = 1; λ = 2; λ = 3; µ = 1; µ = 1; µ = Решение. Пусть ( t ) - вероятность того, что процесс (система) находится в состоянии S (равна ) в момент времени t, 1, 2, 3. Составим систему уравнений Колмогорова по следующим правилам: слева от знака равенства стоит производная от вероятности ( t ) -, справа в уравнении стоит dt сумма произведений вероятностей всех переходов, входящих (входящие стрелки) в состояние S системы, на интенсивности состояний, из которых эти потоки исходят, минус вероятность ( t ), рассматриваемого состояния S, умноженная на суммарную интенсивность переходов, выводящих (выходящие стрелки) из данного состояния S систему. Для решения подобной системы необходимо добавить еще одно уравнение, определяющее нормировочное условие, поскольку сумма вероятностей всех состояний равна единице: 3 = 0 = 1 Составляем остальные уравнения по графу переходов. Получаем систему: d0 = , dt d1 = 1 0 ( ) 1, dt d2 = 1 3 ( ) 2, dt d3 = dt Итак, система для определения вероятностей различных состояний имеет вид: 5

6 Специально для библиотеки материалов MathProf.com d0 = , dt d1 = 0 3 1, dt d2 = 3 4 2, dt d3 = dt Так как стационарные (предельные) вероятности постоянные, заменяем производные нулями (производная от константы нуль) и приходим к системе алгебраических уравнений: = 0. Решим эту систему уравнений = 3 1, 3 = 4 2, = = 3 1, 3 = 4 2, = = 3 1, 3 = / = 3 1, 3 = 4 1/ 7. 6

7 Специально для библиотеки материалов MathProf.com 0 = 3/14, 1 = 1/14, 2 3 = 4 / 7. Стационарные вероятности найдены: 0 = 3/14, 1 = 1/14, 2 3 = 4 / 7. Задача 6. Найти стационарное математическое ожидание для марковского процесса из задачи 5. Решение. Из предыдущей задачи нашли стационарное распределение вероятностей: 0 = 3/14, 1 = 1/14, 2 3 = 4 / 7. Тогда стационарное математическое ожидание: M = = = 2,


4. Уравнения Колмогорова. Предельные вероятности состояния.

4. Уравнения Колмогорова. Предельные вероятности состояния. Лекция Элементы теории систем массового обслуживания 11. Элементы теории систем массового обслуживания Вопросы темы: 1. Основные понятия. Классификация СМО. 2. Понятие марковского случайного процесса.

Подробнее

3. МАРКОВСКИЕ СЛУЧАЙНЫЕ ПРОЦЕССЫ (УРАВНЕНИЕ КОЛМОГОРОВА)

3. МАРКОВСКИЕ СЛУЧАЙНЫЕ ПРОЦЕССЫ (УРАВНЕНИЕ КОЛМОГОРОВА) 3. МАРКОВСКИЕ СЛУЧАЙНЫЕ ПРОЦЕССЫ (УРАВНЕНИЕ КОЛМОГОРОВА) Случайный процесс, протекающий в системе, называется марковским, если для любого момента времени t0 вероятностные характеристики процесса в будущем

Подробнее

Моделирование систем с использованием Марковских случайных процессов

Моделирование систем с использованием Марковских случайных процессов Моделирование систем с использованием Марковских случайных процессов Основные понятия Марковских процессов Функция X(t) называется случайной, если ее значение при любом аргументе t является случайной величиной.

Подробнее

Моделирование систем с использованием Марковских случайных процессов

Моделирование систем с использованием Марковских случайных процессов Лекция Моделирование систем с использованием Марковских случайных процессов Основные понятия Марковских процессов Функция X(t) называется случайной, если ее значение при любом аргументе t является случайной

Подробнее

Лекция 6 S 0 S 1. Рисунок 24

Лекция 6 S 0 S 1. Рисунок 24 Лекция 6 61 Марковские процессы в расчетах надежности нерезервированных восстанавливаемых объектов Основными особенностями восстанавливаемых систем по сравнению с невосстанавливаемыми являются большое

Подробнее

Лекция 10 ЧИСЛОВЫЕ ХАРАКТЕРИСТИКИ СИСТЕМЫ ДВУХ СЛУЧАЙНЫХ ВЕЛИЧИН.

Лекция 10 ЧИСЛОВЫЕ ХАРАКТЕРИСТИКИ СИСТЕМЫ ДВУХ СЛУЧАЙНЫХ ВЕЛИЧИН. Лекция ЧИСЛОВЫЕ ХАРАКТЕРИСТИКИ СИСТЕМЫ ДВУХ СЛУЧАЙНЫХ ВЕЛИЧИН -МЕРНЫЙ СЛУЧАЙНЫЙ ВЕКТОР ЦЕЛЬ ЛЕКЦИИ: определить числовые характеристики системы двух случайных величин: начальные и центральные моменты ковариацию

Подробнее

Практическая работа по теории вероятностей II. Вариант 12

Практическая работа по теории вероятностей II. Вариант 12 Практическая работа по теории вероятностей II Вариант 1 Задание 1 1 Производится два независимых выстрела по мишени с вероятностью попадания при каждом выстреле равной р Для случайной величины ξ, представляющей

Подробнее

Эргодические процессы Условие стационарности и алгебраическая система уравнений Пример... 16

Эргодические процессы Условие стационарности и алгебраическая система уравнений Пример... 16 Оглавление Глава Случайные процессы Простая однородная цепь Маркова Уравнение Маркова Простая однородная цепь Маркова 4 Свойства матрицы перехода 5 Численный эксперимент: стабилизация распределения вероятностей

Подробнее

ТЕОРИЯ ВЕРОЯТНОСТЕЙ И МАТЕМАТИЧЕСКАЯ СТАТИСТИКА

ТЕОРИЯ ВЕРОЯТНОСТЕЙ И МАТЕМАТИЧЕСКАЯ СТАТИСТИКА ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ БЮДЖЕТНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ ФИНАНСОВЫЙ УНИВЕРСИТЕТ ПРИ ПРАВИТЕЛЬСТВЕ РОССИЙСКОЙ ФЕДЕРАЦИИ (Пензенский филиал) Кафедра «Менеджмент, информатика и

Подробнее

( A) КОНТРОЛЬНАЯ РАБОТА 1. Теория вероятностей

( A) КОНТРОЛЬНАЯ РАБОТА 1. Теория вероятностей КОНТРОЛЬНАЯ РАБОТА Теория вероятностей Задача В ящике находится 5 кондиционных и бракованных однотипных деталей Какова вероятность того, что среди трех наудачу выбранных деталей окажется хотя бы одна бракованная?

