5. Элементы теории матричных игр

Размер: px
Начинать показ со страницы:

Download "5. Элементы теории матричных игр"

Транскрипт

1 5 Элементы теории матричных игр a m В теории игр исследуются модели и методы принятия решений в конфликтных ситуациях В рамках теории игр рассматриваются парные игры (с двумя сторонами) или игры многих лиц Мы ограничимся рассмотрением парных игр Участников игры принято называть игроками Игра состоит из последовательности действий (ходов), которые подразделяются на личные (совершаемые игроками осмысленно на основе некоторого правила стратегии) и случайные (не зависящие от игроков) В теории игр рассматриваются ситуации, в которых обязательно присутствуют личные ходы Стратегия игрока это набор правил, используемых при выборе очередного личного хода Целью игры является нахождение оптимальной стратегии для каждого игрока, т е такой, при которой достигается максимум ожидаемого среднего выигрыша при многократном повторении игры Предполагается, что игроки ведут себя разумно, исключаются элементы азарта и риска Определение 5 Матричная игра это парная игра, которая задается набором чистых стратегий {, K, } и {, K, m} первого и второго игроков, а также платежной матрицей ( ), определяющей выигрыш первого игрока при выборе игроками стратегий и соответственно Целью первого игрока является максимизация своего выигрыша, а целью второго минимизация выигрыша противника Пример 5 («камень ножницы бумага») Каждый игрок во время своего хода независимо от другого выбирает одну из трех стратегий, называемых «камень», «ножницы» и «бумага» Выбранные стратегии сравниваются Если они совпадают, выигрыш первого игрока составляет (ничья), в противном случае побеждает игрок с более сильной стратегией «Камень» считается сильнее «ножниц», которые, в свою очередь, сильнее «бумаги», которая сильнее «камня» Выигрыш победившего игрока составляет, проигравшего Платежная матрица в этом случае имеет следующий вид: Игрок Игрок «Камень» «Ножницы» «Бумага» «Камень» «Ножницы» «Бумага» 5

2 Пример 5 («вооружение и самолет») Первый игрок выбирает один из трех типов вооружения =,,, другой один из трех видов самолетов =,, Платежная матрица задана таблицей Элементами a /,5,,8,9,7,8,7,5, платежной матрицы являются вероятности поражения самолета вида вооружением типа Целью первого игрока является поражение самолета, второго прорыв обороны противника 5 Решение матричной игры в чистых стратегиях Заметим, что в игре из примера 5 ни у кого из игроков нет причины предпочесть одну из стратегий другой, поскольку на каждую стратегию одного игрока найдется контрстратегия другого, обеспечивающая его выигрыш (при условии, что он знает или угадал стратегию первого) В примере 5 ситуация иная Для обоих игроков целесообразным является использование чистых стратегий = для первого и = для второго Отклонение любого из игроков от указанных стратегий может только уменьшить его выигрыш Разница в приведенных примерах объясняется наличием во второй платежной матрице седловой точки Определение 5 Седловой точкой матрицы ( ) называется такая a m пара (, ) номеров строки и столбца, что для любых =,, m и =,, выполняются неравенства a a a a Таким образом, элемент в матрице с седловой точкой (, ) является одновременно максимальным в своем столбце и минимальным в своей строке, что и объясняет нецелесообразность выбора любым из игроков другой стратегии При решении матричных игр используется принцип минимакса Принцип минимакса Предположим, что противник заранее знает все ходы соперника Тогда на каждую стратегию =,, m он отвечает наилучшей контрстратегией (), для которой a a для всех =,, () 55

3 Обозначим α m, =,, m В описанной ситуации наилучшей чистой стратегией первого игрока является стратегия, максими- = a() = a зирующая, которая называется максиминной стратегией Величину α α = a = α m max m назовем нижней ценой игры в чистых стратегиях Если первый игрок поступает в соответствии с максиминной стратегией, он гарантированно получит выигрыш не менее α независимо от действий второго игрока Однако второй игрок, руководствуясь аналогичными соображениями и оставаясь в рамках чистых стратегий, должен поступать так, чтобы минимизировать величину β = a = max a ( ) m При таком выборе стратегии (минимаксной стратегии второго игрока) он гарантированно проиграет не более β = m max a = β Величина β m называется верхней ценой игры в чистых стратегиях В примере 5 имеем α =, β =, т е нижняя цена меньше верхней В примере 5 получаем следующие значения: α = maxα = max{,5,,7,,5} =,7 = α, β = mβ = m{,9,,7,,8} =,7 = β Имеем совпадение верхней и нижней цен игры и седловую точку (, ) = (,) Заметим, что нижняя цена игры не может быть больше верхней в силу следующей леммы Лемма 5 (о максимине и минимаксе) Для любой функции f(x, y), x X, y Y справедливо неравенство max m f ( xy, ) m max f( xy, ) x X y Y Из этой леммы вытекает утверждение Утверждение 5 Необходимым и достаточным условием равенства нижней и верхней цен матричной игры в чистых стратегиях является существование седловой точки в платежной матрице ) y Y x X ( a m Седловая точка в матричной игре определяет некоторое положение равновесия, когда ни одному из игроков не выгодно отклоняться от оптимальной стратегии, если противник придерживается своей оптимальной стратегии В случае существования седловой точки верхняя и нижняя цены 5

4 игры совпадают и называются ценой игры Решением игры в чистых стратегиях называется нахождение оптимальных стратегий для каждого из игроков и вычисление цены игры Заметим, что решение в чистых стратегиях существует только в том случае, когда в платежной матрице существует седловая точка Пример 5 Найти решения в чистых стратегиях, если они существуют, для игр со следующими платежными матрицами: 5 а) 5 ; б) ; в) 5 7 Решение а) Найдем нижнюю и верхнюю цены игры в чистых стратегиях: α = maxα = max{,, } = = α ; β = m β = m{, 7, 5} = = β Верхняя и нижние цены совпадают, следовательно, существует решение игры в чистых стратегиях Это решение соответствует седловой точке = и =, и значению платежной матрицы a = Оптимальные стратегии игроков соответственно равны = и = Задачи б и в предлагаются в качестве упражнения Заметим, что в некоторых играх одна из стратегий может быть заведомо менее целесообразной, чем другая Например, стратегия = в игре из примера 5 а дает первому игроку больший выигрыш, чем стратегия = при любом выборе стратегии вторым игроком: a a, =,, Это означает, что вторая строка платежной матрицы доминирует первую Определение 5 Будем говорить, что строка доминирует строку, если для всех =,, справедливы неравенства a и существует такая стратегия, что a > a a Если из платежной матрицы убрать все доминируемые строки, то решение игры с полученной матрицей совпадает с решением исходной игры Таким образом, иногда можно уменьшить размерность платежной матрицы путем удаления доминируемых строк Аналогично доминирование определяется и для столбцов 57

5 Определение 5 Столбец доминирует столбец, если для любого =,, m справедливы неравенства и существует такая стратегия, что a < a a a Платежная матрица может быть упрощена также с помощью удаления доминируемых столбцов Пример 5 Матрицы из примера 5 а, б могут быть упрощены следующим образом: 5 5 а) 5 ( 5) ( ; 7 ) 7 б) ( ) В матрице из примера 5 в нет доминирующих строк и столбцов Пример 55 Решить матричную игру с платежной матрицей ( a ) = ( ) m m Решение Рассмотрим две строки с номерами > k Для любого столбца выполняется a a = ( k ) = k > Таким образом, строка с k бóльшим номером доминирует строку с меньшим номером, и строка m доминирует все остальные Аналогично, если > l два номера столбца, то для любого =,, m имеем a a = ( l) = l <, т е столбец с бóльшим номером доминирует столбцы с меньшими номерами В результате получаем оптимальные чистых стратегии = m, =, цена игры равна ν = am = m Как мы видим, игры с матрицами, в которых существует седловая точка, решаются достаточно просто В следующих разделах будет рассмотрен более общий случай решения задачи так называемое решение в смешанных стратегиях Далее будем предполагать, что в платежных матрицах рассматриваемых игр все возможные упрощения уже проведены и доминирующих строк и столбцов нет l 58

