Развертки поверхностей

Save this PDF as:
 WORD  PNG  TXT  JPG

Размер: px
Начинать показ со страницы:

Download "Развертки поверхностей"

Транскрипт

1 МИНОБРНАУКИ РОССИИ Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Ижевский государственный технический университет имени М.Т. Калашникова» (ФГБОУ ВПО «ИжГТУ имени М.Т. Калашникова») Кафедра «Инженерная графика и технология рекламы» Развертки поверхностей Учебно-методические указания Ижевск, 2012

2 УДК 744 Григорьева О.О. Развертки поверхностей. Учебно-методические указания. Ижевск: Издательство ИжГТУ, 2012 г. - 25с. Методические указания составлены в соответствии с рабочей программой по курсу Инженерная графика для направления «Технология полиграфического и упаковочного производства» профиль «Технология и дизайн упаковочного производства» РиД факультета Ижевского государственного технического университета имени М.Т. Калашникова. Указания утверждены на заседании кафедры Инженерная графика и технология рекламы протокол 88 от г. 2

3 Содержание Введение Общие понятия о развертывании поверхностей Порядок выполнения задания Построение развертки призмы Построение развертки пирамиды Построение развертки цилиндра Построение развертки конуса Литература

4 Введение Данное методическое пособие предназначено для выполнения домашнего задания по теме «Развертывание поверхностей» по курсу «Инженерная графика» направления «Технология полиграфического и упаковочного производства» профиль «Технология и дизайн упаковочного производства». В пособии рассмотрены общие понятия о развертывании поверхностей. Дан алгоритм решения задания и образец его выполнения. Методическое пособие содержит всю необходимую информацию для выполнения студентами самостоятельной работы. 1. Общие понятия о развертывании поверхностей Развертыванием называется такое преобразование поверхности, в результате которого она совмещается с плоскостью. Поверхность, которая может быть совмещена с плоскостью без разрывов и складок, называется развертывающейся, а полученная при этом плоская фигура ее резверткой. Все поверхности подразделяются на две группы: 1. развертываемые, которые можно развернуть согласно правилу (торсы, поверхности конусов и цилиндров, многогранники), 2. неразвертываемые. Различают следующие виды разверток: 1. точные (при свертывании в поверхность не дают ни складок, ни разрывов), 2. приближенные, 3. условные. Графические способы развертывания поверхностей: 4

5 1. точные (раскатка, способ нормального сечения, способ треугольников (триангуляция)), 2. аппроксимация (приближенная развертка, условная развертка). Аппроксимацией называют замену одной поверхности другой аппроксимирующей, которая приближается к заданной по каким-то определенным свойствам (форма, площадь, кривизна) с той или иной степенью точности. Помимо графических способов построения разверток, существуют аналитические способы, применяемые для построения точных и приближенных разверток. На чертежах разверток линии сгиба изображают штрихпунктирной линией с двумя точками, согласно ГОСТ Порядок выполнения задания На рис. 1, 5, 10, 15 показаны варианты задания, по которым необходимо выполнить следующие построения: 1. Построить заданные усеченные геометрические тела (призму, пирамиду, цилиндр, конус) в системе трех плоскостей проекций. Определить вид линий пересечения плоскости выреза с поверхностью геометрического тела. Построить проекции линий пересечения на горизонтальной проекции. Построить профильную проекцию геометрического тела и профильную проекцию линий пересечения. 2. Определить истинные величины фигур сечения. Определить способ решения метрической задачи (способ вращения вокруг оси, способ замены плоскостей проекций). 3. Вычертить развертки усеченных тел. Определить вид и способ развертывания поверхности. 5

6 Найти действительные величины откладываемых отрезков. Выполнить развертывание. Образец выполнения заданий показан на рис. 4, 9, 14, Построение развертки призмы Построение развертки призмы (рис. 1-4): 1. Строим усеченную призму (рис. 2). Плоскость α(α") пересекает все четыре грани призмы по ломаной линии Анализируя положение граней призмы и плоскости выреза, строим горизонтальную и профильную проекции усеченной призмы. 2. Определяем истинную величину фигуры сечения, образованную в результате пересечения призмы фронтально-проецирующей плоскостью α (рис. 3). Для нахождения истинной величины фигуры сечения применяем способ вращения. Находим местоположение оси вращения f. Поворачиваем фигуру сечения вокруг оси вращения f на угол φº, получая ее фронтальную проекцию 11"21"41"51"31". Строим горизонтальную проекцию 11'21'41'51'31', являющуюся искомой действительной величиной фигуры сечения. 3. Вычерчиваем развертку усеченной призмы (рис. 4). Применяем способ нормального сечения и строим точную развертку фигуры. Нормальное сечение совпадает с основанием призмы, поэтому на горизонтальной линии откладываются четыре отрезка (по количеству граней): [10080]=[10'8'], [8090]=[8'9'], [9070]=[9'7'], [70100]=[7'10']. 6

7 Из точек 100, 80, 90, 70, 100 строим перпендикуляры и откладываем на них отрезки натуральных величин каждого ребра усеченной призмы: [10010]=[10"1"], [8030]=[8"3"], [9060]=[9"6"], [7020]=[7"2"]. Дополняем построение нахождением точек 40 ([4060]=[4'6']) и 50 ([5060]=[5'6']). Полученную развертку боковой поверхности усеченной призмы дополняем действительной величиной сечения , частью верхнего основания и нижним основанием Рис. 1 7

8 Рис. 2 Рис. 3 8

9 9

10 4. Построение развертки пирамиды Построение развертки пирамиды (рис. 5-9): 1. Строим усеченную пирамиду (рис. 6). Плоскость α(α') пересекает две грани пирамиды по ломаной линии Анализируя положение граней пирамиды и плоскости выреза, строим фронтальную и профильную проекции усеченной пирамиды. 2. Определяем истинную величину фигуры сечения, образованную в результате пересечения пирамиды горизонтально-проецирующей плоскостью α (рис. 7). Для нахождения истинной величины фигуры сечения 154 применяем способ вращения. Находим местоположение оси вращения f. Поворачиваем фигуру сечения вокруг оси вращения f на угол φº, получая ее горизонтальную проекцию 11'51'41'. Строим фронтальную проекцию 11"51"41", являющуюся искомой действительной величиной фигуры сечения. 3. Вычерчиваем развертку усеченной пирамиды (рис. 8, 9). Способом триангуляции строим точную развертку фигуры. Находим способом вращения натуральную величину ребер призмы l=[6"32"] и отрезка b=[6"52"]. Откладываем отрезок [6020]=[6"32"]=l. Через точку 20 проводим радиус R=l и, при помощи радиуса r, отмечаем местонахождения точек A0, 20, 30, 40. Дополняем построение нахождением точек 50 (b=[6"52"]=[6050]) и 10 ([1'2']=[1020]). Полученную развертку боковой поверхности усеченной пирамиды дополняем действительной величиной сечения и основанием

11 Рис. 5 Рис. 6 11

12 Рис. 7 12

13 13

14 14

15 5. Построение развертки цилиндра Построение развертки цилиндра (рис ): 1. Строим усеченный цилиндр (рис. 11). Плоскость α(α") пересекает основание и боковую поверхность цилиндра по линии Строим горизонтальную и профильную проекции усеченного цилиндра. 2. Определяем истинную величину фигуры сечения, образованную в результате пересечения цилиндра фронтально-проецирующей плоскостью α (рис. 12). Для нахождения истинной величины фигуры сечения применяем способ вращения. Находим местоположение оси вращения f. Поворачиваем фигуру сечения вокруг оси вращения f на угол φº, получая ее фронтальную проекцию 11"21"31"41"51"61"71". Строим горизонтальную проекцию 11'21'31'41'51'61'71', являющуюся искомой действительной величиной фигуры сечения. 3. Вычерчиваем развертку усеченного цилиндра (рис. 13, 14). Применяем способ аппроксимации и строим приближенную развертку фигуры. Применяем способ нормального сечения и получаем точную (если синусоида боковой поверхности построена по точкам при помощи лекала) развертку цилиндра. Оба способа применимы для прямого кругового цилиндра. Выполняем аппроксимацию цилиндрической поверхности восьмигранной призматической. Тогда, длина развертки боковой поверхности цилиндра d=8a, где а=[1'''2''']=[2'''3''']=[3'''4'''] и т. д. При построении другим способом, нормальное сечение совпадает с основанием цилиндра, поэтому на вертикальной линии откладываем расстояние длины окружности основания цилиндра d=2πr, где R радиус окружности цилиндра. В данном случае, 15