Подробнее

Статистическая радиофизика и теория информации

Статистическая радиофизика и теория информации Статистическая радиофизика и теория информации Лекция 6 7. Марковские* случайные процессы и марковские цепи. *Марков Андрей Андреевич (род. 1890) русский математик, академик Марковский случайный процесс

Подробнее

Ответ: х i -0,5 0,5 y i 3 4 p i 0,3 0,7 q i 0,2 0,8. Решение Так как X и Y независимые величины, то мы имеем DX MX

Ответ: х i -0,5 0,5 y i 3 4 p i 0,3 0,7 q i 0,2 0,8. Решение Так как X и Y независимые величины, то мы имеем DX MX Задача. Монета бросается до тех пор пока два раза подряд она выпадет одной и той же стороной. Найти вероятность того что опыт окончится до шестого бросания. Решение Событие - опыт закончится до шестого

Подробнее

Глава 9. Регрессионный анализ 9.1. Задачи регрессионного анализа

Глава 9. Регрессионный анализ 9.1. Задачи регрессионного анализа 46 Глава 9. Регрессионный анализ 9.. Задачи регрессионного анализа Во время статистических наблюдений как правило получают значения нескольких признаков. Для простоты будем рассматривать в дальнейшем двумерные

Подробнее

Процессы гибели и размножения. λ k-1,k... λ k,k-1

Процессы гибели и размножения. λ k-1,k... λ k,k-1 Компьютерное моделирование. СМО. Лекция 3 1 III. Процессы гибели и размножения... 1 IV. СМО с отказом... 3 IV.1 Одноканальная СМО с отказами... 3 IV.2 Многоканальная система с отказом... 5 V. СМО с ожиданием

Подробнее

6.4. Системы случайных величин

6.4. Системы случайных величин Лекция 4.9. Системы случайных величин. Функция распределения системы двух случайных величин (СДСВ). Свойства функции 6.4. Системы случайных величин В практике часто встречаются задачи которые описываются

Подробнее

1.33. Неравенство Чебышева. ε ε. = ε. = 2 ε ( x) P( X ε). (Для дискретной случайной величины доказательство аналогично).

1.33. Неравенство Чебышева. ε ε. = ε. = 2 ε ( x) P( X ε). (Для дискретной случайной величины доказательство аналогично). Т Неравенство Чебышева.33. Неравенство Чебышева Пусть случайная величина имеет второй начальный момент MХ, тогда: M 0 P( ) неравенство Чебышева () Док ( непрерывная случайная величина) MХ = x f( x) dx

Подробнее

ГЛАВА 5. МАРКОВСКИЕ ПРОЦЕССЫ С НЕПРЕРЫВНЫМ ВРЕМЕНЕМ И ДИСКРЕТНЫМ МНОЖЕСТВОМ СОСТОЯНИЙ

ГЛАВА 5. МАРКОВСКИЕ ПРОЦЕССЫ С НЕПРЕРЫВНЫМ ВРЕМЕНЕМ И ДИСКРЕТНЫМ МНОЖЕСТВОМ СОСТОЯНИЙ ГЛАВА 5. МАРКОВСКИЕ ПРОЦЕССЫ С НЕПРЕРЫВНЫМ ВРЕМЕНЕМ И ДИСКРЕТНЫМ МНОЖЕСТВОМ СОСТОЯНИЙ В результате изучения данной главы студенты должны: знать определения и свойства Марковских процессов с непрерывным

Подробнее

Формулы по теории вероятностей

Формулы по теории вероятностей Формулы по теории вероятностей I. Случайные события. Основные формулы комбинаторики а) перестановки P =! = 3...( ). б) размещения A m = ( )...( m + ). A! в) сочетания C = =. P ( )!!. Классическое определение

Подробнее

ТЕМА 8. СИСТЕМЫ СЛУЧАЙНЫХ ВЕЛИЧИН. ЗАКОН БОЛЬШИХ ЧИСЕЛ

ТЕМА 8. СИСТЕМЫ СЛУЧАЙНЫХ ВЕЛИЧИН. ЗАКОН БОЛЬШИХ ЧИСЕЛ ТЕМА 8. СИСТЕМЫ СЛУЧАЙНЫХ ВЕЛИЧИН. ЗАКОН БОЛЬШИХ ЧИСЕЛ Случайные векторы. Закон распределения. Условные распределения случайных величин. Числовые характеристики случайных векторов. Условные математические

Подробнее

А.В. Колесников. Теория вероятностей 2. Случайные процессы. Высшая Школа Экономики. Математический факультет. Москва гг.

