46. Электромагнитные волны

Save this PDF as:
 WORD  PNG  TXT  JPG

Размер: px
Начинать показ со страницы:

Download "46. Электромагнитные волны"

Транскрипт

1 ЭЛЕКТРОМАГНИТНОЕ ИЗЛУЧЕНИЕ Излучение и приём электрома гнитных волн радио - и СВЧ-диапазона 46. Электромагнитные волны Опыт Герца. Ранее мы описывали электростатическое поле (созданное неподвижными электрическими зарядами) и магнитное поле (возникающее при протекании постоянного тока, т. е. при движении электрических зарядов с постоянной скоростью) независимо. В то же время между изменяющимися во времени электрическим и магнитным полем существует взаимосвязь. Переменное магнитное поле порождает вихревое электрическое (электромагнитная индукция), а переменное электрическое поле порождает вихревое магнитное (магнитоэлектрическая индукция). В результате возникает единое электромагнитное поле. При наличии источника электромагнитного возмущения, изменяющегося во времени, это возмущение может распространяться в пространстве от одной области к другой даже в отсутствие вещества между ними. Это означает, что возникает волновой процесс - процесс переноса энергии электромагнитного поля без переноса вещества. Электромагнитная волна - возмущение электромагнитного поля, распространяющееся в пространстве. Английский учёный Джеймс Максвелл в 1864 г. теоретически предсказал существование электромагнитных волн. Согласно теории Максвелла, скорость распространения в вакууме электромагнитных волн совпадает со скоростью света с= м / с. Экспериментально электромагнитные волны были обнаружены в 1887 г. в Берлинском университете Генрихом Герцем. Источником электромагнитного поля в опыте Герца являлись электромагнитные колебания, возникающие в вибраторе. Вибратор Герца представляет собой прямолинейный проводник с воздушным промежутком посередине - колебательный контур. Электро-

2 170 Электромагнитное излучение ёмкость и индуктивность такого «открытого» колебательного контура очень малы, поэтому собственная частота колебаний в таком контуре w 0 = = 1/ Лё - достаточно велика (порядка МГц). В принципе любой проводящий стержень может рассматриваться как открытый колебательный контур. Высокое напряжение, подаваемое к воздушному промежутку, вызывало разряд в нём вследствие электрического пробоя воздуха (рис. 153, а). Спустя мгновение разряд возникал в воздушном промежутке аналогичного вибратора (резонатора), замкнутого накоротко проволокой и расположенного на расстоянии l (порядка нескольких метров) от вибратора. Разряд в резонаторе возникает через промежуток времени'! = l/ c после разряда в вибраторе. Наиболее интенсивная искра возникает в резонаторе, расположенном параллельно вибратору. Объяснение резул ьтатов опыта Герца оказывается возможным с помощью теории Максвелла. Предположим, что в начальный момент времени переменный ток i( t) возрастает по величине и протекает через воздушный промежуток вверх (рис. 153, б). Такое направление тока (от плюса к минусу) означает, что аналогичное направление имеет напряжённость электрического поля, вызывающего этот ток в разрядном промежутке. Ток i(t) создаёт вокруг себя магнитное поле с возрастающей индукцией B 1 (t), направленной по правилу буравчика по касательной к окружности, лежащей в плоскости, перпендикулярной плоскости чертежа. Возрастание магнитного потока в области точки 1 приводит к возникновению вихревого электрического поля, препятствующего росту магнитного потока (соглас но правилу Ленца). Индукция магнитного поля, создаваемого вихревым х 153 а) б) Электромагнитные волны: а) опыт Герца; б) механизм распространения

3 Излучение и приём электромагнитных волн 171 электрическим полем, в области точки 1 должна быть направлена против B 1 (t) - к нам. Вихревое электрическое поле напряженностью Ё 1 (t) вызывает в точке 2 ток смещения, нап..равленный вверх. Этот ток создаёт в точке 3 магнитное поле_,с индукцией B 3 (t). В разрядном промежутке резо натора напряжённость Е 3 (t)~вихревого электрического поля будет направлена вверх. Если значение E 3 (t) оказывается достаточным для электрического пробоя воздуха в этом промежутке, в нём возникает искра, фиксируемая экспериментаторами, и чере з резонатор протекает ток i P. Возникающая и распространяющаяся в пространстве электромагнит ная волна является поперечной: направления векторов напряжённости электрического поля и индукции магнитного поля перпендикулярны друг другу и направлению распространения волны. Излучение электромагнитной волны. Источником электромагнитной волны является переменный ток. При постоянном токе явления электромагнитной и магнитоэлектрической индукции не возникают. Так как сила тока пропорциональна скорости движения заряженных частиц (см. формулу (3)), то электромагнитная волна возникает, если скорость движения заряженных частиц меняется со временем. Излучение электромагнитных волн возникает при ускоренном движении электрических зарядов. В результате излучения электромагнитных волн частица теряет энергию, а следовательно, не может двигаться с неизменной скоростью. Выясним, как энергия излучения частицы зависит от её ускорения. Ускорение а заряженной частицы, движущейся под действием электрического поля напряжённости Е, определяется из второго закона Ньютона : ~ FK qe а = - = - т т где q - заряд частицы, т - её масса. (134) Электрическое поле ускоряет частицу. Её ускорение а - Е. Рассматривая этот процесс в обратном по времени направлении, можно утверждать, что напряжённость электрического поля в излучаемой электро.магпитпой волне пропорциональна ускорению излучающей заряженной частицы: Е - а. (135) Объёмная плотность энергии электромагнитного поля в электромагнит ной волне складывается из объёмной плотности энергии электрического и магнитного полей, в среднем по времени равных друг другу: (136)