6 5 Смешанные стратегии Если седловая точка в платежной матрице отсутствует, то решения в чистых стратегиях не существует В таких случаях ищут решение игры в смешанных стратегиях Определение 55 Смешанной стратегией называют произвольное вероятностное распределение на множестве чистых стратегий: m p = ( p, K, p ) P = p p,, m m = p = q = ( q, K, q ) Q = q q, = q = Применение смешанных стратегий означает чередование чистых стратегий согласно их вероятностям при многократном повторении игры Платежная функция при этом определяется как математическое ожидание выигрыша первого игрока при применении игроками смешанных стратегий p и q и равна E( pq, ) = apq В соответствии с принципом минимакса каждый игрок должен выбирать такую смешанную стратегию, которая максимизирует его наименьший гарантированный выигрыш Аналогично случаю использования чистых стратегий наименьший гарантированный выигрыш первого игрока называется нижней ценой игры и равен α = max α( p) = max m E( p, q) p P m p P m q Q Аналогично определяется верхняя цена игры β = m β ( q) = m max E( p, q) q Q q Q p Pm Основным результатом теории матричных игр является теорема 5 Теорема 5 (фон-неймана) В любой матричной игре существует такая пара смешанных стратегий ( p *,q *), что ) E( p, q*) E( p*, q*) E( p*, q ) для любых p P m, q P ; ) α = β = E( p*, q*) Число ν = E( p*, q*) называется ценой игры в смешанных стратегиях По теореме фон-неймана любая матричная игра имеет пару оптимальных смешанных стратегий Для решения матричной игры необходимо отыскать эти оптимальные стратегии и цену игры Определение 5 Чистая стратегия называется активной, если она используется в некоторой оптимальной смешанной стратегии с ненулевой вероятностью 59

7 Теорема 5 (об активных стратегиях) Если один из игроков использует оптимальную стратегию, то его противник достигает цены игры ν при любой своей смешанной стратегии, в которой используются только активные чистые стратегии a a Пример 5 Для игры, заданной матрицей без седловой a a точки, найти оптимальные смешанные стратегии и цену игры * * * Решение Пусть p = ( p оптимальная стратегия первого игрока, p) В силу теоремы об активных стратегиях, если первый игрок использует оптимальную стратегию, то второй достигает цены игры ν при любой своей смешанной стратегии, в которой используются только активные чистые стратегии, например при q = (, ) и q = (,) Записывая для них выражения соответствующей цены игры, получаем ν = a p + a p = ν, ν = a p + a p = ν и, учитывая соотношение p + p =, имеем систему из трех уравнений с тремя неизвестными, решив которую, находим * a a * a a p = ; p = ; a a a + a a a a + a aa aa ν = a a a + a Поменяв игроков местами и проведя аналогичные вычисления, получаем выражения для оптимальной стратегии второго игрока: * a a * a a q = ; q = a a a + a a a a + a Рассмотрим игру первого игрока * * Найдем оптимальную смешанную стратегию p * = ( p, p ), на которой достигается максимум α( p) = m E( p, q) max q Qm Положим x = p, x = p, < x < Обозначим f ( x) = α( p) Тогда по теореме об активных стратегиях p P + = m ν ( x), q Qm = f ( x) = m [ a ( a a ) x] q

8 где ν ( x) = a + ( a a ) x, =,, В итоге получаем задачу максимизации миноранты семейства линейных функций в интервале (, ): mν ( x) max < x< * * Поскольку известно, что p, p > и миноранта семейства линейных функций вогнута, непрерывна и кусочно-линейная, то ее максимум на отрезке (, ) достигается в одной из внутренних точек излома и может быть найден за время O( ) Пусть максимум миноранты достигается на пересечении прямых ν ( x) и ν (x ) (рис 5) k k f(x) (x) ν k ν k ( x) p * x Рис 5 Тогда для решения игры достаточно рассмотреть матричную игру с a a k k матрицей a a k k Пример 57 Решить матричную игру с платежной матрицей

9 Решение Запишем уравнения прямых ν (x) : ν ( x) = 8, ν ( x) =, ν ( x) = 5, ν ( x ) = + x x x x Максимум миноранты достигается на пересечении прямых ν ( x) и ν ( x) (рис 5), поэтому для решения исходной задачи используем матрицу x = p = 5 x Рис 5 Применяя полученные ранее формулы, получаем 5 8 p* =,, q* =,,,, ν = Игра m решается аналогично сведением к задаче минимизации мажоранты m линейных функций Заметим также, что игра с платежной матрицей = ( ) сводится к игре с матрицей A перестановкой T игро- A a m ков, а игра m сводится к игре ( )

10 5 Метод фиктивного розыгрыша Брауна Робинсон Идея метода заключается в поочередном выборе каждой стороной наилучшей чистой стратегии против наблюдаемого эмпирического распределения чистых стратегий противника На первом шаге противники выбирают произвольные чистые стратегии и соответственно Пусть противниками на первых шагах последовательно выбирались стратегии и и (,, K, ) (,, K, ) x, y количество шагов, на которых первым и вторым игроками выбирались стратегии и соответственно Очевидно, m x = y = Обозначим x относительные частоты применения стратегий и через p = y и q = Таким образом, на каждом шаге имеем наблюдаемые смешанные стратегии p = ( p, K, p m ) и q = ( q, K, q ) Эти векторы определяют эмпирическое распределение стратегий после первых шагов На шаге ( + ) выбираются такие чистые стратегии и, что α β = max a m = = m = q = = = a + a = p a + Частоты стратегий пересчитываются по следующим формулам: p q, +,, +, p = q = p + q +, = + ;, = Авторами метода доказано, что с ростом эмпирические распределения сходятся к оптимальным смешанным стратегиям: α + β p p*, q q* и ν = ν Метод прост в описании и реализации, сложность одной итерации составляет O(+m) Недостатком метода является его медленная немонотонная сходимость На практике остановка алгоритма происходит после выполнения достаточно большого числа итераций q p, + +

11 Пример 58 Выполнить итераций метода Брауна Робинсон для решения матричной игры с платежной матрицей Решение Запишем изменение эмпирических распределений на каждом шаге алгоритма Шаг =, = p = (,,), q = (,,) = ( /,,/) ν = ( ) p = ( /,, /) q = ( ) p = ( /,, / ) q = ( ) 5 p = ( /5,/5, /5) 5 q = ( ) p = ( /, /,/) q = ( ) 7 p = ( /7,/7,/7) 7 q = ( /5,, /5) 8 p = ( /8,/, /8) 8 q = ( /,/, / ) Шаг α =, = p α + β = = β =, = q,, Шаг α =, = α + β 9 = = =, 5 β /,,/ ν = /, = Шаг α = 7/, = α + β = =,8 β /,,/ ν = /, = Шаг 5 α = 5/, = α + β = =,875 β 5 ν = 5/, /,, / 5 = Шаг α = 8/, = α + β =, β ν 5 = 8/5, /,, / = Шаг 7 α = /, 7 = β = /, = 7 Шаг 8 α = / 5, 8 = 7 β = / 7, = 7 8 ν, 9 7 ν, 57 На дальнейших шагах получаем следующие значения: 8 9 ν,, ν, 98, ν, 875, ν, 98, ν,8

12 ν,,,,,9,8 Номер итерации Рис 5 Из рис 5 видно, что процесс не монотонен, поэтому его остановка по критерию ν ν ε не корректна Упражнения Первый игрок загадывает любое целое число от до Второй игрок должен отгадать это число Если второй игрок указывает число правильно, он получает выигрыш, равный значению этого числа В противном случае этот выигрыш получает первый игрок а) Определите число стратегий игроков и составьте платежную матрицу задачи б) Определите нижнюю и верхнюю цену игры Установите, существует ли в данной игре решение в чистых стратегиях Решить матричные игры в чистых стратегиях для матриц: а) ; б)

13 ( ) Решить матричную игру с матрицей ( a ) = f( ) + g( ) Решить матричные игры в смешанных стратегиях: m m а) ; б) ; в) 5 Осуществить итераций метода фиктивного розыгрыша Брауна Робинсон для решения матричной игры


Глава 7. ЭЛЕМЕНТЫ ТЕОРИИ МАТРИЧНЫХ ИГР

Глава 7. ЭЛЕМЕНТЫ ТЕОРИИ МАТРИЧНЫХ ИГР Глава 7. ЭЛЕМЕНТЫ ТЕОРИИ МАТРИЧНЫХ ИГР В теории игр исследуется процесс принятия решений в конфликтных ситуациях, т. е. в случаях, когда существует несколько сторон с разными интересами. Различают игры

Подробнее

Лекции КЛАССИФИКАЦИЯ ИГР.