16 применяются графический и аналитический способы развертывания поверхности. Нормальное сечение делится на n (n=8) равных частей точками 1''', 2''', 3''', 4''' и т. д. С помощью этих точек строим фронтальные проекции соответствующих образующих цилиндрической поверхности. Откладываем горизонтальные отрезки равные длинам соответствующих образующих цилиндра: A0B0, b1, b2, b3 и т. д. Полученную развертку боковой поверхности усеченного цилиндра В0А А0В0А0В0 дополняем действительной величиной сечения , частью основания 10А070 и другим основанием. Рис

17 Рис. 11 Рис

18 18

19 19

20 6. Построение развертки конуса Построение развертки конуса (рис ): 1. Строим усеченный конус (рис. 16). Плоскость α(α") пересекает основание и боковую поверхность конуса по линии Строим горизонтальную и профильную проекции усеченного конуса. 2. Определяем истинную величину фигуры сечения, образованную в результате пересечения конуса фронтально-проецирующей плоскостью α (рис. 17). Для нахождения истинной величины фигуры сечения применяем способ замены плоскостей проекций. Переходим из одной системы плоскостей проекций в другую, заменяя плоскость π1 на π4. Получаем действительную величину фигуры сечения 11'21'31'41'51'61'71'81'91'. 3. Вычерчиваем развертку усеченного конуса (рис ). Применяем способ аппроксимации и строим приближенную развертку фигуры. Применяем аналитический способ и получаем точную развертку конуса. Выполняем аппроксимацию конической поверхности двенадцатигранной пирамидой. Способом вращения, находим действительную величину образующей конуса l=[s"a1"] и отрезка b=[21"a1"]. Проводим дугу радиусом l и откладываем на ней двенадцать отрезков равных а или, используя аналитический способ, проводим дугу радиусом l длиной 2πR и делим ее на n (n=12) равных частей. В расчетах можно использовать угол ωº=360ºcosγº. Полученную развертку боковой поверхности усеченной пирамиды , дополняем действительной величиной сечения и усеченным основанием. 20

21 Рис. 15 Рис

22 Рис. 17 Рис

23 23

24 24

25 Литература 1. Королев Ю.И. Начертательная геометрия: Учебник для вузов. 2-е изд. СПб.: Питер, с. 2. Талалай П.Г. Начертательная геометрия на примерах (ВУЗ): Учебник для вузов. СПб.: BHV, с. 3. Тарасов Б.Ф., Дудкина Л.А., Немолотов С.О. Начертательная геометрия: Учебник для вузов. СПб.: Лань, с. 25

МЕТОД РАСКАТКИ ПРЯМОЙ КРУГОВОЙ ЦИЛИНДР (ПРИЗМА) Разверткой прямого кругового цилиндра является прямоугольник, одна сторона которого равна величине L о

МЕТОД РАСКАТКИ ПРЯМОЙ КРУГОВОЙ ЦИЛИНДР (ПРИЗМА) Разверткой прямого кругового цилиндра является прямоугольник, одна сторона которого равна величине L о ЛЕКЦИИ 17-18 Построение разверток поверхностей. Свойства разверток. Геодезическая линия. Развертки прямого кругового цилиндра (призмы) и прямого кругового конуса (пирамиды). Развертки наклонного конуса

Подробнее

16. РАЗВЕРТКА ПОВЕРХНОСТЕЙ

16. РАЗВЕРТКА ПОВЕРХНОСТЕЙ 16. РАЗВЕРТКА ПОВЕРХНОСТЕЙ 16.1 Построение развертки поверхности простейших геометрических тел 16.2 Построение развертки наклонных призматических, цилиндрических и конических поверхностей. Способ раскатки.

Подробнее

ЛЕКЦИЯ 7 7. МНОГОГРАННИКИ. ПЕРЕСЕЧЕНИЕ МНОГОГРАННИКОВ С ПЛОСКОСТЬЮ И ПРЯМОЙ.

ЛЕКЦИЯ 7 7. МНОГОГРАННИКИ. ПЕРЕСЕЧЕНИЕ МНОГОГРАННИКОВ С ПЛОСКОСТЬЮ И ПРЯМОЙ. ЛЕКЦИЯ 7 7. МНОГОГРАННИКИ. ПЕРЕСЕЧЕНИЕ МНОГОГРАННИКОВ С ПЛОСКОСТЬЮ И ПРЯМОЙ. Гранные поверхности это поверхности, образованные перемещением прямолинейной образующей по ломаной линии. Часть этих поверхностей

Подробнее

B' 2 C' 2 2' 2 3' 2 1' 2 C' 1 2' 1

B' 2 C' 2 2' 2 3' 2 1' 2 C' 1 2' 1 7. РАЗВЕРТКИ ПОВЕРХНОСТЕЙ. АКСОНОМЕТРИЧЕСКИЕ ПРОЕКЦИИ 7. Построение развертки наклонных призматических, цилиндрических и конических поверхностей способом нормального сечения. 7.. Построение развертки наклонных

Подробнее

Развертки поверхностей

Развертки поверхностей Развертки поверхностей Разверткой поверхности называется плоская фигура, полученная в результате совмещения всех точек поверхности с одной плоскостью. Между поверхностью и ее разверткой устанавливается

Подробнее

ИНЖЕНЕРНАЯ ГЕОМЕТРИЯ РАЗВЕРТКИ

ИНЖЕНЕРНАЯ ГЕОМЕТРИЯ РАЗВЕРТКИ Министерство образования и науки Российской Федерации Саратовский государственный технический университет ИНЖЕНЕРНАЯ ГЕОМЕТРИЯ РАЗВЕРТКИ Методические указания к выполнению практических и лабораторных работ

Подробнее

Взаимное пересечение поверхностей вращения Методические указания к выполнению заданий по курсу Начертательная геометрия

Взаимное пересечение поверхностей вращения Методические указания к выполнению заданий по курсу Начертательная геометрия МИНОБРНАУКИ РОССИИ Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования Ижевский государственный технический университет имени М.Т Калашникова (ФГБОУ ВПО

Подробнее

ЛЕКЦИЯ 8 8. КРИВЫЕ ПОВЕРХНОСТИ 8.1. ПОВЕРХНОСТИ ВРАЩЕНИЯ

ЛЕКЦИЯ 8 8. КРИВЫЕ ПОВЕРХНОСТИ 8.1. ПОВЕРХНОСТИ ВРАЩЕНИЯ ЛЕКЦИЯ 8 8. КРИВЫЕ ПОВЕРХНОСТИ 8.1. ПОВЕРХНОСТИ ВРАЩЕНИЯ Поверхности вращения образуются вращением линии l вокруг прямой i оси вращения. Они могут быть линейчатыми и нелинейчатыми (криволинейными). Определитель

Подробнее

Пересечение геометрических тел плоскостями

Пересечение геометрических тел плоскостями МИНОБРНАУКИ РОССИИ Федеральное государственное образовательное бюджетное учреждение высшего профессионального образования Ижевский государственный технический университет имени М.Т. Калашникова Кафедра

Подробнее

Инженерная графика. Задания

Инженерная графика. Задания Инженерная графика Кривальцевич Татьяна Владимировна Задания К лекции «Пересечение геометрических тел плоскостями. Построение разверток» Омск-2010 Требования к выполнению заданий: 1. Задание выполнить

Подробнее

НАЧЕРТАТЕЛЬНАЯ ГЕОМЕТРИЯ Часть 2

НАЧЕРТАТЕЛЬНАЯ ГЕОМЕТРИЯ Часть 2 МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ федеральное государственное бюджетное образовательное учреждение высшего образования «Курганский государственный университет» Кафедра «Автоматизация

Подробнее

Кафедра "Инженерная графика и технология рекламы"

Кафедра Инженерная графика и технология рекламы МИНОБРНАУКИ РОССИИ Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Ижевский государственный технический университет имени М.Т. Калашникова" Кафедра

Подробнее

Основы построения теней в аксонометрии

Основы построения теней в аксонометрии МИНОБРНАУКИ РОССИИ Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Ижевский государственный технический университет имени М.Т. Калашникова» (ФГБОУ

Подробнее

СЕЧЕНИЕ ПОВЕРХНОСТИ ПЛОСКОСТЬЮ. РАЗВЕРТКИ ПОВЕРХНОСТЕЙ.