4 172 Электромагнитное излучение Используя формулу ш = ее 0 Е 2 / 2 (см. Ф-10, 90), получаем плотность энергии электромагнитного поля в вакууме (е = 1): (137) С учётом зависимости (135) (138) Энергия излучаемой электромагнитной волны пропорциональна квадрату ускорения излучающей заряженной частицы. ВОПРОСЫ 1. Какую волну называют электромагнитной? С какой скоростью она распространяется? 2. Опишите опыт Герца по обнаружению электромагнитных волн. З. Объясните результаты опыта Герца с помощью теории Максвелла. Почему электромагнитная волна является поперечной? 4. Почему излучение электромагнитных волн возникает при ускоренном движении электрических зарядов? Как напряжённость электрического поля в излучаемой электромагнитной волне зависит от ускорения излучающей заряже нной частицы? 5. Как зависит плотность энергии электромагнитного поля от напряжённости электрического поля? 4 7. Распространение электромагнитн ых волн Бегущая гармоническая электромагнитная волна. Для выяснения механизма распространения электромагнитной волны мы рассмотрели её возникновение при кратковременном импульсе напряжённости электрического поля в вибраторе. Реально при пробое воздуха в вибраторе возникают колебания с собственной частотой ro (периодом Т). Напряжённость электрического поля и индукция магнитного поля в вибраторе изменяются по гармоническому закону (рис. 154, а): Е = E 0 sin rot, (139) В = B 0 sin rot. (140) Для определённости рассмотрим, как распространяется в пространстве (вдоль оси Х) электрическое поле. Будем считать, что скорость распространения возмущения равна v. Возможно, что v ~с. Начальное возмущение 1 (t =О; Е = 0) через время 't распространяется со скоростью v на расстояние v-r. Возмущение 2 (t = Т / 4, Е = Е 0 ) оказыва ется ближе к вибратору на расстояние vt/ 4 (рис. 154, б).

5 Излучение и nриём электромагнитных волн 173 :/,\ ( х_~ О) -Ео I_ z\ : зт U't ит, 1 4 х А 154 а) Распространение в пространстве гармонического возмущения электромагнитно го поля: а) напряжённость в вибраторе как функция времени; 6) пространственное распределение напряжённости электрического nojlя в моfttенты времени t и t + t Более поздние возмущения 3 (t = Т/ 2, Е = О), 4 (t = ЗТ/ 4, Е = -Е 0 ) и 5 (t = Т, Е = 0) находятся в момент 't на следующих расстояниях: v('t - Т / 2); v('t - ЗТ / 4); v('t - Т) соответственно. Расстояние в пространстве между точками 1 и 5, колеблющимися в одинаковой фазе, оказывается равным vt и характеризует длину электромагнитной волны. Длина волны - кратчайшее расстояние между двумя возмущениями, колеблющимися в одинаковой фазе. На это расстояние распространяется волна за период колебаний её источника. При постоянной скорости распространения волны за период она про ходит расстояние Л. = vt, (141) или л. = ~. v (142) В произвольной точке с координатой х напряжённость электрического поля в момент времени t та же, что в точке х = О в более ранний момент времени (t - x / v). (Время x / v требуется для распространения волны на расстояние х.) Поэтому для получения н апряженности электрического

6 174 Электромагнитное излучение поля для бегущей волны в выражении (134), справедливом в точке х = О, следует заменить t на ( t - х / и). Уравнение для напряжённости элек трического поля для бегущей гармонической волны, распространяющегося в положительном направлении оси Х со скоростью и, имеет вид: (143) Индукция магнитного поля в электромагнитной волне изменяется во времени и в пространстве синхронно с напряжённостью электрического поля. Согласно формуле (140) индукция магнитного поля для бегущей гармонической волны, распространяющегося в положительном направл е нии оси Х со скоростью и, будет изменяться по закону: (144) Излучение электромагнитных волн гармонического вибратора током в момент времени 7Т / 4 представлено на рисунке 155, а. Линии напряжённости электрического поля располагаются в плоскости чертежа (плоскость ХУ), линии индукции - в плоскости, перпендикулярной плоскости чертежа, окружая переменный ток. На графике зависимости напряжённости электрического поля от координаты х в момент времени 7Т/ 4 показана длина волны излучения. Поляризация волны. Фронт волны. Как показано на рисунке 155, б, колебания вектора Ё упорядочены : они происходят в плоскости ХУ. В поляризован ной электромагнитной волне колебания вектора напряжённости электрического поля упорядочены. В рассматриваемом случае плоскостью поляризации является плоскость ХУ. Основные характеристики электромагнитной волны - напряжённость электрического поля и индукция магнитного поля. Они принимают определённые значения в момент времени t в тех точках с координатой х, для которых фаза <р синуса в выражениях (143) и (144) постоянна, т. е. <р =со( t - ~ ) = const. (145) Например, если <р = тt / 6, то Е = Е 0 / 2, В = В 0 / 2 в момент времени t в точках с координатой х = v(t - тt/ 6со), как следует из формулы (145).

7 Излуч е ни е и п риём элект р ома гн итных волн yt Напряжённость элект - рического по.ля и индук ция магнитного по.ля и в l(' ~ -v излучающего гармони - tес кого в ибратора : а) в плоскости в ибра тора; 6) в пространстве ( вбл из и ос и Х) " " Л.= ит х у а) v... Плоскополяризоваяиая (иjiи лин ейно-поляризованная) электромагнитная волна - воjiиа, в которой в ектор Ё (и, следовательно, В) к олеблется тоjiько в одном н аправлении, перпендикулярном направлению р аспро странения волны. Пл о ско ст ь поляризации электромагнитной воjiиы - плоско сть, проходящая через направление колебаний вектора напряженности электрическ ого поля и напра вление распро странения волны. Геометрическим местом точек, им еющих определённую координату х, является плоскость, проходящая ч ерез эту точку пар аллельно плоск ости YZ (ри с. 156). В этой плоскости, называемой фронто.1tt волны, напряжённость электрического поля и индукция магнитного поля при нимают определённое значение, т. е. им еют одинаковую фазу.