Лекции КЛАССИФИКАЦИЯ ИГР. Лекции 5-6 КЛАССИФИКАЦИЯ ИГР. Классификацию игр можно проводить: по количеству игроков, количеству стратегий, характеру взаимодействия игроков, характеру выигрыша, количеству ходов, состоянию информации

Подробнее

ТЕОРИЯ МАТРИЧНЫХ ИГР. Задачи выбора в условиях неопределенности

ТЕОРИЯ МАТРИЧНЫХ ИГР. Задачи выбора в условиях неопределенности ТЕОРИЯ МАТРИЧНЫХ ИГР Задачи выбора в условиях неопределенности Имеется набор возможных исходов y Y, из которых один окажется совмещенным с выбранной альтернативой, но с какой именно в момент выбора неизвестно,

Подробнее

Тема 11. Матричные игры

Тема 11. Матричные игры Тема 11. Матричные игры Цель: познакомить читателя с основными понятиями теории матричных игр: принципом максимина и минимакса, ситуациями равновесия, смешанным расширением игры, выяснить взаимосвязь между

Подробнее

ТЕОРИЯ ИГР ТЕОРИЯ ИГР И.В. ПИВОВАРОВА. Пивоварова Ирина Викторовна. Министерство образования и науки Российской Федерации

ТЕОРИЯ ИГР ТЕОРИЯ ИГР И.В. ПИВОВАРОВА. Пивоварова Ирина Викторовна. Министерство образования и науки Российской Федерации Министерство образования и науки Российской Федерации Владивостокский государственный университет экономики и сервиса Учебное издание Пивоварова Ирина Викторовна ТЕОРИЯ ИГР Практикум ИВ ПИВОВАРОВА ТЕОРИЯ

Подробнее

2.2. Смешанные стратегии

2.2. Смешанные стратегии 1 2.2. Смешанные стратегии Если в игре нет седловой точки в чистых стратегиях, то можно найти нижнюю и верхнюю чистые цены этой игры, которые указывают, что игрок 1 не должен надеяться на выигрыш больший,

Подробнее

К теме Теория игр. Для каждой формализованной игры вводятся правила, т.е. система условий, определяющая:

К теме Теория игр. Для каждой формализованной игры вводятся правила, т.е. система условий, определяющая: К теме Теория игр На практике часто приходится сталкиваться с задачами, в которых необходимо принимать решения в условиях неопределенности, т.е. возникают ситуации, в которых две (или более) стороны преследуют

Подробнее

5, 4 1, 1 0, 0 4, 5. Лекция 14. Матричные игры -1- стратегии второго игрока (жена) футбол. стратегии первого игрока (мужа) театр

5, 4 1, 1 0, 0 4, 5. Лекция 14. Матричные игры -1- стратегии второго игрока (жена) футбол. стратегии первого игрока (мужа) театр Введение в матричные игры «Семейный спор» Муж и жена решают куда пойти в субботу вечером на футбол или в театр. Им небезразлично куда пойдет другой но всё-таки каждому больше хотелось бы пойти на что-то

Подробнее

МАТЕМАТИКА ЭЛЕМЕНТЫ ТЕОРИИ ИГР

МАТЕМАТИКА ЭЛЕМЕНТЫ ТЕОРИИ ИГР Учебный центр «Резольвента» Доктор физико-математических наук, профессор К Л САМАРОВ МАТЕМАТИКА Учебно-методическое пособие по разделу ЭЛЕМЕНТЫ ТЕОРИИ ИГР К Л Самаров, 009 ООО «Резольвента», 009 ООО «Резольвента»,

Подробнее

Теория принятия решений

Теория принятия решений Теория принятия решений Литература О.И. Ларичев «Теория и методы принятия решений» А.И. Орлов «Теория принятия решений» А.Т. Зуб «Принятие управленческих решений» А.Г. Мадера «Моделирование и принятие

Подробнее

Введение в матричные игры

Введение в матричные игры Введение в матричные игры Предметом исследований в теории игр являются модели и методы принятия решений в ситуациях, где участвуют несколько сторон (игроков). Цели игроков различны, часто противоположны.

Подробнее

ν = sup inf gu (, u) 2.3. Антагонистические игры. Седловые точки

ν = sup inf gu (, u) 2.3. Антагонистические игры. Седловые точки .3. Антагонистические игры. Седловые точки Антагонистическая игра. Она представляет собой частный случай игры в нормальной форме Г, когда имеется два игрока (n = ) и сумма функций выигрыша этих игроков

Подробнее

Лекция 3. Решение игр в смешанных стратегиях.

Лекция 3. Решение игр в смешанных стратегиях. Лекция 3. Решение игр в смешанных стратегиях. 18.09.2014 1 3.1 Нахождение смешанных стратегий в играх 2 2 3.2 Упрощение матричных игр 3.3 Решение матричных игр в смешанных стратегиях 2xn и mx2 2 Аналитический

Подробнее

Лекция 2. Антагонистические игры.

Лекция 2. Антагонистические игры. Лекция 2. Антагонистические игры. 11.09.2014 1 2.1 Определение антагонистической игры 2.2 Понятие матричной игры 2.3 Выбор оптимальной стратегии в матричной игре 2.4 Ситуация равновесия в матричной игре

Подробнее

Инвестиционная политика

Инвестиционная политика УДК 336.051 ФОРМИРОВАНИЕ ОПТИМАЛЬНЫХ СТРАТЕГИЙ ИНВЕСТОРА НА РОССИЙСКОМ ФОНДОВОМ РЫНКЕ С ПОМОЩЬЮ МЕТОДОВ ТЕОРИИ ИГР Н. А. КЛИТИНА, ассистент кафедры фундаментальной и прикладной математики E-mal: kltnanna@yandex.

Подробнее

Контрольная работа Теория игр. Оглавление. Задание Задание Задание Задание Задание

Контрольная работа Теория игр. Оглавление. Задание Задание Задание Задание Задание Контрольная работа Теория игр Оглавление Задание Задание 9 Задание 3 4 Задание 4 9 Задание 5 3 Задание Сельскохозяйственное предприятие планирует посеять на площади 000 га одну или две (в равной пропорции)

Подробнее

Методы принятия управленческих решений в условиях конфликта

Методы принятия управленческих решений в условиях конфликта Лекция Методы принятия управленческих решений в условиях конфликта ЮТИ ТПУ Кафедра информационных систем Направление 09.04.03 Прикладная информатика 2016 1 Основные понятия Пусть соперником при ПР является

Подробнее

ТЕОРИЯ ИГР ТРЕНИРОВОЧНЫЕ ТЕСТЫ ПО ДИСЦИПЛИНЕ

ТЕОРИЯ ИГР ТРЕНИРОВОЧНЫЕ ТЕСТЫ ПО ДИСЦИПЛИНЕ Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «СИБИРСКАЯ ГОСУДАРСТВЕННАЯ ГЕОДЕЗИЧЕСКАЯ АКАДЕМИЯ»

Подробнее

ЛАБОРАТОРНАЯ РАБОТА 4. Решение и геометрическая интерпретация игровых моделей размера 2 x 2, 2 x n, m x 2