А.В. Колесников. Теория вероятностей 2. Случайные процессы. Высшая Школа Экономики. Математический факультет. Москва гг. А.В. Колесников Теория вероятностей 2. Случайные процессы. Высшая Школа Экономики. Математический факультет. Москва. 2013 гг. Многомерные диффузионные процессы В настоящей лекции будут изложены (без доказательств

Подробнее

КОС включают контрольные материалы для проведения промежуточной аттестации в форме дифференцированного зачета

КОС включают контрольные материалы для проведения промежуточной аттестации в форме дифференцированного зачета 1. Общие положения Контрольно-оценочные средства (КОС) предназначены для контроля и оценки образовательных достижений обучающихся, освоивших программу учебной дисциплины «Теория вероятностей и математическая

Подробнее

МНОГОМЕРНЫЕ СЛУЧАЙНЫЕ ВЕЛИЧИНЫ

МНОГОМЕРНЫЕ СЛУЧАЙНЫЕ ВЕЛИЧИНЫ МНОГОМЕРНЫЕ СЛУЧАЙНЫЕ ВЕЛИЧИНЫ 1 Многомерная случайная величина X = (X 1,X 2,,X n ) это совокупность случайных величин X i (i =1,2,,n), заданных на одном и том же вероятностном пространстве Ω. Закон распределения

Подробнее

8. Методические рекомендации по выполнению контрольных работ, курсовых работ. К О Н Т Р О Л Ь Н А Я Р А Б О Т А

8. Методические рекомендации по выполнению контрольных работ, курсовых работ. К О Н Т Р О Л Ь Н А Я Р А Б О Т А 8 Методические рекомендации по выполнению контрольны работ, курсовы работ К О Н Т Р О Л Ь Н А Я Р А Б О Т А Д и с ц и п л и н а «М а т е м а т и к а» ) Решить систему линейны уравнений методом Гаусса 7

Подробнее

Расчетно-графическая работа. Теория вероятностей

Расчетно-графическая работа. Теория вероятностей Расчетно-графическая работа Теория вероятностей Вариант n = 4 Задание 1. В урне 6 белых шаров и 6 черных шаров. Найти вероятность, что: А) вытащили белый шар; Б) вытащили белых шара; В) вытащили 3 черных

Подробнее

Вопросы выносимые на экзамен по дисциплине «Высшая математика» для слушателей 1-го курса ФРК

Вопросы выносимые на экзамен по дисциплине «Высшая математика» для слушателей 1-го курса ФРК Вопросы выносимые на экзамен по дисциплине «Высшая математика» для слушателей -го курса ФРК I Раздел: Линейная алгебра Определения: матрицы, строки и столбцы матрицы Прямоугольная, квадратная матрица Главная

Подробнее

Предварительный письменный опрос. Список вопросов.

Предварительный письменный опрос. Список вопросов. ТЕОРИЯ ВЕРОЯТНОСТЕЙ. ВЕСНА 2018 г. Предварительный письменный опрос. Список вопросов. В вариантах вопросов на экзамене возможны изменения по сравнению с предложенным списком: могут быть изменены численные

Подробнее

1. Срединная формула прямоугольников

1. Срединная формула прямоугольников Срединная формула прямоугольников Введем обозначение I d Пусть -непрерывны на [ ] Разделим отрезок [ ] равных частичных отрезков [ ] где на Введем обозначения ( ) ( ) ( ) интеграл I в виде Представим где

Подробнее

ИНТЕГРАЛЬНАЯ ФУНКЦИЯ ГАУССА-ЛАПЛАСА С АРГУМЕНТОМ

ИНТЕГРАЛЬНАЯ ФУНКЦИЯ ГАУССА-ЛАПЛАСА С АРГУМЕНТОМ ИНТЕГРАЛЬНАЯ ФУНКЦИЯ ГАУССА-ЛАПЛАСА С АРГУМЕНТОМ l g (n + 1 ) И ИНВАРИАНТЫ n -СЕЧЕНИЙ ТКАЧЕНКО И.С., ТКАЧЕНКО М.И. О значимости n -сечений как о научном достижении в этом направлении определенного числа

Подробнее

Лекция 12. Понятие о системе случайных величин. Законы распределения системы случайных величин

Лекция 12. Понятие о системе случайных величин. Законы распределения системы случайных величин МВДубатовская Теория вероятностей и математическая статистика Лекция Понятие о системе случайных величин Законы распределения системы случайных величин Часто возникают ситуации когда каждому элементарному

Подробнее

, (1.2) где π ij некоторые числа, i, j = 1,..., s; здесь значения x i1,..., x in выбраны произвольным

, (1.2) где π ij некоторые числа, i, j = 1,..., s; здесь значения x i1,..., x in выбраны произвольным 1. КОНЕЧНЫЕ ОДНОРОДНЫЕ ЦЕПИ МАРКОВА Рассмотрим последовательность случайных величин ξ n, n 0, 1,..., каждая из коорых распределена дискретно и принимает значения из одного и того же множества {x 1,...,

Подробнее

2.6. Эксцесс и асимметрия

2.6. Эксцесс и асимметрия Лекция 9 План лекции.5.6. Распределение Симпсона (треугольное распределение)..6 Эксцесс и асимметрия.7 Теорема Ляпунова и её следствия 3. Системы случайных величин (случайные векторы) 3.1 Закон распределения

Подробнее

1.1. Определение цепи Маркова. Свойства матриц перехода.

1.1. Определение цепи Маркова. Свойства матриц перехода. 1. КОНЕЧНЫЕ ОДНОРОДНЫЕ ЦЕПИ МАРКОВА Рассмотрим последовательность случайных величин ξ n, n 0, 1,..., каждая из коорых распределена дискретно и принимает значения из одного и того же множества {x 1,...,

Подробнее

Теоретические вопросы и задачи по математике для студентов 2-го курса специальностей ЛИД, ТДП в зимнюю сессию Теоретические вопросы

Теоретические вопросы и задачи по математике для студентов 2-го курса специальностей ЛИД, ТДП в зимнюю сессию Теоретические вопросы Теоретические вопросы и задачи по математике для студентов -го курса специальностей ЛИД, ТДП в зимнюю сессию Теоретические вопросы 1. Основные понятия и определения теории вероятностей. Классическое определение

Подробнее

«Теория вероятностей»

«Теория вероятностей» ДОНСКОЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ УПРАВЛЕНИЕ ДИСТАНЦИОННОГО ОБУЧЕНИЯ И ПОВЫШЕНИЯ КВАЛИФИКАЦИИ Кафедра «Прикладная математика» МЕТОДИЧЕСКИЕ УКАЗАНИЯ к проведению практических занятий по дисциплине