8 176 Электромагнитное излучение Фронт электромагнитной волны - по верхность постоянной фазы напряжёииости электрического поля и индукции магнитного поля. Если фронтом волны является плоскость, то волна - плоская. Электромагнитная волна является поперечной. 156 Плоская электромагнитная волна На рисунке 156 изображены фронты электромагнитных плоских гармонических волн, на которых Е и В имеют амплитудные значения: Е = ± Е 0 ; В=± В 0 Им соответствуют фазы <р = ±п / 2. Направление распространения фронта волны характеризует луч. Луч - линия, вектор касательной к которой в каждый момент времени направлен перпендикулярно фронту волны, в сторону её распространения. На большом расстоянии от источника излучения электромагнитных волн фронт произвольной волны становится практически плоским. ВОПРОСЫ 1. Объясн ите, как распространяется в пространстве гармоническое возмущение электромагнитного поля. 2. Какое расстояние называется длиной волны? Как длина волны зависит от скорости З. распространения волны? Напишите уравнение бегущей гармонической волны напряжённости электрического поля и индукции магнитного поля. Объясните содержание рисунка Какое физическое явление называют поляризацией? Что такое плоскость поляризации и плоскополяризованная волна? 5. Какую п оверхность называют фронтом волны? Что такое луч, что он характеризует? ЗАДАЧИ 1. Радиостанция работает на частоте v = 100 МГц. Считая, что скорость распространения электромагн итны х волн в атмосфере равна скорости света в вакууме, найдите соответствующую длину волны. [ З м] 2. Колебательный контур радиоприёмника настроен на длину волны Л. = 300 м. Катушка индуктивности в контуре обладае т индуктивностью L = 100 мкгн. Найдите электроёмкость конденсатора в контуре. [250 мкф]

3 Магнетизм. Основные формулы и определения

3 Магнетизм. Основные формулы и определения 3 Магнетизм Основные формулы и определения Вокруг проводника с током существует магнитное поле, направление которого определяется правилом правого винта (или буравчика). Согласно этому правилу, нужно мысленно

Подробнее

И. В. Яковлев Материалы по физике MathUs.ru. Принцип Гюйгенса

И. В. Яковлев Материалы по физике MathUs.ru. Принцип Гюйгенса И. В. Яковлев Материалы по физике MathUs.ru Принцип Гюйгенса В кодификаторе ЕГЭ принцип Гюйгенса отсутствует. Тем не менее, мы посвящаем ему отдельный листок. Дело в том, что этот основополагающий постулат

Подробнее

Тема: Электромагнитные волны (ЭМВ)

Тема: Электромагнитные волны (ЭМВ) Тема: Электромагнитные волны (ЭМВ) Авторы: А.А. Кягова, А.Я. Потапенко Примеры ЭМВ: 1. Радиоволны I. Введение 2. Инфракрасное излучение 3. Видимый свет 1 4. Ультрафиолетовое излучение 5. Рентгеновское

Подробнее

4. Электромагнитная индукция

4. Электромагнитная индукция 1 4 Электромагнитная индукция 41 Закон электромагнитной индукции Правило Ленца В 1831 г Фарадей открыл одно из наиболее фундаментальных явлений в электродинамике явление электромагнитной индукции: в замкнутом

Подробнее

ЭЛЕКТРОСТАТИКА 1. Два рода электрических зарядов, их свойства. Способы зарядки тел. Наименьший неделимый электрический заряд. Единица электрического заряда. Закон сохранения электрических зарядов. Электростатика.

Подробнее

Домашняя работа по физике за 11 класс

Домашняя работа по физике за 11 класс Домашняя работа по физике за 11 класс к учебнику «Физика. 11 класс» Г.Я Мякишев, Б.Б. Буховцев, М.: «Просвещение», 000 г. учебно-практическое пособие 3 СОДЕРЖАНИЕ Глава 1. Электромагнитная индукция Упражнение

Подробнее

3. Магнитное поле Вектор магнитной индукции. Сила Ампера

3. Магнитное поле Вектор магнитной индукции. Сила Ампера 3 Магнитное поле 3 Вектор магнитной индукции Сила Ампера В основе магнитных явлений лежат два экспериментальных факта: ) магнитное поле действует на движущиеся заряды, ) движущиеся заряды создают магнитное

Подробнее

магнитные стрелки ориентируются по направлению касательных к линиям индукции.

магнитные стрелки ориентируются по направлению касательных к линиям индукции. Тема 4 Электромагнетизм 4.1. Магнитное взаимодействие токов. Магнитное поле. Действие магнитного поля на проводник с током. Магнитное поле токов принципиально отличается от электрического поля. Магнитное

Подробнее

Генкин Б.И. Элементы содержания, проверяемые на ЕГЭ по физике. Пособие для повторения учебного материала. Санкт-Петербург:

Генкин Б.И. Элементы содержания, проверяемые на ЕГЭ по физике. Пособие для повторения учебного материала. Санкт-Петербург: Генкин Б.И. Элементы содержания, проверяемые на ЕГЭ по физике. Пособие для повторения учебного материала. Санкт-Петербург: http://audto-um.u, 013 3.1 ЭЛЕКТРИЧЕСКОЕ ПОЛЕ 3.1.1 Электризация тел Электрический

Подробнее

1. Поле создано бесконечной равномерно заряженной нитью с линейной плотностью заряда +τ. Укажите направление градиента потенциала в точке А.

1. Поле создано бесконечной равномерно заряженной нитью с линейной плотностью заряда +τ. Укажите направление градиента потенциала в точке А. Электростатика ТИПОВЫЕ ВОПРОСЫ К ТЕСТУ 1 (ч. 2) 1. Поле создано бесконечной равномерно заряженной нитью с линейной плотностью заряда +τ. Укажите направление градиента потенциала в точке А. 2. Каждый из

Подробнее

И. В. Яковлев Материалы по физике MathUs.ru. Самоиндукция. B (увеличивается) E вихр. Рис. 1. Вихревое поле препятствует увеличению тока

И. В. Яковлев Материалы по физике MathUs.ru. Самоиндукция. B (увеличивается) E вихр. Рис. 1. Вихревое поле препятствует увеличению тока И. В. Яковлев Материалы по физике MathUs.ru Самоиндукция Темы кодификатора ЕГЭ: самоиндукция, индуктивность, энергия магнитного поля. Самоиндукция является частным случаем электромагнитной индукции. Оказывается,

Подробнее

за курс класс Учебники : «Физика-10», «Физика-11» Г.Я. Мякишев, Б.Б. Буховцев,2014 год

за курс класс Учебники : «Физика-10», «Физика-11» Г.Я. Мякишев, Б.Б. Буховцев,2014 год Вопросы к промежуточной аттестации по физике за курс 10-11 класс Учебники : «Физика-10», «Физика-11» Г.Я. Мякишев, Б.Б. Буховцев,2014 год 1.Основные понятия кинематики. 2.Равномерное и равноускоренное