ЛАБОРАТОРНАЯ РАБОТА 4. Решение и геометрическая интерпретация игровых моделей размера 2 x 2, 2 x n, m x 2 ЛАБОРАТОРНАЯ РАБОТА Решение и геометрическая интерпретация игровых моделей размера x x n m x В решении игр используется следующая теорема: если один из игроков применяет свою оптимальную смешанную стратегию

Подробнее

Равновесие Нэша - определения

Равновесие Нэша - определения Равновесие Нэша Самый популярный принцип рационального поведения в теории некооперативных игр рекомендует в качестве рациональных исходов использовать ситуации равновесия Нэша. Они характеризуются тем,

Подробнее

ТЕОРИЯ ИГР В ЗАДАЧАХ

ТЕОРИЯ ИГР В ЗАДАЧАХ МОСКОВСКИЙ АВТОМОБИЛЬНО-ДОРОЖНЫЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ (МАДИ) М.Л. ОВЕРЧУК ТЕОРИЯ ИГР В ЗАДАЧАХ МЕТОДИЧЕСКИЕ УКАЗАНИЯ МОСКОВСКИЙ АВТОМОБИЛЬНО-ДОРОЖНЫЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

Подробнее

Лекция 17 БЕСКОНЕЧНЫЕ АНТАГОНИСТИЧЕСКИЕ ИГРЫ.

Лекция 17 БЕСКОНЕЧНЫЕ АНТАГОНИСТИЧЕСКИЕ ИГРЫ. Лекция 7 БЕСКОНЕЧНЫЕ АНТАГОНИСТИЧЕСКИЕ ИГРЫ.. ОПРЕДЕЛЕНИЕ БЕСКОНЕЧНОЙ АНТАГОНИСТИЧЕСКОЙ ИГРЫ Естественным обобщением матричных игр являются бесконечные антагонистические игры (БАИ), в которых хотя бы один

Подробнее

Решенная контрольная работа по МОР

Решенная контрольная работа по МОР Решенная контрольная работа по МОР. Построить симплексную таблицу ЗЛП Q = x 3x x 3 max при ограничениях: 3x + x x3 3 x 3x + x3 = x + x + 3x3 x 0; x 0; x 0. Решение Приводим задачу к каноническому виду.

Подробнее

МЕТОДИЧЕСКИЕ УКАЗАНИЯ

МЕТОДИЧЕСКИЕ УКАЗАНИЯ МЕТОДИЧЕСКИЕ УКАЗАНИЯ По выполнению контрольных работ По дисциплине «Теория игр» Для студентов заочного отделения специальности «Прикладная информатика в экономике» Хабаровск Задачи теории игр Если имеется

Подробнее

Министерство Образования Российской Федерации ЮЖНО-РОССИЙСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ЭКОНОМИКИ И СЕРВИСА (ЮРГУЭС) Саакян Г.Р.

Министерство Образования Российской Федерации ЮЖНО-РОССИЙСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ЭКОНОМИКИ И СЕРВИСА (ЮРГУЭС) Саакян Г.Р. Министерство Образования Российской Федерации ЮЖНО-РОССИЙСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ЭКОНОМИКИ И СЕРВИСА (ЮРГУЭС) Саакян ГР ЛЕКЦИИ ТЕОРИЯ ИГР для студентов экономических специальностей очной заочной

Подробнее

Пример из лекции. Торговец на сумму 250 у.е. может закупить зонтики по цене 0,5 у.е. за штуку и солнечные очки по цене 0,2 у.е. за штуку.

Пример из лекции. Торговец на сумму 250 у.е. может закупить зонтики по цене 0,5 у.е. за штуку и солнечные очки по цене 0,2 у.е. за штуку. торговец Пример из лекции Торговец на сумму у.е. может закупить зонтики по цене у.е. за штуку и солнечные очки по цене у.е. за штуку. Он продает зонтики по у.е. за штуку очки по у.е. за штуку. Если идет

Подробнее

Математические модели в экономике Теория игр Контрольная работа

Математические модели в экономике Теория игр Контрольная работа Математические модели в экономике Теория игр Контрольная работа Задача. Используя теорию игр проанализировать ситуацию и принять решение. Рассмотреть ситуацию, как антогонистическую игру и игру с природой.

Подробнее

Задание 1. Найти оптимальные стратегии игры (с седловой точкой): Решение

Задание 1. Найти оптимальные стратегии игры (с седловой точкой): Решение Сделаем ваши задания на отлично. htts://www.matburo.ru/sub_subect.h?ti Теория игр Матричные игры. Игры с природой Задание Найти оптимальные стратегии игры (с седловой точкой): Решение ma min a i } min

Подробнее

ОПТИМИЗАЦИЯ СТРАТЕГИИ ПОЛИТИЧЕСКИХ ПАРТИЙ В ХОДЕ ПРЕДВЫБОРНОЙ КАМПАНИИ

ОПТИМИЗАЦИЯ СТРАТЕГИИ ПОЛИТИЧЕСКИХ ПАРТИЙ В ХОДЕ ПРЕДВЫБОРНОЙ КАМПАНИИ УДК 58 9 ОПТИМИЗАЦИЯ СТРАТЕГИИ ПОЛИТИЧЕСКИХ ПАРТИЙ В ХОДЕ ПРЕДВЫБОРНОЙ КАМПАНИИ ВВ ОСТАПЕНКО ОС ОСТАПЕНКО ТВ ПОДЛАДЧИКОВА Предложена теоретико-игровая модель борьбы двух крупных партий за электорат в ходе

Подробнее

Матричные игры. Решение конфликта в условиях антагонизма: кто кого победит? Одесcкий национальный университет имени И.И. Мечникова. Кичмаренко О.Д.

Матричные игры. Решение конфликта в условиях антагонизма: кто кого победит? Одесcкий национальный университет имени И.И. Мечникова. Кичмаренко О.Д. цена. Матричные. Решение конфликта в условиях антагонизма: кто кого победит? Кичмаренко О.Д. Одесcкий национальный университет имени И.И. Мечникова цена. Определение. Матричная игра - это бескоалиционная

Подробнее

МАТРИЧНЫЕ ИГРЫ И ЛИНЕЙНОЕ ПРОГРАММИРОВАНИЕ. В. Н. Малозёмов. 14 апреля 2016 г.

МАТРИЧНЫЕ ИГРЫ И ЛИНЕЙНОЕ ПРОГРАММИРОВАНИЕ. В. Н. Малозёмов. 14 апреля 2016 г. МАТРИЧНЫЕ ИГРЫ И ЛИНЕЙНОЕ ПРОГРАММИРОВАНИЕ В. Н. Малозёмов malv@math.spbu.ru 14 апреля 2016 г. Аннотация. В докладе матричные игры анализируются с точки зрения линейного программирования. Приведены два

Подробнее

Основные и самые популярные методы решения матричных игр ограничены в возможностях и применимы только для игр с матрицей выигрышей размерности

Основные и самые популярные методы решения матричных игр ограничены в возможностях и применимы только для игр с матрицей выигрышей размерности РЕШЕНИЕ ИГРЫ m х n МЕТОДОМ ШЕПЛИ-СНОУ Мардашкина А.А. Финансовый университет при Правительстве РФ г. Москва Научный руководитель к.ф-м.н., проф. Лабскер Л. Г. На практике часто приходится сталкиваться

Подробнее

Портфолио arcadynovosyolov: игры и решения

Портфолио arcadynovosyolov: игры и решения Портфолио arcadynovosyolov: игры и решения ОГЛАВЛЕНИЕ Типовые задачи... 2 Игры и решения... 2 Матричные игры... 2 Более сложные задачи... 7 Игры и решения... 7 Парето-оптимальное решение... 7 ТИПОВЫЕ ЗАДАЧИ

Подробнее

ЗАДАНИЯ ПО ТЕОРИИ ИГР С ПРИМЕРАМИ РЕШЕНИЯ

ЗАДАНИЯ ПО ТЕОРИИ ИГР С ПРИМЕРАМИ РЕШЕНИЯ Федеральное агентство железнодорожного транспорта Уральский государственный университет путей сообщения Кафедра «Высшая и прикладная математика» П. С. Гончарь Л. Э. Гончарь Д. С. Завалищин ЗАДАНИЯ ПО ТЕОРИИ