СЕЧЕНИЕ ПОВЕРХНОСТИ ПЛОСКОСТЬЮ. РАЗВЕРТКИ ПОВЕРХНОСТЕЙ. 0 Л.Д. Письменко СЕЧЕНИЕ ПОВЕРХНОСТИ ПЛОСКОСТЬЮ. РАЗВЕРТКИ ПОВЕРХНОСТЕЙ. Ульяновск 2005 1 Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования

Подробнее

1. МЕТОДЫ ПРОЕЦИРОВАНИЯ

1. МЕТОДЫ ПРОЕЦИРОВАНИЯ 1. МЕТОДЫ ПРОЕЦИРОВАНИЯ 1. Назовите основные методы проецирования геометрических форм. Приведите схему аппарата проецирования. 2. Какие виды параллельных проекций Вы знаете? Приведите схему аппарата проецирования.

Подробнее

2. Установить соответствие А(0, 80, 0) В(55, 45, 20) С(0, 0, 50) D(45, 0, 65) E(0, 35, 20) F(45, 45, 0) M(0, 15, 0) N(55, 0, 0)

2. Установить соответствие А(0, 80, 0) В(55, 45, 20) С(0, 0, 50) D(45, 0, 65) E(0, 35, 20) F(45, 45, 0) M(0, 15, 0) N(55, 0, 0) НАЧЕРТАТЕЛЬНАЯ ГЕОМЕТРИЯ Тестовые задания 2 вариант Хабаровск 2014 0 Тема 1. Точка 1. Указать правильный ответ Плоскость проекций П 2 называется 1 горизонтальная плоскость проекций 2 фронтальная плоскость

Подробнее

МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ВОЛГОГРАДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ВОЛЖСКИЙ ПОЛИТЕХНИЧЕСКИЙ ИНСТИТУТ (ФИЛИАЛ)

МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ВОЛГОГРАДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ВОЛЖСКИЙ ПОЛИТЕХНИЧЕСКИЙ ИНСТИТУТ (ФИЛИАЛ) МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ВОЛГОГРАДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ВОЛЖСКИЙ ПОЛИТЕХНИЧЕСКИЙ ИНСТИТУТ (ФИЛИАЛ) З. И. Полякова, Н. А. Сторчак, Н. А. Мишустин, В. Е. Костин,

Подробнее

ИЗОБРАЖЕНИЕ МНОГОГРАННИКОВ

ИЗОБРАЖЕНИЕ МНОГОГРАННИКОВ Б. М. Маврин, Е. И. Балаев ИЗОБРАЖЕНИЕ МНОГОГРАННИКОВ Практикум Самара 2005 ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «САМАРСКИЙ

Подробнее

МИНОБРНАУКИ РОССИИ Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования

МИНОБРНАУКИ РОССИИ Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования МИНОБРНАУКИ РОССИИ Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Ухтинский государственный технический университет» (УГТУ) ИНЖЕНЕРНАЯ ГРАФИКА ПРОЕКЦИИ

Подробнее

ЛЕКЦИЯ 9 9. ВЗАИМНОЕ ПЕРЕСЕЧЕНИЕ ПОВЕРХНОСТЕЙ

ЛЕКЦИЯ 9 9. ВЗАИМНОЕ ПЕРЕСЕЧЕНИЕ ПОВЕРХНОСТЕЙ ЛЕКЦИЯ 9 9. ВЗАИМНОЕ ПЕРЕСЕЧЕНИЕ ПОВЕРХНОСТЕЙ Линия пересечения двух поверхностей в общем виде представляет собой пространственную кривую, которая может распадаться на несколько частей. Надо иметь в виду,

Подробнее

Б 33. Комплексный чертеж цилиндра вращения. Его определитель

Б 33. Комплексный чертеж цилиндра вращения. Его определитель Б 33. Комплексный чертеж цилиндра вращения. Его определитель Поверхность, образованная прямолинейной образующей l, движущейся параллельно заданному направлению s и пересекающей направляющую m, называется

Подробнее

1. Указать правильный ответ Точка А(70, 20, 15) удалена дальше от

1. Указать правильный ответ Точка А(70, 20, 15) удалена дальше от НАЧЕРТАТЕЛЬНАЯ ГЕОМЕТРИЯ Тестовые задания 10 вариант Хабаровск 2014 0 Тема 1. Точка 1. Указать правильный ответ Точка А(70, 20, 15) удалена дальше от 1 плоскости плоскостей П 1 2 плоскости плоскостей П

Подробнее

ИЗОБРАЖЕНИЕ ТЕЛ ВРАЩЕНИЯ

ИЗОБРАЖЕНИЕ ТЕЛ ВРАЩЕНИЯ Б. М. Маврин, Е. И. Балаев ИЗОБРАЖЕНИЕ ТЕЛ ВРАЩЕНИЯ Практикум Самара 2005 ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «САМАРСКИЙ

Подробнее

Инженерная графика. Лекция 5

Инженерная графика. Лекция 5 Инженерная графика Кривальцевич Татьяна Владимировна Лекция 5 «Пересечение геометрических тел плоскостями. Построение разверток» Омск-2010 Пересечение поверхностей плоскостью Инженерная графика Кривальцевич

Подробнее

МИНИСТЕСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ВЛАДИВОСТОКСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ЭКОНОМИКИ И СЕРВИСА

МИНИСТЕСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ВЛАДИВОСТОКСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ЭКОНОМИКИ И СЕРВИСА МИНИСТЕСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ВЛАДИВОСТОКСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ЭКОНОМИКИ И СЕРВИСА ИНСТИТУТ ИНФОРМАТИКИ, ИННОВАЦИЙ И БИЗНЕС СИСТЕМ КАФЕДРА ИНФОРМАТИКИ, ИНЖЕНЕРНОЙ И КОМПЬЮТЕРНОЙ

Подробнее

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ Государственное образовательное учреждение высшего профессионального образования «Курский государственный технический университет» Кафедра начертательной геометрии

Подробнее

ПОСТРОЕНИЕ РАЗВЕРТОК

ПОСТРОЕНИЕ РАЗВЕРТОК МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Государственное образовательное учреждение высшего профессионального образования УЛЬЯНОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ПОСТРОЕНИЕ РАЗВЕРТОК

Подробнее

КОНСПЕКТ ЛЕКЦИЙ ПО НАЧЕРТАТЕЛЬНОЙ ГЕОМЕТРИИ. Преподаватель Студент Группа

КОНСПЕКТ ЛЕКЦИЙ ПО НАЧЕРТАТЕЛЬНОЙ ГЕОМЕТРИИ. Преподаватель Студент Группа КОНСПЕКТ ЛЕКЦИЙ ПО НАЧЕРТАТЕЛЬНОЙ ГЕОМЕТРИИ Преподаватель Студент Группа 1 ПРЕДМЕТ И МЕТОД НАЧЕРТАТЕЛЬНОЙ ГЕОМЕТРИИ Начертательная геометрия это один из разделов геометрии, изучающий методы изображения

Подробнее

Лекция 16. ПРОЕКЦИИ КОНУСА Коническая поверхность направляющей линии прямым кру- говым конусом Построение конуса в прямоуголь- ной изометрии