Подробнее

Билет 1. Задача на применение закона сохранения массового числа и электрического заряда

Билет 1. Задача на применение закона сохранения массового числа и электрического заряда Билет 1 Задача на применение закона сохранения массового числа и электрического заряда При бомбардировке нейтронами атома азота испускается протон. В ядро какого изотопа превращается ядро азота? Напишите

Подробнее

1.20. Электромагнитная индукция. Правило Ленца

1.20. Электромагнитная индукция. Правило Ленца Глава 1. Электродинамика Магнитное поле 1.20. Электромагнитная индукция. Правило Ленца Явление электромагнитной индукции было открыто выдающимся английским физиком М. Фарадеем в 1831 г. Оно заключается

Подробнее

Нижегородская государственная сельскохозяйственная академия ЭЛЕКТРОМАГНЕТИЗМ. КОЛЕБАНИЯ И ВОЛНЫ. ВОЛНОВЫЕ ПРОЦЕССЫ. Тематические задания

Нижегородская государственная сельскохозяйственная академия ЭЛЕКТРОМАГНЕТИЗМ. КОЛЕБАНИЯ И ВОЛНЫ. ВОЛНОВЫЕ ПРОЦЕССЫ. Тематические задания Нижегородская государственная сельскохозяйственная академия Кафедра физики ЭЛЕКТРОМАГНЕТИЗМ. КОЛЕБАНИЯ И ВОЛНЫ. ВОЛНОВЫЕ ПРОЦЕССЫ Тематические задания для контроля уровня знаний студентов по физике Ч А

Подробнее

Рисунок 1 объясняет вихревой характер магнитного поля, то есть, что силовые линии замкнуты, это отличает магнитное поле от электрического.

Рисунок 1 объясняет вихревой характер магнитного поля, то есть, что силовые линии замкнуты, это отличает магнитное поле от электрического. Тема: Лекция 32 Магнитные явления. Открытие Эрстеда. Сила Ампера. Закон Ампера для витка с током. Магнитная индукция. Закон Био-Савара-Лапласа. Индукция прямолинейного проводника, витка и катушки с током.

Подробнее

Взаимосвязь электрического и магнитного полей. 6, Правило буравчика

Взаимосвязь электрического и магнитного полей. 6, Правило буравчика Взаимосвязь электрического и магнитного полей 6, Правило буравчика 1.На рисунке изображен проволочный виток, по которому течет электрический ток в направлении, указанном стрелкой. Виток расположен в плоскости

Подробнее

Решение задач по теме «Магнетизм»

Решение задач по теме «Магнетизм» Решение задач по теме «Магнетизм» Магнитное поле- это особая форма материи, которая возникает вокруг любой заряженной движущейся частицы. Электрический ток- это упорядоченное движение заряженных частиц

Подробнее

КАРТА СХЕМА ПРОРАБОТКИ ТЕМЫ ЯВЛЕНИЕ ЭЛЕКТРОМАГНИТНОЙ ИНДУКЦИИ. ЭНЕРГИЯ МАГНИТНОГО ПОЛЯ.

КАРТА СХЕМА ПРОРАБОТКИ ТЕМЫ ЯВЛЕНИЕ ЭЛЕКТРОМАГНИТНОЙ ИНДУКЦИИ. ЭНЕРГИЯ МАГНИТНОГО ПОЛЯ. КАРТА СХЕМА ПРОРАБОТКИ ТЕМЫ МАГНИТНОЕ ПОЛЕ СТАЦИОНАРНЫХ ТОКОВ ОСНОВНЫЕ ХАРАКТЕРИСТИКИ МАГНИТНОГО ПОЛЯ И ЕДИНИЦА ИХ ИЗМЕРЕНИЯ В СИ Вектор магнитной индукции B Связь В и Н Вектор напряженности магнитного

Подробнее

Работа 2.1 Исследование затухающих колебаний в. колебательного контура.

Работа 2.1 Исследование затухающих колебаний в. колебательного контура. Работа 2.1 Исследование затухающих колебаний в колебательном контуре Цель работы: изучение параметров и характеристик колебательного контура. Приборы и оборудование: генератор звуковых сигналов, осциллограф,

Подробнее

Лекция 16. Уравнения Максвелла. Электромагнитная теория Максвелла (60-е годы 19 века)

Лекция 16. Уравнения Максвелла. Электромагнитная теория Максвелла (60-е годы 19 века) Лекция 16 Уравнения Максвелла Электромагнитная теория Максвелла (60-е годы 19 века) Это последовательная теория единого электромагнитного поля, создаваемого произвольной системой зарядов и токов В ней

Подробнее

Дано: СИ Решение: Ответ: F к

Дано: СИ Решение: Ответ: F к 3-7. На шелковых нитях длиной 50 см каждая, прикрепленных к одной точке, висят два одинаково заряженных шарика массой по 0,2 г каждый. Определить заряд каждого шарика, если они отошли друг от друга на

Подробнее

4. Постоянное магнитное поле в вакууме. Движение заряженных частиц в однородном магнитном поле.

4. Постоянное магнитное поле в вакууме. Движение заряженных частиц в однородном магнитном поле. 4 Постоянное магнитное поле в вакууме Движение заряженных частиц в однородном магнитном поле Закон Био-Савара-Лапласа: [ dl, ] db =, 3 4 π где ток, текущий по элементу проводника dl, вектор dl направлен

Подробнее

Работа силы Ампера. Сила Ампера. проводящий ползунок AC, которому

Работа силы Ампера. Сила Ампера. проводящий ползунок AC, которому Работа силы Ампера Напомню, что сила Ампера, действующая на элемент линейного тока, дается формулой (1) Посмотрим на рисунок По двум неподвижным горизонтальным проводникам (рельсам) может свободно перемещаться

Подробнее

Лекция 3.1 (часть 1) Колебания и волны.