Подробнее

РУКОВОДСТВО К РЕШЕНИЮ ЗАДАЧ ПО ТЕОРИИ ИГР И ИССЛЕДОВАНИЮ ОПЕРАЦИЙ

РУКОВОДСТВО К РЕШЕНИЮ ЗАДАЧ ПО ТЕОРИИ ИГР И ИССЛЕДОВАНИЮ ОПЕРАЦИЙ Саратовский государственный университет им. Н.Г.Чернышевского И.А. Кузнецова, Н.В. Сергеева РУКОВОДСТВО К РЕШЕНИЮ ЗАДАЧ ПО ТЕОРИИ ИГР И ИССЛЕДОВАНИЮ ОПЕРАЦИЙ Учебно-методическое пособие для студентов механико-математического

Подробнее

ЛАБОРАТОРНАЯ РАБОТА 1 «ПРИНЯТИЕ РЕШЕНИЙ В СРЕДЕ SCILAB»

ЛАБОРАТОРНАЯ РАБОТА 1 «ПРИНЯТИЕ РЕШЕНИЙ В СРЕДЕ SCILAB» ЛАБОРАТОРНАЯ РАБОТА «ПРИНЯТИЕ РЕШЕНИЙ В СРЕДЕ SCILAB». Введение Sclb - это система компьютерной математики, которая предназначена выполнения инженерных и научных вычислений, включающих в себя задачи принятия

Подробнее

А.В. Колесников. Вариационное исчисление. Высшая Школа Экономики. Математический факультет. Москва гг.

А.В. Колесников. Вариационное исчисление. Высшая Школа Экономики. Математический факультет. Москва гг. А.В. Колесников Вариационное исчисление Высшая Школа Экономики. Математический факультет. Москва. 2013 гг. Некоторые специальные экстремальные задачи Дискретная транспортная задача (задача Монжа-Канторовича)

Подробнее

АВТОРЕФЕРАТ БАКАЛАВРСКОЙ РАБОТЫ

АВТОРЕФЕРАТ БАКАЛАВРСКОЙ РАБОТЫ Министерство образования и науки Российской Федерации ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «САРАТОВСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

Подробнее

Системы управления и моделирование

Системы управления и моделирование Системы управления и моделирование Алгоритм анализа робастной устойчивости дискретных систем управления с периодическими ограничениями М. В. МОРОЗОВ Аннотация. Для дискретных линейных нестационарных систем

Подробнее

НИУ Высшая школа экономики Факультет прикладной политологии

НИУ Высшая школа экономики Факультет прикладной политологии НИУ Высшая школа экономики Факультет прикладной политологии Теория игр 2011/2012 учебный год (Д. А. Дагаев, А. В. Михайлович, К. И. Сонин, И. А. Хованская, И. В. Щуров ) Лекция 3. 4. Игры в нормальной

Подробнее

Л.И. Сантылова, А.Б. Зинченко

Л.И. Сантылова, А.Б. Зинченко Федеральное агентство по образованию Российской Федерации ГОУВПО «Ростовский государственный университет» ЛИ Сантылова, АБ Зинченко ИГРОВЫЕ МОДЕЛИ ПРИНЯТИЯ РЕШЕНИЙ (методические указания для студентов

Подробнее

max f при условии, что g(x) = b i, (1)

max f при условии, что g(x) = b i, (1) Метод множителей Лагранжа Рассмотрим экстремальную задачу с ограничениями в виде равенств: найти a при условии что ) = ) на множестве допустимых значений описываемом системой уравнений где R : R R : R

Подробнее

ПРИКЛАДНАЯ МАТЕМАТИКА В ВОЕННОМ ДЕЛЕ Попкович А. С. руководитель: Шевелева И. В. к.ф.-м.н., доцент СФУ МАОУ Лицей 6 "Перспектива"

ПРИКЛАДНАЯ МАТЕМАТИКА В ВОЕННОМ ДЕЛЕ Попкович А. С. руководитель: Шевелева И. В. к.ф.-м.н., доцент СФУ МАОУ Лицей 6 Перспектива УДК 519.8 ПРИКЛАДНАЯ МАТЕМАТИКА В ВОЕННОМ ДЕЛЕ Попкович А. С. руководитель: Шевелева И. В. к.ф.-м.н., доцент СФУ МАОУ Лицей 6 "Перспектива" Введение Война является ярчайшем проявлением одного из наиболее

Подробнее

Часть II Модели оптимального управления в экономике. 7. Теория игр и игровое моделирование в экономике

Часть II Модели оптимального управления в экономике. 7. Теория игр и игровое моделирование в экономике Часть II Модели оптимального управления в экономике К содержанию 7 Теория игр и игровое моделирование в экономике 7 Основные понятия теории игр Теория игр это раздел математики, в котором исследуются математические

Подробнее

МОДИФИЦИРОВАННЫЙ ИТЕРАТИВНЫЙ МЕТОД ДЛЯ РЕШЕНИЯ СИММЕТРИЧНЫХ МАТРИЧНЫХ ИГР

МОДИФИЦИРОВАННЫЙ ИТЕРАТИВНЫЙ МЕТОД ДЛЯ РЕШЕНИЯ СИММЕТРИЧНЫХ МАТРИЧНЫХ ИГР МОДИФИЦИРОВАННЫЙ ИТЕРАТИВНЫЙ МЕТОД ДЛЯ РЕШЕНИЯ СИММЕТРИЧНЫХ МАТРИЧНЫХ ИГР А.В. Баркалов, Е.С. Гвоздева Нижегородский госуниверситет им. Н.И. Лобачевского Матричные игры Игрой называется математическая

Подробнее

Г.Л. Нохрина. ТЕОРИЯ ИГР Контрольные материалы для специальности по всем формам обучения

Г.Л. Нохрина. ТЕОРИЯ ИГР Контрольные материалы для специальности по всем формам обучения Министерство образования и науки Российской Федерации ФГБОУ ВПО «Уральский государственный лесотехнический университет» Институт экономики и управления Кафедра Информационных технологий и моделирования

Подробнее

Γ обозначение игры, N = { 1,

Γ обозначение игры, N = { 1, Равновесие по Нэшу. Существование равновесия для конечных игр в нормальной форме.. Понятие игры в нормальной форме... Игры в нормальной форме. Введем понятие игры в нормальной (стратегической) форме. Как

Подробнее

Лекция3. 3. Метод Ньютона (касательных).

Лекция3. 3. Метод Ньютона (касательных). Лекция3. 3. Метод Ньютона (касательных. Зададим некоторое начальное приближение [,b] и линеаризуем функцию f( в окрестности с помощью отрезка ряда Тейлора f( = f( + f '( ( -. (5 Вместо уравнения ( решим

Подробнее

Просеминар по математической логике и теории алгоритмов

Просеминар по математической логике и теории алгоритмов Просеминар по математической логике и теории алгоритмов http://proseminar.math.ru Игры и стратегии - 2 Пусть задана игра в нормальной форме. Смешанной стратегией для игрока m называется распределение вероятностей

Подробнее

2. РЕШЕНИЕ НЕЛИНЕЙНЫХ УРАВНЕНИЙ И СИСТЕМ НЕЛИНЕЙНЫХ УРАВНЕНИЙ 2.1. РЕШЕНИЕ НЕЛИНЕЙНЫХ УРАВНЕНИЙ

2. РЕШЕНИЕ НЕЛИНЕЙНЫХ УРАВНЕНИЙ И СИСТЕМ НЕЛИНЕЙНЫХ УРАВНЕНИЙ 2.1. РЕШЕНИЕ НЕЛИНЕЙНЫХ УРАВНЕНИЙ . РЕШЕНИЕ НЕЛИНЕЙНЫХ УРАВНЕНИЙ И СИСТЕМ НЕЛИНЕЙНЫХ УРАВНЕНИЙ.. РЕШЕНИЕ НЕЛИНЕЙНЫХ УРАВНЕНИЙ вида Численное решение нелинейных алгебраических или трансцендентных уравнений. заключается в нахождении значений

Подробнее

Симплекс-метод решения задачи линейного программирования

Симплекс-метод решения задачи линейного программирования Симплекс-метод решения задачи линейного программирования. Эквивалентные формулировки задачи линейного программирования. Формулировка задачи линейного программирования. Напомним, что математически задача

Подробнее

ТЕОРИЯ ИГР. Федеральное агентство по образованию. Рыбинская государственная авиационная. технологическая академия им. П. А.