Лекция 16. ПРОЕКЦИИ КОНУСА Коническая поверхность направляющей линии прямым кру- говым конусом Построение конуса в прямоуголь- ной изометрии Лекция 16. ПРОЕКЦИИ КОНУСА Конус тело вращения. Прямой круговой конус относится к одному из видов тел вращения. Коническая поверхность образуется прямой линией, проходящей через некоторую неподвижную точку

Подробнее

2 УДК Д 82 Думицкая Н.Г. Сечение геометрических тел плоскостями и развёртки их поверхностей: Метод/ указания / Н.Г. Думицкая, Ю.А. Мучулаев.- У

2 УДК Д 82 Думицкая Н.Г. Сечение геометрических тел плоскостями и развёртки их поверхностей: Метод/ указания / Н.Г. Думицкая, Ю.А. Мучулаев.- У МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ УХТИНСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ СЕЧЕНИЕ ГЕОМЕТРИЧЕСКИХ ТЕЛ ПЛОСКОСТЯМИ И РАЗВЁРТКИ ИХ ПОВЕРХНОСТЕЙ Методические указания по начертательной

Подробнее

12. ПЕРЕСЕЧЕНИЕ ПОВЕРХНОСТИ ПЛОСКОСТЬЮ Пересечение плоскости с поверхностью частного и общего положения

12. ПЕРЕСЕЧЕНИЕ ПОВЕРХНОСТИ ПЛОСКОСТЬЮ Пересечение плоскости с поверхностью частного и общего положения . ПЕРЕСЕЧЕНИЕ ПОВЕРХНОСТИ ПЛОСКОСТЬЮ.. Пересечение плоскости с поверхностью частного и общего положения.. Плоскости касательные к поверхности.. Пересечение плоскости с поверхностью частного и общего положения

Подробнее

Камчатский государственный технический университет КАФЕДРА ТЕОРЕТИЧЕСКОЙ МЕХАНИКИ. Е.А. Степанова, Н.И. Надольская ПРОЕКЦИИ ГЕОМЕТРИЧЕСКИХ ТЕЛ

Камчатский государственный технический университет КАФЕДРА ТЕОРЕТИЧЕСКОЙ МЕХАНИКИ. Е.А. Степанова, Н.И. Надольская ПРОЕКЦИИ ГЕОМЕТРИЧЕСКИХ ТЕЛ Камчатский государственный технический университет КАФЕДРА ТЕОРЕТИЧЕСКОЙ МЕХАНИКИ Е.А. Степанова, Н.И. Надольская ПРОЕКЦИИ ГЕОМЕТРИЧЕСКИХ ТЕЛ Методическое пособие для студентов (курсантов) первого курса

Подробнее

Свойства ортогонального проецирования кривой

Свойства ортогонального проецирования кривой 6. КРИВЫЕ ЛИНИИ И ПОВЕРХНОСТИ. 6.1. КОМПЛЕКСНЫЙ ЧЕРТЕЖ КРИВОЙ ЛИНИИ Кривая линия представляет собой геометрическое место последовательных положений непрерывно перемещающейся в пространстве точки. Если

Подробнее

2. Установить соответствие А(0, 28, 55) В(30, 0, 0) С(0, 0, 85) D(0, 45, 0) E(20, 0, 0) F(10, 0, 75) M(70, 25, 85) N(44, 27, 0)

2. Установить соответствие А(0, 28, 55) В(30, 0, 0) С(0, 0, 85) D(0, 45, 0) E(20, 0, 0) F(10, 0, 75) M(70, 25, 85) N(44, 27, 0) НАЧЕРТАТЕЛЬНАЯ ГЕОМЕТРИЯ Тестовые задания 5 вариант Хабаровск 2014 0 Тема 1. Точка 1. Указать правильный ответ Плоскость проекций П 1 называется 1 горизонтальная плоскость проекций 2 фронтальная плоскость

Подробнее

ПЕРЕСЕЧЕНИЕ ПОВЕРХНОСТИ ПЛОСКОСТЬЮ ПОСТРОЕНИЕ РАЗВЕРТОК ЭПЮР 2

ПЕРЕСЕЧЕНИЕ ПОВЕРХНОСТИ ПЛОСКОСТЬЮ ПОСТРОЕНИЕ РАЗВЕРТОК ЭПЮР 2 МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «УЛЬЯНОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Подробнее

РАБОЧАЯ ТЕТРАДЬ. по начертательной геометрии для студентов специальностей механического профиля

РАБОЧАЯ ТЕТРАДЬ. по начертательной геометрии для студентов специальностей механического профиля РАБОЧАЯ ТЕТРАДЬ по начертательной геометрии для студентов специальностей механического профиля Иваново 29 Федеральное агентство по образованию Российской Федерации Государственное образовательное учреждение

Подробнее

Примеры построения развёрток различных технических поверхностей

Примеры построения развёрток различных технических поверхностей Примеры построения развёрток различных технических поверхностей 1) На Рис. 1 приведена поверхность цилиндроида, сопрягающего две трубы одинакового диаметра, причѐм одна из них расположена в горизонтальной

Подробнее

НАЧЕРТАТЕЛЬНАЯ ГЕОМЕТРИЯ

НАЧЕРТАТЕЛЬНАЯ ГЕОМЕТРИЯ ФЕДЕРАЛЬНОЕ АГЕНСТВО ПО ОБРАЗОВАНИЮ Санкт-Петербургский государственный университет аэрокосмического приборостроения Т. А. Лексаченко НАЧЕРТАТЕЛЬНАЯ ГЕОМЕТРИЯ Методические указания по решению задач с условиями

Подробнее

1. Указать правильный ответ Ось проекций 0У это

1. Указать правильный ответ Ось проекций 0У это НАЧЕРТАТЕЛЬНАЯ ГЕОМЕТРИЯ Тестовые задания 7 вариант Хабаровск 2014 0 Тема 1.Точка 1. Указать правильный ответ Ось проекций 0У это 1 линия пересечения плоскостей П 1 и П 2 2 линия пересечения плоскостей

Подробнее

НАЧЕРТАТЕЛЬНАЯ ГЕОМЕТРИЯ

НАЧЕРТАТЕЛЬНАЯ ГЕОМЕТРИЯ МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ ГОУ ВПО «СИБИРСКАЯ ГОСУДАРСТВЕННАЯ ГЕОДЕЗИЧЕСКАЯ АКАДЕМИЯ» Л.В. Пивкина НАЧЕРТАТЕЛЬНАЯ ГЕОМЕТРИЯ СБОРНИК ЗАДАЧ

Подробнее

НАЧЕРТАТЕЛЬНАЯ ГЕОМЕТРИЯ РАБОЧАЯ ТЕТРАДЬ

НАЧЕРТАТЕЛЬНАЯ ГЕОМЕТРИЯ РАБОЧАЯ ТЕТРАДЬ МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «НИЖЕГОРОДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

Подробнее

НАЧЕРТАТЕЛЬНАЯ ГЕОМЕТРИЯ

НАЧЕРТАТЕЛЬНАЯ ГЕОМЕТРИЯ Министерство сельского хозяйства Российской Федерации ФГБОУ ВО «Красноярский государственный аграрный университет» Н.Г. Полюшкин НАЧЕРТАТЕЛЬНАЯ ГЕОМЕТРИЯ Методические указания к практическим занятиям Электронное

Подробнее

НАЧЕРТАТЕЛЬНАЯ ГЕОМЕТРИЯ И ИНЖЕНЕРНАЯ ГРАФИКА Часть 1

НАЧЕРТАТЕЛЬНАЯ ГЕОМЕТРИЯ И ИНЖЕНЕРНАЯ ГРАФИКА Часть 1 ФГБОУ ВО НОВОСИБИРСКИЙ ГАУ ИНЖЕНЕРНЫЙ ИНСТИТУТ Кафедра теоретической и прикладной механики НАЧЕРТАТЕЛЬНАЯ ГЕОМЕТРИЯ И ИНЖЕНЕРНАЯ ГРАФИКА Часть 1 Методические указания и варианты заданий для расчетно-графической