Лекция 3.1 (часть 1) Колебания и волны. Лекция 3.1 (часть 1) Колебания и волны. План: 1. Общие представления о колебательных и волновых процессах. 2. Гармонические колебания и их характеристики. 3. Сложение колебаний. 4. Механические гармонические

Подробнее

Лекц ия 20 Действие магнитного поля на проводник с током и на движущийся заряд

Лекц ия 20 Действие магнитного поля на проводник с током и на движущийся заряд Лекц ия 0 Действие магнитного поля на проводник с током и на движущийся заряд Вопросы. Сила Ампера. Сила взаимодействия параллельных токов. Контур с током в магнитном поле. Магнитный момент тока. Действие

Подробнее

2 =0,1 мккл/м 2. Определить напряженность электрического поля, созданного этими заряженными плоскостями.

2 =0,1 мккл/м 2. Определить напряженность электрического поля, созданного этими заряженными плоскостями. Задачи для подготовки к экзамену по физике для студентов факультета ВМК Казанского госуниверситета Лектор Мухамедшин И.Р. весенний семестр 2009/2010 уч.г. Данный документ можно скачать по адресу: http://www.ksu.ru/f6/index.php?id=12&idm=0&num=2

Подробнее

ИНДИВИДУАЛЬНОЕ ЗАДАНИЕ 3 МАГНЕТИЗМ

ИНДИВИДУАЛЬНОЕ ЗАДАНИЕ 3 МАГНЕТИЗМ ИНДИВИДУАЛЬНОЕ ЗАДАНИЕ 3 МАГНЕТИЗМ 1-1. Определить величину индукции магнитного поля, создаваемого горизонтальным отрезком проводника длиной l = 10 см с током i = 10 А в точке над ним на высоте 5 м. Найти

Подробнее

Формулы по физике, которые рекомендуется выучить и хорошо освоить для успешной сдачи ЕГЭ.

Формулы по физике, которые рекомендуется выучить и хорошо освоить для успешной сдачи ЕГЭ. Формулы по физике, которые рекомендуется выучить и хорошо освоить для успешной сдачи ЕГЭ. Версия: 0.92 β. Составитель: Ваулин Д.Н. Литература: 1. Пёрышкин А.В. Физика 7 класс. Учебник для общеобразовательных

Подробнее

Задания А13 по физике

Задания А13 по физике Задания А13 по физике 1. Прямой тонкий провод длиной 1,5 м находится в однородном магнитном поле с индукцией 0,4 Тл. По проводу течет постоянный электрический ток силой 5 А. Чему может быть равна по модулю

Подробнее

Кафедра вычислительной физики ОЦЕНОЧНЫЕ МАТЕРИАЛЫ ДЛЯ ПРОВЕРКИ ОСТАТОЧНЫХ ЗНАНИЙ СТУДЕНТОВ

Кафедра вычислительной физики ОЦЕНОЧНЫЕ МАТЕРИАЛЫ ДЛЯ ПРОВЕРКИ ОСТАТОЧНЫХ ЗНАНИЙ СТУДЕНТОВ Федеральное государственное автономное образовательное учреждение высшего профессионального образования «Казанский (Приволжский) федеральный университет» Кафедра вычислительной физики ОЦЕНОЧНЫЕ МАТЕРИАЛЫ

Подробнее

Рабочая программа по физике 11 класс (2 часа)

Рабочая программа по физике 11 класс (2 часа) Рабочая программа по физике 11 класс (2 часа) 2013-2014 учебный год Пояснительная записка Рабочая общеобразовательная программа «Физика.11 класс. Базовый уровень» составлена на основе Примерной программы

Подробнее

Лекция 9. Магнетизм. Курс: Физика Глава 6 учебника

Лекция 9. Магнетизм. Курс: Физика Глава 6 учебника Лекция 9 Магнетизм Курс: Физика Глава 6 учебника 9.1. Магнитное поле Сила Лоренца В скалярной форме F qe q v, B Л F qvb sin v, B Л Направление силы Лоренца 9.1. Магнитное поле Направление магнитной индукции

Подробнее

РАБОЧАЯ ПРОГРАММА ПО ФИЗИКЕ. 11 КЛАСС (базовый уровень)

РАБОЧАЯ ПРОГРАММА ПО ФИЗИКЕ. 11 КЛАСС (базовый уровень) РАБОЧАЯ ПРОГРАММА ПО ФИЗИКЕ 11 КЛАСС (базовый уровень) 4 ЭЛЕКТРОДИНАМИКА 35 часов 4.1 Элементарный электрический заряд. 1 Знать: 4.2 Закон сохранения электрического заряда Закон Кулона 1 понятия: электрический

Подробнее

Волновое уравнение для проводящей среды.

Волновое уравнение для проводящей среды. Волновое уравнение для проводящей среды Для того чтобы описать распространение электромагнитных волн в проводящей среде, необходимо конкретизировать уравнения Максвелла и материальные уравнения для подобной

Подробнее

1) координата 3) кинетическая энергия 2) скорость 4) потенциальная энергия. Ответ:

1) координата 3) кинетическая энергия 2) скорость 4) потенциальная энергия. Ответ: ФИЗИК, класс, класс ВСОШ Вариант, Март 0 Краевая диагностическая работа по ФИЗИКЕ ВРИНТ Часть При выполнении заданий,, 7, 0 в бланке ответов под номером выполняемого задания поставьте номер одного выбранного

Подробнее

2 влетают в его линиям. заряда q из

2 влетают в его линиям. заряда q из Тур 1 Вариант 1 1. Точка движется по оси х по закону х = 8 + 12t - 3t 2 (м). Определите величину скорости точки при t = 1 с. 2. Тело массой m = 1 кг движется по горизонтальной поверхности под действием

Подробнее

Определение емкости конденсатора методом периодической зарядки и разрядки

Определение емкости конденсатора методом периодической зарядки и разрядки Федеральное агентство по образованию РФ Ухтинский государственный технический университет 26 Определение емкости конденсатора методом периодической зарядки и разрядки Методические указания к лабораторной

Подробнее

ТЕМА 2. Цепи переменного тока. П.3. Комплексное сопротивление (импеданс) П.4. Импедансы основных элементов цепи. П.5. Свободные колебания в контуре

ТЕМА 2. Цепи переменного тока. П.3. Комплексное сопротивление (импеданс) П.4. Импедансы основных элементов цепи. П.5. Свободные колебания в контуре ТЕМА 2. Цепи переменного тока П.1. Гармонический ток П.2. Комплексный ток. Комплексное напряжение. П.3. Комплексное сопротивление (импеданс) П.4. Импедансы основных элементов цепи. П.5. Свободные колебания