ТЕОРИЯ ИГР. Федеральное агентство по образованию. Рыбинская государственная авиационная. технологическая академия им. П. А. Федеральное агентство по образованию Рыбинская государственная авиационная технологическая академия им. П. А. Соловьева ЗАОЧНАЯ ФОРМА ОБУЧЕНИЯ ТЕОРИЯ ИГР Программа учебной дисциплины и методические указания

Подробнее

2. РЕШЕНИЕ НЕЛИНЕЙНЫХ УРАВНЕНИЙ И СИСТЕМ НЕЛИНЕЙНЫХ УРАВНЕНИЙ 2.1. РЕШЕНИЕ НЕЛИНЕЙНЫХ УРАВНЕНИЙ

2. РЕШЕНИЕ НЕЛИНЕЙНЫХ УРАВНЕНИЙ И СИСТЕМ НЕЛИНЕЙНЫХ УРАВНЕНИЙ 2.1. РЕШЕНИЕ НЕЛИНЕЙНЫХ УРАВНЕНИЙ РЕШЕНИЕ НЕЛИНЕЙНЫХ УРАВНЕНИЙ И СИСТЕМ НЕЛИНЕЙНЫХ УРАВНЕНИЙ РЕШЕНИЕ НЕЛИНЕЙНЫХ УРАВНЕНИЙ вида Численное решение нелинейных алгебраических или трансцендентных) уравнений f = ) заключается в нахождении значений,

Подробнее

ТЕОРИЯ ИГР. Вопросы для самостоятельного изучения дисциплины

ТЕОРИЯ ИГР. Вопросы для самостоятельного изучения дисциплины Министерство образования и науки Российской Федерации ФГБОУ ВПО «Уральский государственный лесотехнический университет» Институт экономики и управления Кафедра Информационных технологий и моделирования

Подробнее

К. В. Григорьева. Методические указания Часть 1. Бескоалиционные игры в нормальной форме. Факультет ПМ-ПУ СПбГУ 2007 г.

К. В. Григорьева. Методические указания Часть 1. Бескоалиционные игры в нормальной форме. Факультет ПМ-ПУ СПбГУ 2007 г. К В Григорьева Методические указания Часть Бескоалиционные игры в нормальной форме Факультет ПМ-ПУ СПбГУ г ОГЛАВЛЕНИЕ ЗАНЯТИЕ СОДЕРЖАНИЕ ТЕОРИИ ИГР КЛАССИФИКАЦИЯ ИГР ИГРА В НОРМАЛЬНОЙ ФОРМЕ РАВНОВЕСИЕ

Подробнее

ПРИЛОЖЕНИЯ МЕТОДОВ МАТРИЧНЫХ ИГР, ЛИНЕЙНОГО ПРОГРАММИРОВАНИЯ И ТЕОРИИ ВЕРОЯТНОСТЕЙ К ПЛАНИРОВАНИЮ ВОЕННЫХ ОПЕРАЦИЙ В УСЛОВИЯХ НЕОПРЕДЕЛЕННОСТЕЙ

ПРИЛОЖЕНИЯ МЕТОДОВ МАТРИЧНЫХ ИГР, ЛИНЕЙНОГО ПРОГРАММИРОВАНИЯ И ТЕОРИИ ВЕРОЯТНОСТЕЙ К ПЛАНИРОВАНИЮ ВОЕННЫХ ОПЕРАЦИЙ В УСЛОВИЯХ НЕОПРЕДЕЛЕННОСТЕЙ Ýêîíîìèêà УДК 5985 ПРИЛОЖЕНИЯ МЕТОДОВ МАТРИЧНЫХ ИГР ЛИНЕЙНОГО ПРОГРАММИРОВАНИЯ И ТЕОРИИ ВЕРОЯТНОСТЕЙ К ПЛАНИРОВАНИЮ ВОЕННЫХ ОПЕРАЦИЙ В УСЛОВИЯХ НЕОПРЕДЕЛЕННОСТЕЙ 00 АИ Чегодаев* Ключевые слова: чистые

Подробнее

Численное решение нелинейных уравнений

Численное решение нелинейных уравнений Постановка задачи Метод половинного деления Метод хорд (метод пропорциональных частей 4 Метод Ньютона (метод касательных 5 Метод итераций (метод последовательных приближений Постановка задачи Пусть дано

Подробнее

И.В.Кацев (СПб ЭМИ) Бесконечные антагонистические игры / 20

И.В.Кацев (СПб ЭМИ) Бесконечные антагонистические игры / 20 Домашнее задание 2 Оптимальные стратегии (x, y ) называются вполне смешанными, если x i > 0, y j > 0 для всех i, j Игра, у которой любые оптимальные стратегии игроков вполне смешанные, называется вполне

Подробнее

Тема 4. ЧИСЛЕННОЕ РЕШЕНИЕ НЕЛИНЕЙНЫХ УРАВНЕНИЙ

Тема 4. ЧИСЛЕННОЕ РЕШЕНИЕ НЕЛИНЕЙНЫХ УРАВНЕНИЙ Тема 4. ЧИСЛЕННОЕ РЕШЕНИЕ НЕЛИНЕЙНЫХ УРАВНЕНИЙ -1- Тема 4. ЧИСЛЕННОЕ РЕШЕНИЕ НЕЛИНЕЙНЫХ УРАВНЕНИЙ 4.0. Постановка задачи Задача нахождения корней нелинейного уравнения вида y=f() часто встречается в научных

Подробнее

ЛЕКЦИЯ 4. Задание подпространств уравнениями, системы линейных уравнений, ранг матрицы.

ЛЕКЦИЯ 4. Задание подпространств уравнениями, системы линейных уравнений, ранг матрицы. ЛЕКЦИЯ 4. Задание подпространств уравнениями, системы линейных уравнений, ранг матрицы. Основные результаты Лекции 4. 1) Любое подпространство V k F n 2 размерности k задается некоторой системой из n k

Подробнее

определяется матрицей A.

определяется матрицей A. Задание.Мебельная фабрика планирует выпуск двух видов продукции А и Б. Спрос на продукцию не определен, однако можно предполагать, что он может принимать одно из трех состояний (I, II и III). В зависимости

Подробнее

) называется матрицей последствий (возможных решений, выигрышей).

) называется матрицей последствий (возможных решений, выигрышей). Тема 2. Количественные характеристики и схемы оценки рисков в условиях неопределенности Лекция 1 (2 часа) 1. Матрицы последствий и матрицы рисков. 2. Анализ связанной группы решений в условиях полной неопределенности

Подробнее

5 Транспортная задача

5 Транспортная задача 1 5 Транспортная задача Важный частный случай задач линейного программирования транспортные задачи Это математические модели разнообразных прикладных задач по оптимизации перевозок Распространенность в

Подробнее

1. Численные методы решения уравнений

1. Численные методы решения уравнений 1. Численные методы решения уравнений 1. Системы линейных уравнений. 1.1. Прямые методы. 1.2. Итерационные методы. 2. Нелинейные уравнения. 2.1. Уравнения с одним неизвестным. 2.2. Системы уравнений. 1.

Подробнее

Кобычева А.С. Финансовый университет при Правительстве РФ, г. Москва Научный руководитель к. ф-м.н., профессор Лабскер Л.Г.