Подробнее

МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ УЧРЕЖДЕНИЕ ОБРАЗОВАНИЯ «БРЕСТСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ УЧРЕЖДЕНИЕ ОБРАЗОВАНИЯ «БРЕСТСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ» МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ УЧРЕЖДЕНИЕ ОБРАЗОВАНИЯ «БРЕСТСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ» КАФЕДРА НАЧЕРТАТЕЛЬНОЙ ГЕОМЕТРИИ И ИНЖЕНЕРНОЙ ГРАФИКИ для студентов заочной формы

Подробнее

Е.В. Белоенко, Т.Ю. Дайнатович ПОСТРОЕНИЕ РАЗВЕРТОК ПОВЕРХНОСТЕЙ ГЕОМЕТРИЧЕСКИХ ТЕЛ

Е.В. Белоенко, Т.Ю. Дайнатович ПОСТРОЕНИЕ РАЗВЕРТОК ПОВЕРХНОСТЕЙ ГЕОМЕТРИЧЕСКИХ ТЕЛ МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ

Подробнее

АЛЬБОМ ЗАДАЧ ПО НАЧЕРТАТЕЛЬНОЙ ГЕОМЕТРИИ

АЛЬБОМ ЗАДАЧ ПО НАЧЕРТАТЕЛЬНОЙ ГЕОМЕТРИИ МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ПРОМЫШЛЕННЫХ

Подробнее

РЕШЕНИЕ ЗАДАЧИ НА ПОСТРОЕНИЕ РАЗВЕРТКИ КОМБИНИРОВАННОЙ ПОВЕРХНОСТИ ГРАФИЧЕСКИМ МЕТОДОМ

РЕШЕНИЕ ЗАДАЧИ НА ПОСТРОЕНИЕ РАЗВЕРТКИ КОМБИНИРОВАННОЙ ПОВЕРХНОСТИ ГРАФИЧЕСКИМ МЕТОДОМ 198 РЕШЕНИЕ ЗАДАЧИ НА ПОСТРОЕНИЕ РАЗВЕРТКИ КОМБИНИРОВАННОЙ ПОВЕРХНОСТИ ГРАФИЧЕСКИМ МЕТОДОМ Ваншина Е.А., Ваншин В.В. ФГБОУ ВПО «Оренбургский государственный университет», г. Оренбург В настоящее время

Подробнее

8. СПОСОБЫ ПРЕОБРАЗОВАНИЯ КОМПЛЕКСНОГО ЧЕРТЕЖА

8. СПОСОБЫ ПРЕОБРАЗОВАНИЯ КОМПЛЕКСНОГО ЧЕРТЕЖА 8. СПОСОБЫ ПРЕОБРАЗОВАНИЯ КОМПЛЕКСНОГО ЧЕРТЕЖА 8.1. Вращение вокруг оси, параллельной плоскости проекций 8.2. Вращение вокруг следа плоскости 8.3. Решение метрических задач методами преобразования чертежа

Подробнее

Рабочая тетрадь по начертательной геометрии

Рабочая тетрадь по начертательной геометрии ФЕДЕРАЛЬНОЕ БЮДЖЕТНОЕ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ СТАВРОПОЛЬСКИЙ ГОСУДАРСТВЕННЫЙ АГРАРНЫЙ УНИВЕРСИТЕТ Рабочая тетрадь по начертательной геометрии (для

Подробнее

Кафедра «Начертательная геометрия и инженерная графика» НАЧЕРТАТЕЛЬНАЯ ГЕОМЕТРИЯ

Кафедра «Начертательная геометрия и инженерная графика» НАЧЕРТАТЕЛЬНАЯ ГЕОМЕТРИЯ МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Курганский государственный университет» Кафедра

Подробнее

Лекция 7 ПЕРЕСЕЧЕНИЕ ПОВЕРХНОСТИ С ПЛОСКОСТЬЮ И С ПРЯМОЙ ЛИНИЕЙ

Лекция 7 ПЕРЕСЕЧЕНИЕ ПОВЕРХНОСТИ С ПЛОСКОСТЬЮ И С ПРЯМОЙ ЛИНИЕЙ Лекция 7 ПЕРЕСЕЧЕНИЕ ПОВЕРХНОСТИ С ПЛОСКОСТЬЮ И С ПРЯМОЙ ЛИНИЕЙ В предыдущих лекциях рассматривались чертежи простейших геометрических фигур (точек, прямых, плоскостей) и произвольных кривых линий и поверхностей,

Подробнее

Методические указания по теме «Взаимное пересечение тел» для студентов всех специальностей

Методические указания по теме «Взаимное пересечение тел» для студентов всех специальностей Федеральное агентство по образованию Российской Федерации Государственное образовательное учреждение высшего профессионального образования «Ивановский государственный химико-технологический университет»

Подробнее

Начертательная геометрия

Начертательная геометрия МИНИСТЕРСТВО ПУТЕЙ СООБЩЕНИИ РОССИЙСКОЙ ФЕДЕРАЦИИ УРАЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ПУТЕЙ СООБЩЕНИЙ Кафедра графики Л.В. Туркина Начертательная геометрия Примеры решения задач Часть 2 Екатеринбург

Подробнее

Оригинальные приемы решения некоторых позиционных задач в начертательной геометрии /586005

Оригинальные приемы решения некоторых позиционных задач в начертательной геометрии /586005 Оригинальные приемы решения некоторых позиционных задач в начертательной геометрии 77-48211/586005 # 05, май 2013 Суфляева Н. Е. УДК 515(076.5) Россия, МГТУ им. Н.Э. Баумана sufnat@yandex.ru При составлении

Подробнее

Содержание разделов (модулей) 1. Пояснительная записка

Содержание разделов (модулей) 1. Пояснительная записка Содержание разделов (модулей) 1. Пояснительная записка 2. Перечень и содержание разделов (модулей) дисциплины. 3. Перечень и содержание практических занятий 4. Перечень самостоятельной работы студентов

Подробнее

Центральные вопросы темы: сущность методов центрального, параллельного и прямоугольного проецирований и их свойства; обратимость чертежа.

Центральные вопросы темы: сущность методов центрального, параллельного и прямоугольного проецирований и их свойства; обратимость чертежа. Вопросы к блоку 1 спец. 230101 Введение. Предмет начертательной геометрии. Метод проецирования. Комплексный чертеж Монжа. Центральное (коническое) проецирование. Параллельное (Цилиндрическое) проецирование.

Подробнее

ОБЛАСТНОЕ БЮДЖЕТНОЕ ПРОФЕССИОНАЛЬНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ «КУРСКИЙ МОНТАЖНЫЙ ТЕХНИКУМ» ИНЖЕНЕРНАЯ ГРАФИКА

ОБЛАСТНОЕ БЮДЖЕТНОЕ ПРОФЕССИОНАЛЬНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ «КУРСКИЙ МОНТАЖНЫЙ ТЕХНИКУМ» ИНЖЕНЕРНАЯ ГРАФИКА ОБЛАСТНОЕ БЮДЖЕТНОЕ ПРОФЕССИОНАЛЬНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ «КУРСКИЙ МОНТАЖНЫЙ ТЕХНИКУМ» ИНЖЕНЕРНАЯ ГРАФИКА Методические рекомендации по изучению темы «Проекционное черчение. Геометрические тела» Курск

Подробнее

Министерство образования Республики Беларусь БЕЛОРУССКИЙ НАЦИОНАЛЬНЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ. Кафедра «Инженерная графика строительного профиля»

Министерство образования Республики Беларусь БЕЛОРУССКИЙ НАЦИОНАЛЬНЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ. Кафедра «Инженерная графика строительного профиля» Министерство образования Республики Беларусь БЕЛОРУССКИЙ НАЦИОНАЛЬНЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ Кафедра «Инженерная графика строительного профиля» НАЧЕРТАТЕЛЬНАЯ ГЕОМЕТРИЯ Конспект лекций В 2 частях Часть

Подробнее

7. СПОСОБЫ ПРЕОБРАЗОВАНИЯ КОМПЛЕКСНОГО ЧЕРТЕЖА

7. СПОСОБЫ ПРЕОБРАЗОВАНИЯ КОМПЛЕКСНОГО ЧЕРТЕЖА 7. СПОСОБЫ ПРЕОБРАЗОВАНИЯ КОМПЛЕКСНОГО ЧЕРТЕЖА 7.1. Метод замены плоскостей проекций 7.2. Метод вращения вокруг оси, перпендикулярной к плоскости проекций 7.1. Метод замены плоскостей проекций При решении

Подробнее

УДК :55(057) Д 82 Думицкая, Н. Г. Комплект заданий по начертательной геометрии [Текст]: метод. указания /Н.Г. Думицкая, О.Н. Попков. - Ухта: УГТ

УДК :55(057) Д 82 Думицкая, Н. Г. Комплект заданий по начертательной геометрии [Текст]: метод. указания /Н.Г. Думицкая, О.Н. Попков. - Ухта: УГТ Федеральное агентство по образованию Ухтинский государственный технический университет КОМПЛЕКТ ЗАДАНИЙ ПО НАЧЕРТАТЕЛЬНОЙ ГЕОМЕТРИИ Методические указания Ухта 2006 УДК 514.18:55(057) Д 82 Думицкая, Н.