Подробнее

С1 «ЭЛЕКТРОМАГНЕТИЗМ», «ЭЛЕКТРОМАГНИТНАЯ ИНДУКЦИЯ»

С1 «ЭЛЕКТРОМАГНЕТИЗМ», «ЭЛЕКТРОМАГНИТНАЯ ИНДУКЦИЯ» С1 «ЭЛЕКТРОМАГНЕТИЗМ», «ЭЛЕКТРОМАГНИТНАЯ ИНДУКЦИЯ» Прямой горизонтальный проводник висит на двух пружинках. По проводнику протекает электрический ток в направлении, указанном на рисунке. В некоторый момент

Подробнее

Пример 1. Два точечных заряда = 1 нкл и q = 2 нкл находятся на расстоянии d = 10 см друг от

Пример 1. Два точечных заряда = 1 нкл и q = 2 нкл находятся на расстоянии d = 10 см друг от Примеры решения задач к практическому занятию по темам «Электростатика» «Электроемкость Конденсаторы» Приведенные примеры решения задач помогут уяснить физический смысл законов и явлений способствуют закреплению

Подробнее

КАК ПЕРЕДАЁТСЯ ИНФОРМАЦИЯ В ПРОСТРАНСТВЕ? Одинадцатая лекция аксиомы Единства Посвящается искателям научных истин

КАК ПЕРЕДАЁТСЯ ИНФОРМАЦИЯ В ПРОСТРАНСТВЕ? Одинадцатая лекция аксиомы Единства Посвящается искателям научных истин КАК ПЕРЕДАЁТСЯ ИНФОРМАЦИЯ В ПРОСТРАНСТВЕ? Одинадцатая лекция аксиомы Единства Посвящается искателям научных истин Канарёв Ф.М. kanphil@mail.ru http://kubagro.ru/scinc/prof.php?kanarv Сейчас считается,

Подробнее

S с плотностью стороннего заряда. По теореме Гаусса

S с плотностью стороннего заряда. По теореме Гаусса 5 Проводники в электрическом поле 5 Проводники Проводниками называются вещества, в которых при включении внешнего поля перемещаются заряды и возникает ток Наиболее хорошими проводниками электричества являются

Подробнее

ЗАДАЧИ ПО ФИЗИКЕ С АНАЛИЗОМ ИХ РЕШЕНИЯ

ЗАДАЧИ ПО ФИЗИКЕ С АНАЛИЗОМ ИХ РЕШЕНИЯ Н.Е.Савченко ЗАДАЧИ ПО ФИЗИКЕ С АНАЛИЗОМ ИХ РЕШЕНИЯ В книге дана методика решения задач но физике с анализом типичных ошибок, допускаемых абитуриентами на вступительных экзаменах. Сборник рекомендуется

Подробнее

КАЗАНСКИЙ ГОСУДАРСТВЕННЫЙ АРХИТЕКТУРНО- СТРОИТЕЛЬНЫЙ УНИВЕРСИТЕТ

КАЗАНСКИЙ ГОСУДАРСТВЕННЫЙ АРХИТЕКТУРНО- СТРОИТЕЛЬНЫЙ УНИВЕРСИТЕТ КАЗАНСКИЙ ГОСУДАРСТВЕННЫЙ АРХИТЕКТУРНО- СТРОИТЕЛЬНЫЙ УНИВЕРСИТЕТ Кафедра физики МЕТОДИЧЕСКИЕ УКАЗАНИЯ К РЕШЕНИЮ ЗАДАЧ ПО ФИЗИКЕ. ЭЛЕКТРОМАГНЕТИЗМ. КОЛЕБАНИЯ И ВОЛНЫ для студентов специальностей 903, 906,

Подробнее

Турнир имени М.В. Ломоносова Заключительный тур 2015 г. ФИЗИКА

Турнир имени М.В. Ломоносова Заключительный тур 2015 г. ФИЗИКА Задача Турнир имени МВ Ломоносова Заключительный тур 5 г ФИЗИКА Небольшой кубик массой m = г надет на прямую горизонтальную спицу, вдоль которой он может перемещаться без трения Спицу закрепляют над горизонтальным

Подробнее

МАГНЕТИЗМ. Магнитное поле.

МАГНЕТИЗМ. Магнитное поле. МАГНЕТИЗМ В этом разделе физики изучаются явления, обусловленные магнитным взаимодействием электрически заряженных частиц Магнитное поле Электрический ток в проводниках - это упорядоченное движение заряженных

Подробнее

Учитель физики Шпаковская О.Ю.

Учитель физики Шпаковская О.Ю. Учитель физики Шпаковская О.Ю. 9 класс Урок по теме "Электромагнитная индукция" Цель: изучить понятие электромагнитной индукции. Учащиеся должны знать: понятие электромагнитной индукции; понятие индукционный

Подробнее

Примеры решения задач

Примеры решения задач 51 Примеры решения задач Задача 1. По прямому проводнику длиной l=8см течет ток I=5A. Определить магнитную индукцию B поля, создаваемого этим током, в точке А, равноудаленной от концов проводника и находящейся

Подробнее

РАБОЧАЯ ПРОГРАММА. Предмет физика Класс 9. Количество часов по учебному плану 68ч в год, 2ч в неделю

РАБОЧАЯ ПРОГРАММА. Предмет физика Класс 9. Количество часов по учебному плану 68ч в год, 2ч в неделю Муниципальное бюджетное общеобразовательное учреждение «Школа 41 «Гармония» с углубленным изучением отдельных предметов» городского округа Самара РАБОЧАЯ ПРОГРАММА Предмет физика Класс 9 Количество часов

Подробнее

Электростатика. Магнитостатика. Электромагнитная индукция. Электрическое поле в проводящей среде.