Подробнее

Рассмотрим первый способ решения СЛУ по правилу Крамера для системы трех уравнений с тремя неизвестными: Ответ рассчитывается по формулам Крамера:

Рассмотрим первый способ решения СЛУ по правилу Крамера для системы трех уравнений с тремя неизвестными: Ответ рассчитывается по формулам Крамера: Рассмотрим первый способ решения СЛУ по правилу Крамера для системы трех уравнений с тремя неизвестными: Ответ рассчитывается по формулам Крамера: D, D1, D2, D3 это определители Определителем третьего

Подробнее

ГЛАВА 4. ПРЕДЕЛЬНЫЕ ТЕОРЕМЫ. 1. Неравенства Чебышева

ГЛАВА 4. ПРЕДЕЛЬНЫЕ ТЕОРЕМЫ. 1. Неравенства Чебышева ГЛАВА 4 ПРЕДЕЛЬНЫЕ ТЕОРЕМЫ Неравенства Чебышева Доказательство теоремы Чебышева основывается на неравенстве Чебышева Докажем это неравенство Неравенство Чебышева Вероятность того что отклонение (СВ) ξ

Подробнее

Лекция 8 Тема. Содержание темы. Основные категории. Сравнение случайных величин или признаков.

Лекция 8 Тема. Содержание темы. Основные категории. Сравнение случайных величин или признаков. Лекция 8 Тема Сравнение случайных величин или признаков. Содержание темы Аналогия дискретных СВ и выборок Виды зависимостей двух случайных величин (выборок) Функциональная зависимость. Линии регрессии.

Подробнее

Глава 4. Основные законы распределения непрерывной случайной величины Равномерный закон распределения

Глава 4. Основные законы распределения непрерывной случайной величины Равномерный закон распределения 53 Глава 4. Основные законы распределения непрерывной случайной величины. 4.. Равномерный закон распределения Определение. Непрерывная случайная величина Х имеет равномерное распределение на промежутке

Подробнее

Лекция 12 ХАРАКТЕРИСТИЧЕСКАЯ ФУНКЦИЯ. Метод линеаризации функций случайных величин

Лекция 12 ХАРАКТЕРИСТИЧЕСКАЯ ФУНКЦИЯ. Метод линеаризации функций случайных величин Лекция ХАРАКТЕРИСТИЧЕСКАЯ ФУНКЦИЯ ЦЕЛЬ ЛЕКЦИИ: построить метод линеаризации функций случайных величин; ввести понятие комплексной случайной величины и получить ее числовые характеристики; определить характеристическую

Подробнее

Линейная алгебра Вариант 4

Линейная алгебра Вариант 4 Линейная алгебра Вариант Задание. Систему уравнений привести к равносильной разрешенной системе, включив в набор разрешенных неизвестных,,. Записать общее решение, найти соответствующее базисное решение:

Подробнее

9. Двумерная случайная величина. Законы распределения Определения и формулы для решения задач

9. Двумерная случайная величина. Законы распределения Определения и формулы для решения задач 9 Двумерная случайная величина Законы распределения 9 Определения и формулы для решения задач Определение Двумерной случайной величиной называется упорядоченная пара (, ) одномерных случайных величин и

Подробнее

Для студентов, аспирантов, преподавателей, научных сотрудников и инженеров

Для студентов, аспирантов, преподавателей, научных сотрудников и инженеров Ивановский Р. И. Теория вероятностей и математическая статистика. Основы, прикладные аспекты с примерами и задачами в среде Mathcad. СПб.: БХВ- Петербург, 2008. 528 с.: ил. + CD-ROM (Учебное пособие) В

Подробнее

Тема 2. СИСТЕМЫ ЛИНЕЙНЫХУРАВНЕНИЙ свободные члены, - неизвестные величины.

Тема 2. СИСТЕМЫ ЛИНЕЙНЫХУРАВНЕНИЙ свободные члены, - неизвестные величины. Тема СИСТЕМЫ ЛИНЕЙНЫХУРАВНЕНИЙ Система m линейных уравнений с переменными в общем случае имеет вид: m m m m ) где числа ij i, m, j, ) называются коэффициентами при переменных, i - свободные члены, j -

Подробнее

«Теория вероятностей и математическая статистика»

«Теория вероятностей и математическая статистика» «КАЗАНСКИЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ» ИНСТИТУТ ЭКОНОМИКИ И ФИНАНСОВ Кафедра математики и экономической информатики Методическая разработка по дисциплине «Теория вероятностей и математическая статистика»

Подробнее

Контрольная работа из учебно-методического пособия «Теория вероятностей и математическая статистика» под ред. проф. Н.Ш. Кремера. М.:ВЗФЭИ, 2008.

Контрольная работа из учебно-методического пособия «Теория вероятностей и математическая статистика» под ред. проф. Н.Ш. Кремера. М.:ВЗФЭИ, 2008. Контрольная работа из учебно-методического пособия «Теория вероятностей и математическая статистика» под ред. проф. Н.Ш. Кремера. М.:ВЗФЭИ, 008. ВАРИАНТ (для студентов, номера личных дел которых оканчиваются

Подробнее

Уравнения в частных производных первого порядка. Общее уравнение в частных производных первого порядка имеет вид = или (

Уравнения в частных производных первого порядка. Общее уравнение в частных производных первого порядка имеет вид = или ( Глава 8 Уравнения в частных производных первого порядка Лекция 3 Общее уравнение в частных производных первого порядка имеет вид,,,, F x 0,, x z = или ( F x, z,gradz = 0 Проблема существования и единственности

Подробнее

Определители. Решение систем линейных алгебраических уравнений методом Крамера

Определители. Решение систем линейных алгебраических уравнений методом Крамера Занятие Определители. Решение систем линейных алгебраических уравнений методом Крамера.. Определители. Пусть дана квадратная таблица чисел А, т.е. матрица из двух строк и двух столбцов. Заметим сразу,

Подробнее

Контрольная работа 1.