Подробнее

1. Указать правильный ответ Ось проекций 0Z - это

1. Указать правильный ответ Ось проекций 0Z - это НАЧЕРТАТЕЛЬНАЯ ГЕОМЕТРИЯ Тестовые задания 4 вариант Хабаровск 2014 0 Тема 1. Точка 1. Указать правильный ответ Ось проекций 0Z - это 1 линия пересечения плоскостей П 1 и П 2 2 линия пересечения плоскостей

Подробнее

Развертки комбинированных поверхностей вращения

Развертки комбинированных поверхностей вращения Развертки комбинированных поверхностей вращения Методические указания для студентов направлений подготовки 262000 Технология изделий легкой промышленности, 262200 Конструирование изделий легкой промышленности

Подробнее

ПЕРЕСЕЧЕНИЕ ПОВЕРХНОСТИ ПЛОСКОСТЬЮ

ПЕРЕСЕЧЕНИЕ ПОВЕРХНОСТИ ПЛОСКОСТЬЮ 3 ПЕРЕСЕЧЕНИЕ ПОВЕРХНОСТИ ПЛОСКОСТЬЮ Хабаровск 2005 Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования 4 «Тихоокеанский государственный

Подробнее

ДВОЙНОЕ ПРОНИЦАНИЕ ПОВЕРХНОСТЕЙ

ДВОЙНОЕ ПРОНИЦАНИЕ ПОВЕРХНОСТЕЙ МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ Государственное образовательное учреждение высшего профессионального образования «Оренбургский государственный университет» Кафедра начертательной геометрии,

Подробнее

ИНЖЕНЕРНАЯ ГРАФИКА Расчетно-графическая и контрольная работы

ИНЖЕНЕРНАЯ ГРАФИКА Расчетно-графическая и контрольная работы Министерство образования и науки Российской Федерации Уральский федеральный университет имени первого Президента России Б. Н. Ельцина Т. И. Кириллова Л. Ю. Стриганова ИНЖЕНЕРНАЯ ГРАФИКА Расчетно-графическая

Подробнее

НАЧЕРТАТЕЛЬНАЯ ГЕОМЕТРИЯ. РАБОЧАЯ ТЕТРАДЬ Часть 2

НАЧЕРТАТЕЛЬНАЯ ГЕОМЕТРИЯ. РАБОЧАЯ ТЕТРАДЬ Часть 2 МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «НИЖЕГОРОДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

Подробнее

ЛЕКЦИЯ 14. ВЗАИМНОЕ ПЕРЕСЕЧЕНИЕ ПОВЕРХНОСТЕЙ Способ вспомогательных секущих плоскостей

ЛЕКЦИЯ 14. ВЗАИМНОЕ ПЕРЕСЕЧЕНИЕ ПОВЕРХНОСТЕЙ Способ вспомогательных секущих плоскостей ЛЕКЦИЯ 4. ВЗАИМНОЕ ПЕРЕСЕЧЕНИЕ ПОВЕРХНОСТЕЙ 4.. Способ вспомогательных секущих плоскостей Линия пересечения двух поверхностей есть линия, принадлежащая обеим поверхностям. Следовательно, для построения

Подробнее

НАЧЕРТАТЕЛЬНАЯ ГЕОМЕТРИЯ

НАЧЕРТАТЕЛЬНАЯ ГЕОМЕТРИЯ Т.И. Кириллова, Л.Ю. Елькина НАЧЕРТАТЕЛЬНАЯ ГЕОМЕТРИЯ Электронное текстовое издание Учебно-методические указания к курсовой работе по начертательной геометрии для студентов всех форм обучения направления

Подробнее

УЧЕБНОЕ ПОСОБИЕ по курсу «Начертательная геометрия»

УЧЕБНОЕ ПОСОБИЕ по курсу «Начертательная геометрия» Федеральное агентство по образованию Тольяттинский государственный университет Кафедра «Начертательная геометрия и черчение» УЧЕБНОЕ ПОСОБИЕ по курсу «Начертательная геометрия» МОДУЛЬ 3 Тольятти 2007 УДК

Подробнее

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ) НАЧЕРТАТЕЛЬНАЯ ГЕОМЕТРИЯ. Бакалавр

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ) НАЧЕРТАТЕЛЬНАЯ ГЕОМЕТРИЯ. Бакалавр МИНИСТЕРСТВО СЕЛЬСКОГО ХОЗЯЙСТВА РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Саратовский государственный аграрный университет

Подробнее

A B C D

A B C D Министерство общего и специального образования РФ Московский государственный технический университет им. Н. Э. Баумана Т. Д. Момджи, Г. П. Золотова РАБОЧАЯ ТЕТРАДЬ ПО ИНЖЕНЕРНОЙ ГРАФИК Издательство МГТУ

Подробнее

Графические задания по начертательной геометрии. Ортогональные проекции УДК МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ББК

Графические задания по начертательной геометрии. Ортогональные проекции УДК МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ББК МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ НОВОСИБИРСКИЙ ГОСУДАРСТВЕННЫЙ АРХИТЕКТУРНО СТРОИТЕЛЬНЫЙ УНИВЕРСИТЕТ ББК 22.151.3 Л 171 УДК 514.18 Графические задания по начертательной геометрии Ортогональные

Подробнее

МИНИСТЕРСТВО ТРАНСПОРТА РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

МИНИСТЕРСТВО ТРАНСПОРТА РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ МИНИСТЕРСТВО ТРАНСПОРТА РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ УЛЬЯНОВСКОЕ ВЫСШЕЕ АВИАЦИОННОЕ УЧИЛИЩЕ ГРАЖДАНСКОЙ АВИАЦИИ (ИНСТИТУТ)

Подробнее

Т.А. Зубкова, О.М. Зимина ПРАКТИКУМ ПО НАЧЕРТАТЕЛЬНОЙ ГЕОМЕТРИИ

Т.А. Зубкова, О.М. Зимина ПРАКТИКУМ ПО НАЧЕРТАТЕЛЬНОЙ ГЕОМЕТРИИ Т.А. Зубкова, О.М. Зимина ПРАКТИКУМ ПО НАЧЕРТАТЕЛЬНОЙ ГЕОМЕТРИИ Ижевск 2010 Министерство образования и науки Российской Федерации ГОУ ВПО «Удмуртский государственный университет» Институт искусств и дизайна

Подробнее

9. МНОГОГРАННИКИ Способы задания многогранников и построение их проекций

9. МНОГОГРАННИКИ Способы задания многогранников и построение их проекций 9. МНОГОГРАННИКИ 9.. Способы задания многогранников и построение их проекций 9.. Пересечение плоскости и прямой с многогранниками 9.3. Взаимное пересечение многогранников 9.. Способы задания многогранников