Электростатика. Магнитостатика. Электромагнитная индукция. Электрическое поле в проводящей среде. МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ИМ. Н.Э.БАУМАНА Л.А.Лунёва, С.Н.Тараненко, В.Г.Голубев, А.В.Козырев, А.В. Купавцев. Электростатика. Магнитостатика. Электромагнитная индукция. Электрическое

Подробнее

ЭНЕРГЕТИЧЕСКИЕ ПРЕВРАЩЕНИЯ В ЭЛЕКТРОМАГНИТНОМ ПОЛЕ

ЭНЕРГЕТИЧЕСКИЕ ПРЕВРАЩЕНИЯ В ЭЛЕКТРОМАГНИТНОМ ПОЛЕ ЭНЕРГЕТИЧЕСКИЕ ПРЕВРАЩЕНИЯ В ЭЛЕКТРОМАГНИТНОМ ПОЛЕ 1 Превращения в цепи постоянного тока Рассмотрим участок проводника, по которому идет постоянный электрический ток. Если сопротивление участка есть R

Подробнее

4 ЭЛЕКТРОСТАТИЧЕСКОЕ ПОЛЕ ПРИ НАЛИЧИИ ПРОВОДНИКОВ

4 ЭЛЕКТРОСТАТИЧЕСКОЕ ПОЛЕ ПРИ НАЛИЧИИ ПРОВОДНИКОВ 4 ЭЛЕКТРОСТАТИЧЕСКОЕ ПОЛЕ ПРИ НАЛИЧИИ ПРОВОДНИКОВ Проводники электричества это вещества, содержащие свободные заряжённые частицы. В проводящих телах электрические заряды могут свободно перемещаться в пространстве.

Подробнее

Заряженный проводник.

Заряженный проводник. Лекция 4. Электрическое поле заряженных проводников. Энергия электростатического поля. Поле вблизи проводника. Электроёмкость проводников и конденсаторов. (Ёмкости плоского, цилиндрического и сферического

Подробнее

Скорость распространения сигнала в линии также зависит от L и C и выражается фазовой скоростью: 1 v ф

Скорость распространения сигнала в линии также зависит от L и C и выражается фазовой скоростью: 1 v ф 4. Длинные линии 4.1. Распространение сигнала по длинной линии При передаче импульсных сигналов по двухпроводной линии часто приходится учитывать конечную скорость распространения сигнала вдоль линии.

Подробнее

Лабораторная работа 2-03 МАГНИТНОЕ ПОЛЕ ПРЯМОГО ПРОВОДНИКА С ТОКОМ. С.А.Крынецкая

Лабораторная работа 2-03 МАГНИТНОЕ ПОЛЕ ПРЯМОГО ПРОВОДНИКА С ТОКОМ. С.А.Крынецкая Лабораторная работа - 03 МАГНИТНОЕ ПОЛЕ ПРЯМОГО ПРОВОДНИКА С ТОКОМ С.А.Крынецкая. Цель работы Исследование зависимости магнитного поля прямого проводника с током от расстояния до проводника и величины

Подробнее

1. ТЕОРЕТИЧЕСКАЯ МЕХАНИКА

1. ТЕОРЕТИЧЕСКАЯ МЕХАНИКА 1. ТЕОРЕТИЧЕСКАЯ МЕХАНИКА 1.. Кинематика. Кинематика это часть теоретической механики, в которой изучается механическое движение материальных точек и твердых тел. Механическое движение это перемещение

Подробнее

8. Электрическое поле создано двумя точечными зарядами q 1 = 4 0 нкл и q 2 = -10

8. Электрическое поле создано двумя точечными зарядами q 1 = 4 0 нкл и q 2 = -10 Индивидуальные задания Электростатика и постоянный ток. Магнетизм Постоянный ток 1. На расстоянии 8 см друг от друга в воздухе находятся два заряда по 1 нкл. Определить напряженность и потенциал поля в

Подробнее

Экзаменационные билеты по разделу «Электричество и магнетизм» (2011 г.) Лектор: проф. П.А.Поляков

Экзаменационные билеты по разделу «Электричество и магнетизм» (2011 г.) Лектор: проф. П.А.Поляков Экзаменационные билеты по разделу «Электричество и магнетизм» (2011 г.) Лектор: проф. П.А.Поляков 1 Билет 1. 1. Электромагнитное взаимодействие и его место среди других взаимодействий в природе. Электрический

Подробнее

ИЗУЧЕНИЕ ПЕРЕХОДНЫХ ПРОЦЕССОВ В ЭЛЕКТРИЧЕСКОЙ ЦЕПИ

ИЗУЧЕНИЕ ПЕРЕХОДНЫХ ПРОЦЕССОВ В ЭЛЕКТРИЧЕСКОЙ ЦЕПИ ИЗУЧЕНИЕ ПЕРЕХОДНЫХ ПРОЦЕССОВ В ЭЛЕКТРИЧЕСКОЙ ЦЕПИ В реальных электрических приборах и элементах электрической цепи при протекании тока возникает магнитное поле, выделяется теплота, и могут накапливаться

Подробнее

ПОДГОТОВКА К ЕГЭ по ФИЗИКЕ

ПОДГОТОВКА К ЕГЭ по ФИЗИКЕ Национальный исследовательский ядерный университет «МИФИ» ПОДГОТОВКА К ЕГЭ по ФИЗИКЕ Преподаватель: кандидат физико-математических наук, доцент кафедры физики, Грушин Виталий Викторович Напряжённость и

Подробнее

Рабочая программа по физике 10 класс ( учебный год)

Рабочая программа по физике 10 класс ( учебный год) Муниципальное бюджетное образовательное учреждение «Школа 13» города Сарова РАССМОТРЕНА на заседании школьного методического объединения учителей естественнонаучного цикла Протокол 1 от 29.08.2016 СОГЛАСОВАНА

Подробнее

РАБОЧИЕ ПРОГРАММЫ ФИЗИКА, 9 КЛАСС НА УЧЕБНЫЙ ПЕРИОД

РАБОЧИЕ ПРОГРАММЫ ФИЗИКА, 9 КЛАСС НА УЧЕБНЫЙ ПЕРИОД II четверть 2.1. Название Основы динамики. Основные законы механики - законы Ньютона. НА УЧЕБНЫЙ ПЕРИОД 2015-2020 Сформировать понятия силы как количественной характеристики взаимодействия тел. Изучить

Подробнее

Факультативно. Ковариантная форма физических законов.