Контрольная работа 1. Контрольная работа...4. Найти общее решение (общий интеграл) дифференциального уравнения. Сделать проверку. 4 y y y y y y 4 y y y 4 4 Это уравнение Бернулли. Сделаем замену: y y y 4 4 4 z y ; z y y Тогда

Подробнее

6.1. Надежность элемента, плотность отказов, среднее время безотказной работы

6.1. Надежность элемента, плотность отказов, среднее время безотказной работы Теория надежности раздел прикладной математики, в котором разрабатываются методы обеспечения эффективной работы изделий. Под надежностью в широком смысле слова понимается способность технического устройства

Подробнее

1. Крамеровские системы линейных алгебраических уравнений

1. Крамеровские системы линейных алгебраических уравнений Крамеровские системы линейных алгебраических уравнений Матричная форма записи системы линейных уравнений Пусть дана система из т линейных уравнений с п неизвестными : () С введением понятия матриц и операций

Подробнее

1. Определители. a11 a12. a21 a22

1. Определители. a11 a12. a21 a22 . Определители. Определитель второго порядка Пусть задана таблица четырех чисел, расположенных в две строки и в два столбца 2 () 2 22 Элементы а, а 2 образуют первую строку, элементы а 2, а 22 образуют

Подробнее

Алгебра и геометрия 1. Определители. Разложение определителя по строке и столбцу. Алгебра

Алгебра и геометрия 1. Определители. Разложение определителя по строке и столбцу. Алгебра матриц. Алгебра и геометрия 1. Определители. Разложение определителя по строке и столбцу. Алгебра 2. Геометрические векторы. Скалярное произведение векторов. Векторное и смешанное произведение векторов.

Подробнее

X и значения k и c, а также вероятность попадания случайной величины в интервал (a/2, b/2). Построить график функции распределения.

X и значения k и c, а также вероятность попадания случайной величины в интервал (a/2, b/2). Построить график функции распределения. Оценочные средства для текущего контроля успеваемости, промежуточной аттестации по итогам освоения дисциплины и учебно-методическое обеспечение самостоятельной работы студентов 1 Варианты контрольной работы

Подробнее

Практикум по теме 8 "Системы случайных величин"

Практикум по теме 8 Системы случайных величин Практикум по теме 8 "Системы случайных величин" Методические указания по выполнению практикума Целью практикума является более глубокое усвоение материала контента темы 8, а также развитие следующих навыков:

Подробнее

Функции многих переменных

Функции многих переменных Функции многих переменных Задача 7 Найти все производные второго порядка функции f ( x, y) : f ( x, y) y x Искомые производные: Задача 9 Найти полный дифференциал и градиент функции А: 3 4 f ( x, y) ln

Подробнее

ЧАСТЬ I. ТЕОРИЯ ВЕРОЯТНОСТЕЙ

ЧАСТЬ I. ТЕОРИЯ ВЕРОЯТНОСТЕЙ Предисловие о ЧАСТЬ I. ТЕОРИЯ ВЕРОЯТНОСТЕЙ Глава 1. События и вероятности 13 1.1. Элементы комбинаторики 13 1.2. События 16 1.3. Понятие вероятности 17 1.4. Действия над событиями 21 1.5. Теорема сложения

Подробнее

ОГЛАВЛЕНИЕ. ЧАСТЬ 1. Случайные события и их вероятности XCQ ПРЕДИСЛОВИЕ 3 ВВЕДЕНИЕ 5

ОГЛАВЛЕНИЕ. ЧАСТЬ 1. Случайные события и их вероятности XCQ ПРЕДИСЛОВИЕ 3 ВВЕДЕНИЕ 5 ОГЛАВЛЕНИЕ ПРЕДИСЛОВИЕ 3 ВВЕДЕНИЕ 5 ЧАСТЬ 1. Случайные события и их вероятности Глава 1. Понятие вероятности 1.1. Виды случайных событий. Дискретное множество элементарных событий. Множество исходов опыта

Подробнее

Будут рассмотрены. распределения, которые применимы для статистических исследований.

Будут рассмотрены. распределения, которые применимы для статистических исследований. Будут рассмотрены распределения, которые применимы для статистических исследований. На основе этих распределений построены основные разделы математической статистики! 2 Функция случайной величины Пусть

Подробнее

Элементы высшей математики Теория вероятностей и математическая статистика ЕН.02

Элементы высшей математики Теория вероятностей и математическая статистика ЕН.02 АННОТАЦИИ РАБОЧИХ ПРОГРАММ МАТЕМАТИЧЕСКОГО И ОБЩЕГО ЕСТЕСТВЕННОНАУЧНОГО УЧЕБНОГО ЦИКЛА программы подготовки специалистов среднего звена (ППССЗ) среднего профессионального образования базовой подготовки

Подробнее

Лекция 8 АНАЛИЗ ЧУВСТВИТЕЛЬНОСТИ И ШУМОВ ЭЛЕКТРОННЫХ СХЕМ. План

Лекция 8 АНАЛИЗ ЧУВСТВИТЕЛЬНОСТИ И ШУМОВ ЭЛЕКТРОННЫХ СХЕМ. План 88 Лекция 8 АНАЛИЗ ЧУВСТВИТЕЛЬНОСТИ И ШУМОВ ЭЛЕКТРОННЫХ СХЕМ План 1. Введение. Анализ чувствительности методом малых приращений 3. Анализ чувствительности методом присоединенных схем 4. Анализ шумов аналоговых

Подробнее

«Прикладная математика и информатика»

«Прикладная математика и информатика» «Прикладная математика и информатика» Магистерская программа «Математическое и информационное обеспечение экономической деятельности» Программа экзамена разработана на основе Государственных образовательных

Подробнее

ГЛАВА 5. СЛУЧАЙНЫЕ ПРОЦЕССЫ. 1. Случайный анализ

ГЛАВА 5. СЛУЧАЙНЫЕ ПРОЦЕССЫ. 1. Случайный анализ ГЛАВА 5. СЛУЧАЙНЫЕ ПРОЦЕССЫ. Случайный анализ Часто при исследовании различных явлений природы, экономических и технических процессов приходится иметь дело со случайными величинами, изменяющимися во времени.