Подробнее

РАБОЧАЯ ТЕТРАДЬ ПО ИНЖЕНЕРНОЙ ГРАФИКЕ

РАБОЧАЯ ТЕТРАДЬ ПО ИНЖЕНЕРНОЙ ГРАФИКЕ 0 Л.Д. Письменко РАБОЧАЯ ТЕТРАДЬ ПО ИНЖЕНЕРНОЙ ГРАФИКЕ Ульяновск 2007 ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ 1 Государственное образовательное учреждение высшего профессионального образования УЛЬЯНОВСКИЙ

Подробнее

ПЕРЕСЕЧЕНИЕ ГЕОМЕТРИЧЕСКИХ ОБРАЗОВ

ПЕРЕСЕЧЕНИЕ ГЕОМЕТРИЧЕСКИХ ОБРАЗОВ МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ Учреждение образования «Брестский государственный технический университет» Кафедра начертательной геометрии и инженерной графики ПЕРЕСЕЧЕНИЕ ГЕОМЕТРИЧЕСКИХ

Подробнее

СЕЧЕНИЕ ПОВЕРХНОСТИ ПЛОСКОСТЬЮ

СЕЧЕНИЕ ПОВЕРХНОСТИ ПЛОСКОСТЬЮ ФЕДЕРАЛЬНОЕ АГЕНТСТВО ЖЕЛЕЗНОДОРОЖНОГО ТРАНСПОРТА ИРКУТСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ПУТЕЙ СООБЩЕНИЯ СЕЧЕНИЕ ПОВЕРХНОСТИ ПЛОСКОСТЬЮ Методические указания к выполнению эпюра 3 по дисциплине «Начертательная

Подробнее

И Н Ж Е Н Е Р Н А Я ГРАФ ИКА

И Н Ж Е Н Е Р Н А Я ГРАФ ИКА МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ Государственное образовательное учреждение высш его профессионального образования «О ренбургский государственны й университет» Кафедра начертательной геометрии,

Подробнее

Руководство для решения задач по начертательной геометрии

Руководство для решения задач по начертательной геометрии МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РФ Государственное образовательное учреждение высшего профессионального образования «Пензенский государственный университет» (ПГУ) Е. М. Кирин, М. Н. Краснов Руководство

Подробнее

МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ОБУЧАЮЩИХСЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ. Начертательная геометрия

МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ОБУЧАЮЩИХСЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ. Начертательная геометрия ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «ОРЕНБУРГСКИЙ ГОСУДАРСТВЕННЫЙ АГРАРНЫЙ УНИВЕРСИТЕТ» Кафедра «Проектирование и управление в технических системах» МЕТОДИЧЕСКИЕ

Подробнее

Многогранники. Призма

Многогранники. Призма Справка В9 Многогранники Многогранник это такое тело, поверхность которого состоит из конечного числа плоских многоугольников. Призма Призмой называется многогранник, который состоит из двух плоских многоугольников,

Подробнее

ОГЛАВЛЕНИЕ ВВЕДЕНИЕ... 4 ОБЩИЕ УКАЗАНИЯ И СОДЕРЖАНИЕ ЗАДАНИЯ... 5 ОСНОВНЫЕ ПОНЯТИЯ И ОПРЕДЕЛЕНИЯ... 5 ОПРЕДЕЛЕНИЕ ЛИНИИ ПЕРЕСЕЧЕНИЯ ПОВЕРХНОСТЕЙ

ОГЛАВЛЕНИЕ ВВЕДЕНИЕ... 4 ОБЩИЕ УКАЗАНИЯ И СОДЕРЖАНИЕ ЗАДАНИЯ... 5 ОСНОВНЫЕ ПОНЯТИЯ И ОПРЕДЕЛЕНИЯ... 5 ОПРЕДЕЛЕНИЕ ЛИНИИ ПЕРЕСЕЧЕНИЯ ПОВЕРХНОСТЕЙ ОГЛАВЛЕНИЕ ВВЕДЕНИЕ... 4 ОБЩИЕ УКАЗАНИЯ И СОДЕРЖАНИЕ ЗАДАНИЯ... 5 ОСНОВНЫЕ ПОНЯТИЯ И ОПРЕДЕЛЕНИЯ... 5 ОПРЕДЕЛЕНИЕ ЛИНИИ ПЕРЕСЕЧЕНИЯ ПОВЕРХНОСТЕЙ ВРАЩЕНИЯ СПОСОБОМ ВСПОМОГАТЕЛЬНЫХ ПЛОСКОСТЕЙ... 7 ОПРЕДЕЛЕНИЕ

Подробнее

ПОЗИЦИОННЫЕ И МЕТРИЧЕСКИЕ ЗАДАЧИ С ГРАННОЙ ПОВЕРХНОСТЬЮ. Учебно-методическое пособие к графическому заданию по начертательной геометрии K ' G ' А В

ПОЗИЦИОННЫЕ И МЕТРИЧЕСКИЕ ЗАДАЧИ С ГРАННОЙ ПОВЕРХНОСТЬЮ. Учебно-методическое пособие к графическому заданию по начертательной геометрии K ' G ' А В Министерство образования и науки Российской федерации Государственное образовательное учреждение высшего профессионального образования «УФИМСКИЙ ГОСУДАРСТВЕННЫЙ НЕФТЯНОЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ» Кафедра

Подробнее

МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ Государственное образовательное учреждение высшего профессионального образования «Оренбургский государственный университет» Кафедра начертательной геометрии,

Подробнее

УТВЕРЖДЕНО решением кафедры от протокол заведующий кафедрой А.Н. Ростовцев

УТВЕРЖДЕНО решением кафедры от протокол заведующий кафедрой А.Н. Ростовцев МИНОБРНАУКИ РОССИИ государственное образовательное учреждение высшего профессионального образования «Кузбасская государственная педагогическая академия» (КузГПА) Технолого-экономический факультет Кафедра

Подробнее

НАЧЕРТАТЕЛЬНАЯ ГЕОМЕТРИЯ И ИНЖЕНЕРНАЯ ГРАФИКА

НАЧЕРТАТЕЛЬНАЯ ГЕОМЕТРИЯ И ИНЖЕНЕРНАЯ ГРАФИКА Министерство образования и науки Украины Донбасская государственная машиностроительная академия С. С. Красовский, В. В. Хорошайло, Д. Б. Козоброд, В. С.Урусова НАЧЕРТАТЕЛЬНАЯ ГЕОМЕТРИЯ И ИНЖЕНЕРНАЯ ГРАФИКА

Подробнее

Фаткуллина А.А. Для студентов Направления подготовки Архитектура; Дизайн архитектурной среды Уровень подготовки: бакалавриат

Фаткуллина А.А. Для студентов Направления подготовки Архитектура; Дизайн архитектурной среды Уровень подготовки: бакалавриат МИНОБРНАУКИ РФ Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Московский архитектурный институт (государственная академия)» (МАРХИ) Кафедра «Начертательной

Подробнее

Н. И. КОКОВИН, Т. М. КОНДРАТЬЕВА НАЧЕРТАТЕЛЬНАЯ ГЕОМЕТРИЯ МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПО ВЫПОЛНЕНИЮ ДОМАШНИХ ЗАДАНИЙ (ЭПЮРОВ) ЗА I СЕМЕСТР

Н. И. КОКОВИН, Т. М. КОНДРАТЬЕВА НАЧЕРТАТЕЛЬНАЯ ГЕОМЕТРИЯ МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПО ВЫПОЛНЕНИЮ ДОМАШНИХ ЗАДАНИЙ (ЭПЮРОВ) ЗА I СЕМЕСТР МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ СТРОИТЕЛЬНЫЙ УНИВЕРСИТЕТ Кафедра начертательной геометрии и графики Н. И. КОКОВИН, Т. М. КОНДРАТЬЕВА НАЧЕРТАТЕЛЬНАЯ ГЕОМЕТРИЯ МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПО ВЫПОЛНЕНИЮ ДОМАШНИХ ЗАДАНИЙ

Подробнее

Г.И. Куничан, Л.И. Идт, Т.Н. Смирнова САМОСТОЯТЕЛЬНАЯ РАБОТА СТУДЕНТОВ ПРИ ИЗУЧЕНИИ РАЗДЕЛА «НАЧЕРТАТЕЛЬНАЯ ГЕОМЕТРИЯ»