Кобычева А.С. Финансовый университет при Правительстве РФ, г. Москва Научный руководитель к. ф-м.н., профессор Лабскер Л.Г. РЕШЕНИЕ АНТАГОНИСТИЧЕСКОЙ ИГРЫ ПРИБЛИЖЕННЫМ МЕТОДОМ БРАУНА-РОБИНСОН: АЛГОРИТМ ИТЕРАЦИЙ, ВЫЧИСЛИТЕЛЬНЫЕ ПРОЦЕДУРЫ, РАЗРАБОТКА ПРОГРАММНОГО ОБЕСПЕЧЕНИЯ И ЭКОНОМИЧЕСКОЕ ПРИЛОЖЕНИЕ Текст тезисов Кобычева А.С.

Подробнее

называется произведением матрицы A размера компонентам сомножителей матричного произведения иллюстрирует рис

называется произведением матрицы A размера компонентам сомножителей матричного произведения иллюстрирует рис Тема 06 Произведение матриц и его свойства Обращение квадратных матриц и его свойства Детерминант квадратной матрицы -го порядка и его свойства Миноры дополнительные миноры и алгебраические дополнения

Подробнее

Уравнение прямой в пространстве

Уравнение прямой в пространстве Уравнение прямой в пространстве 1 Прямая как пересечение двух плоскостей. Система двух линейных уравнений с тремя неизвестными. Прямую в пространстве можно задать как пересечение двух плоскостей. Пусть

Подробнее

Глава 3. НЕЛИНЕЙНОЕ ПРОГРАММИРОВАНИЕ Задача математического программирования

Глава 3. НЕЛИНЕЙНОЕ ПРОГРАММИРОВАНИЕ Задача математического программирования Глава 3. НЕЛИНЕЙНОЕ ПРОГРАММИРОВАНИЕ 3.. Задача математического программирования В предыдущей главе мы познакомились с линейным программированием. Приведенные примеры показывают что многие практические

Подробнее

2.4. Решение матричных игр в смешанных стратегиях 2х2

2.4. Решение матричных игр в смешанных стратегиях 2х2 2.4. Решение матричных игр в смешанных стратегиях 2х2 1 Аналитический метод Графический метод Аналитический метод решения игры 2х2 2 A 1) оптимальное решение в смешанных стратегиях: S A = p 1, p 2 и S

Подробнее

Теорема об ожидаемой полезности и антагонистические игры. И.В.Кацев (СПб ЭМИ) Полезность и антагонистические игры / 31

Теорема об ожидаемой полезности и антагонистические игры. И.В.Кацев (СПб ЭМИ) Полезность и антагонистические игры / 31 Теорема об ожидаемой полезности и антагонистические игры ИВКацев (СПб ЭМИ) Полезность и антагонистические игры 2013 1 / 31 Пример Рассмотрим игру, похожую на покер В данный момент есть две возможности

Подробнее

ИГРЫ С НЕПОЛНОЙ ИНФОРМИРОВАННОСТЬЮ

ИГРЫ С НЕПОЛНОЙ ИНФОРМИРОВАННОСТЬЮ ИГРЫ С НЕПОЛНОЙ ИНФОРМИРОВАННОСТЬЮ -й игрок y y -й игрок y y y y -й игрок r y y y r y y r y y y -й игрок y y r y y r y y y r y y y Принцип максимального гарантированного результата Принцип максимального

Подробнее

Лабораторная работа 3.

Лабораторная работа 3. Лабораторная работа АЛГОРИТМ БЕРЛЕКЭМПА-МЕССИ ДЛЯ НАХОЖДЕНИЯ КОЭФФИЦИЕНТОВ ОБРАТНОЙ СВЯЗИ ГЕНЕРАТОРА ПСЕВДОСЛУЧАЙНОЙ ПОСЛЕДОВАТЕЛЬНОСТИ Рассмотрим как можно восстановить полином задающий обратные связи

Подробнее

Теория игр Решение контрольной работы

Теория игр Решение контрольной работы Теория игр Решение контрольной работы Задача Решить задачу графическим методом Решение Очевидно, матрица не имеет седловой точки, поэтому будем искать решение в смешанных стратегиях Решим задачу графическим

Подробнее

Полезность. И.В.Кацев (СПб ЭМИ) Полезность и антагонистические игры / 13

Полезность. И.В.Кацев (СПб ЭМИ) Полезность и антагонистические игры / 13 Полезность ИВКацев (СПб ЭМИ) Полезность и антагонистические игры 2012 1 / 13 Полезность Полезность - мера удовлетворенности агента ИВКацев (СПб ЭМИ) Полезность и антагонистические игры 2012 1 / 13 Полезность

Подробнее

Теория игр Контрольная работа 2013 года Решения задач

Теория игр Контрольная работа 2013 года Решения задач Теория игр Контрольная работа 03 года Решения задач Задача. Рассмотрим приведенную ниже игру в нормальной форме, в которой игрок выбирает строки, а игрок столбцы. L C R T 4, 3,0, M,,4 0,3 B, 4,,4 а. Проведите

Подробнее

5. Линейные коды (продолжение)

5. Линейные коды (продолжение) 17 5. Линейные коды (продолжение) Проверочная матрица кода. Другой способ задания линейного подпространства C F n размерности k состоит в указании n k линейных уравнений, которым удовлетворяют координаты

Подробнее

Специальные процедуры оптимизации периодически нестационарных стохастических автоматов 1

Специальные процедуры оптимизации периодически нестационарных стохастических автоматов 1 Специальные процедуры оптимизации периодически нестационарных стохастических автоматов 1 А. Ю. Пономарева к. ф.-м. н. Р. М. Строилов М. К. Чирков д. ф.-м. н. 2 Санкт-Петербургский государственный университет

Подробнее

Бесконечные антагонистические игры Равновесие по Нэшу

Бесконечные антагонистические игры Равновесие по Нэшу Бесконечные антагонистические игры Равновесие по Нэшу Илья Кацев 1 1 Санкт-Петербургский экономико-математический институт РАН 2015 Конечное число стратегий Конечное число стратегий оптимальные стратегии

Подробнее

РЕШЕНИЕ ИГРЫ МЕТОДОМ ШЕПЛИ-СНОУ Галеев Р.Р. Финансовый университет при Правительстве РФ Москва, Россия

РЕШЕНИЕ ИГРЫ МЕТОДОМ ШЕПЛИ-СНОУ Галеев Р.Р. Финансовый университет при Правительстве РФ Москва, Россия РЕШЕНИЕ ИГРЫ МЕТОДОМ ШЕПЛИ-СНОУ Галеев Р.Р. Финансовый университет при Правительстве РФ Москва, Россия SOLUTION OF THE GAME BY SHAPLEY-SNOW Gleev R.R. Fcl uversty by The Govermet of the Russ Federto Moscow,

Подробнее

Теория игр. Саратовский государственный университет им. Н.Г Чернышевского

Теория игр. Саратовский государственный университет им. Н.Г Чернышевского Саратовский государственный университет им. Н.Г Чернышевского Кафедра теории вероятностей, математической статистики и управления стохастическими процессами Теория игр Составители курса:. Теоретический

Подробнее

Введение. 1. Задача линейного программирования. Основные понятия

Введение. 1. Задача линейного программирования. Основные понятия Введение Данные методические указания адресованы студентам заочной формы обучения всех специальностей, которые будут выполнять контрольную работу т 4 по высшей математике, и охватывают раздел математического

Подробнее

Данный файл получен на сайте

Данный файл получен на сайте Добавить вопрос МАТЕМАТИКА 1 Суммой (объединением) нескольких событий называется 2 Произведением (пересечением) двух событий А и В называется 3 Сколько существует различных пятизначных номеров, в которых

Подробнее

Лекция 8 Общая постановка однокритериальной задачи принятия решений.