Подробнее

ВЕСТНИК ТОМСКОГО ГОСУДАРСТВЕННОГО УНИВЕРСИТЕТА 2007 Управление, вычислительная техника и информатика 1. Н.В. Степанова, А.Ф.

ВЕСТНИК ТОМСКОГО ГОСУДАРСТВЕННОГО УНИВЕРСИТЕТА 2007 Управление, вычислительная техника и информатика 1. Н.В. Степанова, А.Ф. ВЕСТНИК ТОМСКОГО ГОСУДАРСТВЕННОГО УНИВЕРСИТЕТА 7 Управление вычислительная техника и информатика УДК 59 НВ Степанова АФ Терпугов УПРАВЛЕНИЕ ЦЕНОЙ ПРИ ПРОДАЖЕ СКОРОПОРТЯЩЕЙСЯ ПРОДУКЦИИ Рассматривается управление

Подробнее

Статистическая радиофизика и теория информации

Статистическая радиофизика и теория информации Статистическая радиофизика и теория информации Лекция 7 8.Марковские цепи с непрерывным временем Марковские цепи с непрерывным временем представляют собой марковский случайный процесс X t, состоящий из

Подробнее

ВЗФЭИ. Контрольная работа 3 Вариант 9

ВЗФЭИ. Контрольная работа 3 Вариант 9 ВЗФЭИ. Контрольная работа 3 Вариант 9 Задача 1. В поселке имеется 6 производственных предприятий, 8 магазинов и 4 банка. Вероятность того, что имеется свободная вакансия бухгалтера равна: 0,4 для предприятия,

Подробнее

Лекция 1: Определители второго и третьего порядков

Лекция 1: Определители второго и третьего порядков Лекция 1: Определители второго и третьего порядков Уральский федеральный университет, Институт математики и компьютерных наук, кафедра алгебры и дискретной математики Вступительные замечания Мы начинаем

Подробнее

ПРИЛОЖЕНИЕ 1 ЛИТЕРАТУРА. 1 Таблица значений функции ϕ ( x)

ПРИЛОЖЕНИЕ 1 ЛИТЕРАТУРА. 1 Таблица значений функции ϕ ( x) ЛИТЕРАТУРА. Венцель Е. С., Овчаров Л. А. Теория вероятностей и ее инженерные приложения. М.: Наука,. 0 с.. Венцель Е. С. Теория вероятностей. М.: Наука,. с.. Гнеденко Б. В. Курс теории вероятностей. М.:

Подробнее

μ xy = M[(X - m x )(Y - m y )] Для вычислений корреляционного момента используют формулы: для дискретных :

μ xy = M[(X - m x )(Y - m y )] Для вычислений корреляционного момента используют формулы: для дискретных : Лекция План лекции 36 Числовые характеристики системы двух случайных величин 37 Коррелированность и зависимость случайных величин 37 Корреляционные матрицы 38 Характеристики многомерных систем 39 Двумерный

Подробнее

, (3.4.3) ( x) lim lim

, (3.4.3) ( x) lim lim 3.4. СТАТИСТИЧЕСКИЕ ХАРАКТЕРИСТИКИ ВЫБОРОЧНЫХ ЗНАЧЕНИЙ ПРОГНОЗНЫХ МОДЕЛЕЙ До сих пор мы рассматривали способы построения прогнозных моделей стационарных процессов, не учитывая одной весьма важной особенности.

Подробнее

Решение: а) Используем локальную теорему Лапласа.

Решение: а) Используем локальную теорему Лапласа. Найди свою задачу на http://mathprof.com! ) Человек, проходящий мимо киоска, покупает газету с вероятностью 0,. Найти вероятность того, что из 00 человек, прошедших мимо киоска в течение часа: а) купят

Подробнее

МАТЕМАТИЧЕСКИЙ ПРАКТИКУМ

МАТЕМАТИЧЕСКИЙ ПРАКТИКУМ МАТЕМАТИЧЕСКИЙ ПРАКТИКУМ Ю.Л.Калиновский Введение Решение квадратных уравнений Решение квадратных уравнений c помощью разложения на множители. Решение квадратных уравнений c помощью дополнения до полного

Подробнее

, - вероятность того, что из n бросков t раз выпадет «пятерка»,

, - вероятность того, что из n бросков t раз выпадет «пятерка», .6 Бросают три игральных кубика. Найти ряд и функцию распределения числа выпавших «пятерок» Х, а также M(X), D(X) и вероятность того, что Х>. Решение: Пусть Х число выпавших «пятерок». Перечислим все возможные

Подробнее

Высшая математика. Календарно-тематический план. п/п Тема занятия Кол. час. Матричная алгебра; системы линейных уравнений:

Высшая математика. Календарно-тематический план. п/п Тема занятия Кол. час. Матричная алгебра; системы линейных уравнений: Высшая математика Календарно-тематический план п/п Тема занятия Кол. час. 1 -й семестр (0 ауд. часов) Матричная алгебра; системы линейных уравнений: 1 Матрицы; операции над матрицами, их свойства; расширенная

Подробнее

ОГЛАВЛЕНИЕ ЧАСТЬ ПЕРВАЯ СЛУЧАЙНЫЕ СОБЫТИЯ

ОГЛАВЛЕНИЕ ЧАСТЬ ПЕРВАЯ СЛУЧАЙНЫЕ СОБЫТИЯ ОГЛАВЛЕНИЕ ЧАСТЬ ПЕРВАЯ СЛУЧАЙНЫЕ СОБЫТИЯ Глава первая. Определение вероятности.. 8 1. Классическое и статистическое определения вероятности.. 8 2. Геометрические вероятности... 12 Глава вторая. Основные