Г.И. Куничан, Л.И. Идт, Т.Н. Смирнова САМОСТОЯТЕЛЬНАЯ РАБОТА СТУДЕНТОВ ПРИ ИЗУЧЕНИИ РАЗДЕЛА «НАЧЕРТАТЕЛЬНАЯ ГЕОМЕТРИЯ» МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РФ Бийский технологический институт (филиал) федерального государственного бюджетного образовательного учреждения высшего образования «Алтайский государственный технический

Подробнее

НАЧЕРТАТЕЛЬНАЯ ГЕОМЕТРИЯ В ПРИМЕРАХ И ЗАДАЧАХ

НАЧЕРТАТЕЛЬНАЯ ГЕОМЕТРИЯ В ПРИМЕРАХ И ЗАДАЧАХ Министерство образования и науки Российской Федерации Санкт-Петербургский государственный архитектурно-строительный университет О. Н. ЛЕОНОВА, Е. А. СОЛОДУХИН НАЧЕРТАТЕЛЬНАЯ ГЕОМЕТРИЯ В ПРИМЕРАХ И ЗАДАЧАХ

Подробнее

Лекция 8 ПОСТРОЕНИЕ ЛИНИИ ПЕРЕСЕЧЕНИЯ ПОВЕРХНОСТЕЙ (СПОСОБ ВСПОМОГАТЕЛЬНЫХ ПЛОСКОСТЕЙ)

Лекция 8 ПОСТРОЕНИЕ ЛИНИИ ПЕРЕСЕЧЕНИЯ ПОВЕРХНОСТЕЙ (СПОСОБ ВСПОМОГАТЕЛЬНЫХ ПЛОСКОСТЕЙ) Лекция 8 ПОСТРОЕНИЕ ЛИНИИ ПЕРЕСЕЧЕНИЯ ПОВЕРХНОСТЕЙ (СПОСОБ ВСПОМОГАТЕЛЬНЫХ ПЛОСКОСТЕЙ) Две поверхности пересекаются по линии, которая одновременно принадлежит каждой из них. В зависимости от вида и взаимного

Подробнее

КРАТКИЙ КУРС ЛЕКЦИЙ ЕН.02 «НАЧЕРТАТЕЛЬНАЯ ГЕОМЕТРИЯ» ЕН.00 «МАТЕМАТИЧЕСКИЙ И ОБЩИЙ ЕСТЕСТВЕННОНАУЧНЫЙ УЧЕБНЫЙ ЦИКЛ»

КРАТКИЙ КУРС ЛЕКЦИЙ ЕН.02 «НАЧЕРТАТЕЛЬНАЯ ГЕОМЕТРИЯ» ЕН.00 «МАТЕМАТИЧЕСКИЙ И ОБЩИЙ ЕСТЕСТВЕННОНАУЧНЫЙ УЧЕБНЫЙ ЦИКЛ» Государственное бюджетное профессиональное образовательное учреждение «Педагогический колледж им. Калугина» г. Оренбурга УТВЕРЖДЕНО научно-методическим Советом колледжа (протокол 6 от 08.02.2017 г.) КРАТКИЙ

Подробнее

РАБОЧАЯ ТЕТРАДЬ. по начертательной геометрии для студентов специальностей механического профиля. Составители: Н.Ю. Смирнов, Е.В. Миронов.

РАБОЧАЯ ТЕТРАДЬ. по начертательной геометрии для студентов специальностей механического профиля. Составители: Н.Ю. Смирнов, Е.В. Миронов. Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования Ивановский государственный химико-технологический университет РАБОЧАЯ ТЕТРАДЬ по начертательной

Подробнее

НАЧЕРТАТЕЛЬНАЯ ГЕОМЕТРИЯ. ИНЖЕНЕРНАЯ ГРАФИКА

НАЧЕРТАТЕЛЬНАЯ ГЕОМЕТРИЯ. ИНЖЕНЕРНАЯ ГРАФИКА 1 МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ АГЕНСТВО ПО ОБРАЗОВАНИЮ Государственное образовательное учреждение высшего профессионального образования «КАЗАНСКИЙ ГОСУДАРСТВЕННЫЙ ЭНЕРГЕТИЧЕСКИЙ

Подробнее

В.И. Коростелев, В.И. Кочетов, С.И. Лазарев ПЕРЕСЕЧЕНИЕ ПОВЕРХНОСТЕЙ В АКСОНОМЕТРИИ

В.И. Коростелев, В.И. Кочетов, С.И. Лазарев ПЕРЕСЕЧЕНИЕ ПОВЕРХНОСТЕЙ В АКСОНОМЕТРИИ В.И. Коростелев, В.И. Кочетов, С.И. Лазарев ПЕРЕСЕЧЕНИЕ ПОВЕРХНОСТЕЙ В АКСОНОМЕТРИИ ИЗДАТЕЛЬСТВО ТГТУ Министерство образования и науки Российской Федерации Государственное образовательное учреждение высшего

Подробнее

ИНЖЕНЕРНАЯ ГРАФИКА. ИНЖЕНЕРНАЯ И КОМПЬЮТЕРНАЯ ГРАФИКА. НАЧЕРТАТЕЛЬНАЯ ГЕОМЕТРИЯ, И ИНЖЕНЕРНАЯ ГРАФИКА. ИНЖЕНЕРНАЯ И МАШИННАЯ ГРАФИКА

ИНЖЕНЕРНАЯ ГРАФИКА. ИНЖЕНЕРНАЯ И КОМПЬЮТЕРНАЯ ГРАФИКА. НАЧЕРТАТЕЛЬНАЯ ГЕОМЕТРИЯ, И ИНЖЕНЕРНАЯ ГРАФИКА. ИНЖЕНЕРНАЯ И МАШИННАЯ ГРАФИКА ГОСУДАРСТВЕННОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «БЕЛОРУССКО-РОССИЙСКИЙ УНИВЕРСИТЕТ» Кафедра «Инженерная графика» ИНЖЕНЕРНАЯ ГРАФИКА. ИНЖЕНЕРНАЯ И КОМПЬЮТЕРНАЯ ГРАФИКА. НАЧЕРТАТЕЛЬНАЯ ГЕОМЕТРИЯ.

Подробнее

ТЕСТОВЫЕ ЗАДАНИЯ ПО НАЧЕРТАТЕЛЬНОЙ ГЕОМЕТРИИ: СПОСОБЫ ПРЕОБРАЗОВАНИЯ ЧЕРТЕЖА, МЕТРИЧЕСКИЕ ЗАДАЧИ

ТЕСТОВЫЕ ЗАДАНИЯ ПО НАЧЕРТАТЕЛЬНОЙ ГЕОМЕТРИИ: СПОСОБЫ ПРЕОБРАЗОВАНИЯ ЧЕРТЕЖА, МЕТРИЧЕСКИЕ ЗАДАЧИ 1 МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Брянский государственный технический университет Н. В. Басс, В.А. Герасимов, Эманов С.Л. ТЕСТОВЫЕ ЗАДАНИЯ ПО НАЧЕРТАТЕЛЬНОЙ ГЕОМЕТРИИ: СПОСОБЫ ПРЕОБРАЗОВАНИЯ

Подробнее

Методические указания по выполнению контрольно-графического задания

Методические указания по выполнению контрольно-графического задания Методические указания по выполнению контрольно-графического задания Студенты в первом семестре, кроме решения задач в рабочей тетради, должны выполнить контрольно-графическое задание, состоящее из семи

Подробнее

СПОСОБЫ ПРЕОБРАЗОВАНИЯ ПРОЕКЦИЙ

СПОСОБЫ ПРЕОБРАЗОВАНИЯ ПРОЕКЦИЙ Л.Д. Письменко СПОСОБЫ ПРЕОБРАЗОВАНИЯ ПРОЕКЦИЙ Ульяновск 2001 Министерство образования РФ Ульяновский государственный технический университет Л.Д. Письменко СПОСОБЫ ПРЕОБРАЗОВАНИЯ ПРОЕКЦИЙ Методические

Подробнее