Лекция 8 Общая постановка однокритериальной задачи принятия решений. Лекция 8 Общая постановка однокритериальной задачи принятия решений. Общая постановка однокритериальной задачи принятия решений. Пусть исход управляемого мероприятия зависит от выбранного решения (стратегии

Подробнее

О СТРУКТУРЕ МНОЖЕСТВА СМЕШАННЫХ СТРАТЕГИЙ, ОПТИМАЛЬНЫХ ПО КРИТЕРИЮ ПЕССИМИЗМА-ОПТИМИЗМА ГУРВИЦА. Введение

О СТРУКТУРЕ МНОЖЕСТВА СМЕШАННЫХ СТРАТЕГИЙ, ОПТИМАЛЬНЫХ ПО КРИТЕРИЮ ПЕССИМИЗМА-ОПТИМИЗМА ГУРВИЦА. Введение О СТРУКТУРЕ МНОЖЕСТВА СМЕШАННЫХ СТРАТЕГИЙ, ОПТИМАЛЬНЫХ ПО КРИТЕРИЮ ПЕССИМИЗМА-ОПТИМИЗМА ГУРВИЦА Шкуридина Ю.И. Финансовый университет при Правительстве РФ г. Москва Научный руководитель к.ф.-м.н., проф.

Подробнее

ПОВЕДЕНИЕ АГЕНТОВ В ОБЛАКЕ ИНТЕРНЕТ-ОБРАЗОВАНИЯ

ПОВЕДЕНИЕ АГЕНТОВ В ОБЛАКЕ ИНТЕРНЕТ-ОБРАЗОВАНИЯ ПОВЕДЕНИЕ АГЕНТОВ В ОБЛАКЕ ИНТЕРНЕТ-ОБРАЗОВАНИЯ Г.С. Курганская Иркутский государственный университет, Облачные технологии стали уже общепринятым инструментом работы в Интернет. В основном, это относится

Подробнее

ТЕОРИЯ ИГР. А.В. Григорьев. Учебное пособие. Томск Издательство ТГАСУ

ТЕОРИЯ ИГР. А.В. Григорьев. Учебное пособие. Томск Издательство ТГАСУ Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Томский государственный архитектурно-строительный

Подробнее

5 Транспортная задача

5 Транспортная задача 5 Транспортная задача Важный частный случай задач линейного программирования транспортные задачи. Это математические модели разнообразных прикладных задач по оптимизации перевозок. Распространенность в

Подробнее

Глава 4. Системы линейных уравнений

Глава 4. Системы линейных уравнений Глава 4 Системы линейных уравнений Лекция 7 Общие свойства Определение Нормальной системой (НС) линейных дифференциальных уравнений называется система вида x A () x + F () () где A( ) квадратная матрица

Подробнее

Билет Алгоритмы и оценки их качества. Трудоемкость, память, точность. Примеры полиномиальных и экспоненциальных алгоритмов.

Билет Алгоритмы и оценки их качества. Трудоемкость, память, точность. Примеры полиномиальных и экспоненциальных алгоритмов. Билет 1 1. Алгоритмы и оценки их качества. Трудоемкость, память, точность. Примеры полиномиальных и экспоненциальных алгоритмов. 2. Можно ли в сетевой модели сначала найти поздние времена наступления событий,

Подробнее

Программа, вопросы и литература по с/курсу "Элементы теории игр" лектор проф. Чижонков Е.В. 0,5 года; 2-5 курсы; 2013/2014 уч.г.

Программа, вопросы и литература по с/курсу Элементы теории игр лектор проф. Чижонков Е.В. 0,5 года; 2-5 курсы; 2013/2014 уч.г. Программа вопросы и литература по с/курсу "Элементы теории игр" лектор проф. Чижонков Е.В. 5 года; -5 курсы; 13/14 уч.г. I. Основные определения и положения теории игр. 1. Участники игры игроки стратегии

Подробнее

5. Теорема существования и единственности решения задачи Коши для нормальной системы ОДУ. определена и непрерывна в замкнутом ( m + 1)

5. Теорема существования и единственности решения задачи Коши для нормальной системы ОДУ. определена и непрерывна в замкнутом ( m + 1) Лекция 5 5 Теорема существования и единственности решения задачи Коши для нормальной системы ОДУ Постановка задачи Задача Коши для нормальной системы ОДУ x = f (, x), () состоит в отыскании решения x =

Подробнее

ЧИСЛЕННОЕ РЕШЕНИЕ БИМАТРИЧНЫХ ИГР. A q = ue; p T B = ve T ; p i = 1; q j = 1

ЧИСЛЕННОЕ РЕШЕНИЕ БИМАТРИЧНЫХ ИГР. A q = ue; p T B = ve T ; p i = 1; q j = 1 УДК 519.85 Н. С. В а с и л ь е в ЧИСЛЕННОЕ РЕШЕНИЕ БИМАТРИЧНЫХ ИГР Предложен эффективный игровой алгоритм поиска равновесия по Нэшу в биматричных играх, основанный на методах линейного программирования

Подробнее

Игровая задача распределения ресурсов

Игровая задача распределения ресурсов Игровая задача распределения ресурсов Славнова Алена Вячеславовна Аннотация В основе данной работы лежит непрерывная задача, предложенная в одной из работ Э.Г. Давыдова, исследуется и решается ее дискретный

Подробнее

2. Решение нелинейных уравнений.

2. Решение нелинейных уравнений. Решение нелинейных уравнений Не всегда алгебраические или трансцендентные уравнения могут быть решены точно Понятие точности решения подразумевает: ) возможность написания «точной формулы», а точнее говоря

Подробнее

Пермский национальный исследовательский политехнический университет Кафедра математического моделирования систем и процессов Матричные игры

Пермский национальный исследовательский политехнический университет Кафедра математического моделирования систем и процессов Матричные игры Пермский национальный исследовательский политехнический университет Кафедра математического моделирования систем и процессов Матричные игры к.ф.-м.н., доц. Павел Сергеевич Волегов Матричные игры Рассмотрим

Подробнее

Глава 5. МЕТОДЫ НЕЯВНОГО ПЕРЕБОРА. Рассмотрим общую постановку задачи дискретной оптимизации

Глава 5. МЕТОДЫ НЕЯВНОГО ПЕРЕБОРА. Рассмотрим общую постановку задачи дискретной оптимизации Глава 5. МЕТОДЫ НЕЯВНОГО ПЕРЕБОРА Рассмотрим общую постановку задачи дискретной оптимизации mi f ( x), (5.) x D в которой -мерный искомый вектор x принадлежит конечному множеству допустимых решений D.

Подробнее

ТЕОРИЯ ИГР. Курс лекций

ТЕОРИЯ ИГР. Курс лекций Министерство образования и науки Российской Федерации ФГБОУ ВПО «Уральский государственный лесотехнический университет» Институт экономики и управления Кафедра Информационных технологий и моделирования

Подробнее

МЕТОД НАИМЕНЬШИХ КВАДРАТОВ И ПРИБЛИЖЕННОЕ РЕШЕНИЕ СИСТЕМ ЛИНЕЙНЫХ УРАВНЕНИЙ В ЭКОНОМИЧЕСКИХ ЗАДАЧАХ

МЕТОД НАИМЕНЬШИХ КВАДРАТОВ И ПРИБЛИЖЕННОЕ РЕШЕНИЕ СИСТЕМ ЛИНЕЙНЫХ УРАВНЕНИЙ В ЭКОНОМИЧЕСКИХ ЗАДАЧАХ Глава 3 МЕТОД НАИМЕНЬШИХ КВАДРАТОВ И ПРИБЛИЖЕННОЕ РЕШЕНИЕ СИСТЕМ ЛИНЕЙНЫХ УРАВНЕНИЙ В ЭКОНОМИЧЕСКИХ ЗАДАЧАХ 3 Метод наименьших квадратов Метод наименьших квадратов (часто называемый МНК) обычно упоминается

Подробнее

ПРИМЕНЕНИЕ ЛИНЕЙНОГО ПРОГРАММИРОВАНИЯ В ТЕОРИИ ИГР

ПРИМЕНЕНИЕ ЛИНЕЙНОГО ПРОГРАММИРОВАНИЯ В ТЕОРИИ ИГР МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «САМАРСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ» К а ф е д р а прикладной

Подробнее