Подробнее

Вопросы к экзамену по дисциплине «ТЕОРИЯ ВЕРОЯТНОСТЕЙ и МАТЕМАТИЧЕСКАЯ СТАТИСТИКА»

Вопросы к экзамену по дисциплине «ТЕОРИЯ ВЕРОЯТНОСТЕЙ и МАТЕМАТИЧЕСКАЯ СТАТИСТИКА» Дисциплина: «ТЕОРИЯ ВЕРОЯТНОСТЕЙ И МАТЕМАТИЧЕСКАЯ СТАТИСТИКА» Специальность: Факультет: «МЕДИКО-БИОЛОГИЧЕСКИЙ» Учебный год: 016-017 Вопросы к экзамену по дисциплине «ТЕОРИЯ ВЕРОЯТНОСТЕЙ и МАТЕМАТИЧЕСКАЯ

Подробнее

МОДУЛЬ 1. Векторная алгебра и аналитическая геометрия. Элементы линейной алгебры

МОДУЛЬ 1. Векторная алгебра и аналитическая геометрия. Элементы линейной алгебры МОДУЛЬ Векторная алгебра и аналитическая геометрия Элементы линейной алгебры Леция Понятие матрицы и определителя Свойства определителей Аннотация: В лекции указывается на применение определителей для

Подробнее

Системы случайных величин

Системы случайных величин Corght ОАО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис» Министерство образования и науки Российской Федерации Ивановский государственный химико-технологический университет Системы случайных величин Методические

Подробнее

(, ) (, ) ( ) x y. F x y = P X Y D

(, ) (, ) ( ) x y. F x y = P X Y D 4 СИСТЕМА ДВУХ СЛУЧАЙНЫХ ВЕЛИЧИН КОРРЕЛЯЦИОННЫЙ АНАЛИЗ Многомерной случайной величиной (векторной случайной величиной, случайным вектором или случайной точкой) называют упорядоченный набор нескольких случайных

Подробнее

Типовые задачи к зачёту по курсу «Теория случайных процессов» Осень 2015 г.

Типовые задачи к зачёту по курсу «Теория случайных процессов» Осень 2015 г. Типовые задачи к зачёту по курсу «Теория случайных процессов» Осень 2015 г. 1. Задачи по моментным характеристикам случайных процессов, конечномерным распределениям и т. д. 1.1. Найти двумерные распределения

Подробнее

1.24. Двумерные дискретные и непрерывные случайные величины: определения, функция распределения. Рассмотрим двумерные случайные величины.

1.24. Двумерные дискретные и непрерывные случайные величины: определения, функция распределения. Рассмотрим двумерные случайные величины. 1.4. Двумерные дискретные и непрерывные случайные величины: определения, функция распределения Определение одномерной случайной величины см. п.1.11.: def Одномерной случайной величиной называется числовая

Подробнее

Автор(ы): преподаватель: Арамян Р. Дисциплина: Теория вероятностей и математическая статистика ЕРЕВАН

Автор(ы): преподаватель: Арамян Р. Дисциплина: Теория вероятностей и математическая статистика ЕРЕВАН ГОУ ВПО РОССИЙСКО-АРМЯНСКИЙ (СЛАВЯНСКИЙ) УНИВЕРСИТЕТ Составлена в соответствии с государственными требованиями к минимуму содержания и уровню подготовки выпускников по указанным направлениям и Положением

Подробнее

Приближенные числа и вычисления

Приближенные числа и вычисления ) Основные понятия ) Влияние погрешностей аргументов на точность функции 3) Понятие обратной задачи в теории погрешностей ) Основные понятия I Приближенные числа, их абсолютная и относительная погрешности

Подробнее

, обращающая уравнение в тождество. Определение. Общим решением дифференциального уравнения первого порядка называется функция y ( x, c)

, обращающая уравнение в тождество. Определение. Общим решением дифференциального уравнения первого порядка называется функция y ( x, c) II ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ Дифференциальные уравнения первого порядка Определение Соотношения, в которых неизвестные переменные и их функции находятся под знаком производной или дифференциала, называются

Подробнее

Решение типовика выполнено на сайте Переходите на сайт, смотрите больше примеров или закажите свою работу

Решение типовика выполнено на сайте   Переходите на сайт, смотрите больше примеров или закажите свою работу МИРЭА. Типовой расчет по теории вероятностей с решением Вариант 1 Часть. Случайные величины Задача.1. Фекла решила удивить своего бойфренда роскошным ужином и купила для этого в супермаркете пакет с картофелем.

Подробнее

Многомерная случайная величина Функция распределения многомерной случайной величины

Многомерная случайная величина Функция распределения многомерной случайной величины СИСТЕМА СЛУЧАЙНЫХ ВЕЛИЧИН В практических применениях теории вероятностей часто приходится сталкиваться с задачами, в которых результат опыта описывается не одной, а двумя или более случайными величинами

Подробнее

5.2. УРАВНЕНИЕ ШРЁДИНГЕРА

5.2. УРАВНЕНИЕ ШРЁДИНГЕРА 5 УРАВНЕНИЕ ШРЁДИНГЕРА Основным динамическим уравнением квантовой механики описывающим эволюцию состояния микрочастицы во времени является уравнение Шрѐдингера: () Ĥ оператор Гамильтона в общем случае

Подробнее

Лекция 1. Дифференциальные уравнения 1-го порядка. Основные виды дифференциальных уравнений 1-го порядка и их решение.

Лекция 1. Дифференциальные уравнения 1-го порядка. Основные виды дифференциальных уравнений 1-го порядка и их решение. Лекция Дифференциальные уравнения -го порядка Основные виды дифференциальных уравнений -го порядка и их решение Дифференциальные уравнения является одним из самых употребительных средств математического

Подробнее

Предварительный письменный опрос. Список вопросов.

Предварительный письменный опрос. Список вопросов. ТЕОРИЯ ВЕРОЯТНОСТЕЙ. ВЕСНА 2016 г. Предварительный письменный опрос. Список вопросов. Основы теории множеств, аксиоматические свойства вероятности и следствия из них. 1. Записать свойства ассоциативности

Подробнее

Математика (БкПл-100, БкК-100)

Математика (БкПл-100, БкК-100) Математика (БкПл-100, БкК-100) М.П. Харламов 2009/2010 учебный год, 2-й семестр Лекция 7. Определители, системы линейных уравнений и формулы Крамера 1 Тема 1: Определители 1.1. Понятие определителя Определитель

Подробнее

Числовые характеристики нормального распределения

Числовые характеристики нормального распределения Числовые характеристики нормального распределения X Если случайная величина, имеющая нормальное распределение с параметрами a и, то математическое ожидание совпадает с параметром, дисперсия с M X a, D

Подробнее

14. Тесты по теории вероятностей. Тест 1

14. Тесты по теории вероятностей. Тест 1 1 Если A B, то чему равно AB? 14 Тесты по теории вероятностей Тест 1 Сформулируйте классическое определение вероятности События A, B, C взаимно независимы P( A) P( B) P( C) 1 Найдите P( A B C) 4 Испытываются

Подробнее

РУКОВОДСТВО К РЕШЕНИЮ ЗАДАЧ ПО ТЕОРИИ ВЕРОЯТНОСТЕЙ И МАТЕМАТИЧЕСКОЙ СТАТИСТИКЕ

РУКОВОДСТВО К РЕШЕНИЮ ЗАДАЧ ПО ТЕОРИИ ВЕРОЯТНОСТЕЙ И МАТЕМАТИЧЕСКОЙ СТАТИСТИКЕ В.Е.Гмурман РУКОВОДСТВО К РЕШЕНИЮ ЗАДАЧ ПО ТЕОРИИ ВЕРОЯТНОСТЕЙ И МАТЕМАТИЧЕСКОЙ СТАТИСТИКЕ М.: Высш. школа, 1979, 400 стр. В пособии приведены необходимые теоретические сведения и формулы, даны решения

Подробнее

ТЕОРИЯ ВЕРОЯТНОСТЕЙ: СИСТЕМЫ СЛУЧАЙНЫХ ВЕЛИЧИН И ФУНКЦИИ СЛУЧАЙНЫХ ВЕЛИЧИН

ТЕОРИЯ ВЕРОЯТНОСТЕЙ: СИСТЕМЫ СЛУЧАЙНЫХ ВЕЛИЧИН И ФУНКЦИИ СЛУЧАЙНЫХ ВЕЛИЧИН Т А Матвеева В Б Светличная С А Зотова ТЕОРИЯ ВЕРОЯТНОСТЕЙ: СИСТЕМЫ СЛУЧАЙНЫХ ВЕЛИЧИН И ФУНКЦИИ СЛУЧАЙНЫХ ВЕЛИЧИН ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ ВОЛГОГРАДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

Подробнее

Лекция 7. Ветвящиеся процессы Гальтона-Ватсона

Лекция 7. Ветвящиеся процессы Гальтона-Ватсона Лекция 7 Ветвящиеся процессы Гальтона-Ватсона Приступаем к изучению классической модели теории вероятностей ветвящемуся процессу Гальтона-Ватсона. Эта модель появилась во второй половине 19-го века 1873

Подробнее

ОГЛАВЛЕНИЕ Введение ЧАСТЬ ПЕРВАЯ СЛУЧАЙНЫЕ СОБЫТИЯ

ОГЛАВЛЕНИЕ Введение ЧАСТЬ ПЕРВАЯ СЛУЧАЙНЫЕ СОБЫТИЯ ОГЛАВЛЕНИЕ Введение...... 14 ЧАСТЬ ПЕРВАЯ СЛУЧАЙНЫЕ СОБЫТИЯ Глава первая. Основные понятия теории вероятностей... 17 1. Испытания и события... 17 2. Виды случайных событий... 17 3. Классическое определение

Подробнее

ТЕОРИЯ ВЕРОЯТНОСТЕЙ. Общее определение вероятности было дано на лекции 1. Напомним его.

ТЕОРИЯ ВЕРОЯТНОСТЕЙ. Общее определение вероятности было дано на лекции 1. Напомним его. С А Лавренченко http://lawrencenkoru ТЕОРИЯ ВЕРОЯТНОСТЕЙ Практическое занятие 2 Условная вероятность Формула Бернулли Стоят девчонки, стоят в сторонке, Платочки в руках теребят, Потому что на десять девчонок

Подробнее

случайных величин f(x) и ее свойства Дифференциальной функцией распределения называется 1-я производная от интегральной

случайных величин f(x) и ее свойства Дифференциальной функцией распределения называется 1-я производная от интегральной Лекция 6 План лекции.3.3 Дифференциальная функция распределения непрерывных случайных величин.4 Числовые характеристики случайных.4. Математическое ожидание и его свойства..4. Дисперсия случайных величин

Подробнее

Системы линейных алгебраических уравнений

Системы линейных алгебраических уравнений Системы линейных алгебраических уравнений Рассмотрим систему m линейных алгебраических уравнений с неизвестными b b () m m m bm Система () называется однородной если все её свободные члены b b b m равны

Подробнее

АННОТАЦИЯ. Направление подготовки (специальность) Государственное и муниципальное управление

АННОТАЦИЯ. Направление подготовки (специальность) Государственное и муниципальное управление АННОТАЦИЯ к рабочей программе дисциплины «Теория вероятностей и математическая статистика» Направление подготовки (специальность) 38.03.04 Государственное и муниципальное управление 1. ЦЕЛИ И ЗАДАЧИ ДИСЦИПЛИНЫ

Подробнее

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование»

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ Московский государственный технический университет имени НЭ Баумана Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» ÀÍ Êàíàòíèêîâ, ÀÏ Êðèùåíêî ÀÍÀËÈÒÈ

Подробнее