Факультативно. Ковариантная форма физических законов. Факультативно. Ковариантная форма физических законов. Ковариантность и контравариантность. Слово "ковариантный" означает "преобразуется так же, как что-то", а слово "контравариантный" означает "преобразуется

Подробнее

R (т.е. направлено к центру вращения). R

R (т.е. направлено к центру вращения). R Формулы по физике для школьника сдающего ГИА по ФИЗИК (9 класс) Кинематика Линейная скорость [м/с]: L путевая: П средняя: мгновенная: ( ) в проекции на ось Х: ( ) ( ) где _ Х x x направление: касательная

Подробнее

Ôèçè åñêèå ïðèëîæåíèÿ îïðåäåëåííîãî èíòåãðàëà

Ôèçè åñêèå ïðèëîæåíèÿ îïðåäåëåííîãî èíòåãðàëà Ôèçè åñêèå ïðèëîæåíèÿ îïðåäåëåííîãî èíòåãðàëà Âîë åíêî Þ.Ì. Ñîäåðæàíèå ëåêöèè Работа переменной силы. Масса и заряд материальной кривой. Статические моменты и центр тяжести материальной кривой и плоской

Подробнее

ФИЗИКА. для студентов кафедр ИУ3, ИУ4, ИУ5, ИУ6, ИУ7, РК 6, РЛ6, МТ4, МТ8, МТ11, СМ13 3 СЕМЕСТР

ФИЗИКА. для студентов кафедр ИУ3, ИУ4, ИУ5, ИУ6, ИУ7, РК 6, РЛ6, МТ4, МТ8, МТ11, СМ13 3 СЕМЕСТР ФИЗИКА для студентов кафедр ИУ3, ИУ4, ИУ5, ИУ6, ИУ7, РК 6, РЛ6, МТ4, МТ8, МТ11, СМ13 3 СЕМЕСТР Модуль 1 Таблица 1 Виды аудиторных занятий и самостоятельной работы Сроки проведения или выполнения, недели

Подробнее

Программа элективного курса по физике 11 класс. «Методы решения задач по физике повышенной сложности, 11 класс» 34ч.

Программа элективного курса по физике 11 класс. «Методы решения задач по физике повышенной сложности, 11 класс» 34ч. Программа элективного курса по физике класс. «Методы решения задач по физике повышенной сложности, класс» ч., час в неделю Составитель: Шмидт Е.Ф., учитель физики первой категории МОУ «Сосновская СОШ»

Подробнее

Отложенные задания (40)

Отложенные задания (40) Отложенные задания (40) На рисунках изображены постоянные магниты с указанием линий магнитной индукции полей, создаваемых ими, и магнитные стрелки. На каком из рисунков правильно изображено положение магнитной

Подробнее

Интерференция волн. Сложение колебаний. И. В. Яковлев Материалы по физике MathUs.ru

Интерференция волн. Сложение колебаний. И. В. Яковлев Материалы по физике MathUs.ru И. В. Яковлев Материалы по физике MthUs.ru Темы кодификатора ЕГЭ: интерференция света. Интерференция волн В предыдущем листке, посвящённом принципу Гюйгенса, мы говорили о том, что общая картина волнового

Подробнее

2.Пояснительная записка.

2.Пояснительная записка. 2.Пояснительная записка. Программа соответствует Федеральному компоненту государственного стандарта основного общего образования по физике (приказ Минобразования России от 05.03.2004 1089 «Об утверждении

Подробнее

16. Физический смысл преобразований Лоренца и четырехвекторы

16. Физический смысл преобразований Лоренца и четырехвекторы 16. Физический смысл преобразований Лоренца и четырехвекторы Прежде всего, можно отметить, что «представления о пространстве и времени, диктуемые теорией относительности, сильно отличаются от наших привычных,

Подробнее

однородные электрическое и магнитное поля

однородные электрическое и магнитное поля Общеобразовательная школа 1189 им. И.В. Курчатова Однородные электрическое и магнитное поля Составитель: Бойченко А.М. Пособие по физике, 1 класс электродинамика, ч. 3 однородные электрическое и магнитное

Подробнее

Сборник задач. для подготовки к диагностическому тестированию по курсу школьной физики в ТулГУ

Сборник задач. для подготовки к диагностическому тестированию по курсу школьной физики в ТулГУ Сборник задач для подготовки к диагностическому тестированию по курсу школьной физики в ТулГУ Оглавление Тема: Прямолинейное равномерное движение. Ускорение. Прямолинейное равноускоренное движение... 3

Подробнее

а) Минимальной расстояние между кораблями есть расстояние от точки А до прямой ВС, которое равно

а) Минимальной расстояние между кораблями есть расстояние от точки А до прямой ВС, которое равно 9 класс. 1. Перейдем в систему отсчета, связанную с кораблем А. В этой системе корабль В движется с относительной r r r скоростью Vотн V V1. Модуль этой скорости равен r V vcos α, (1) отн а ее вектор направлен

Подробнее

СОДЕРЖАНИЕ ТЕСТОВЫХ МАТЕРИАЛОВ для аттестации учителей физики. Раздел: Механика Тема: Кинематика Задание: Закрытые

СОДЕРЖАНИЕ ТЕСТОВЫХ МАТЕРИАЛОВ для аттестации учителей физики. Раздел: Механика Тема: Кинематика Задание: Закрытые СОДЕРЖАНИЕ ТЕСТОВЫХ МАТЕРИАЛОВ для аттестации учителей физики. Раздел: Механика Тема: Кинематика Задание: Закрытые 1. Самолет, делая "мертвую петлю", движется равномерно по окружности в вертикальной плоскости.

Подробнее

1.8. Граничные условия для векторов электромагнитного поля

1.8. Граничные условия для векторов электромагнитного поля 1.8. Граничные условия для векторов электромагнитного поля Чтобы система уравнений Максвелла (1.1.1) (1.1.4) была полной, т.е. чтобы она давала возможность однозначно определить напряжённости полей при

Подробнее

12.2 Сила Ампера 12 Магнитные явления 1 A A C a Рис. 80: C b 2 Рис. 81: одинакова и равна 12 А. Найти индукцию магнитного поля в точке A, одинаково уд

12.2 Сила Ампера 12 Магнитные явления 1 A A C a Рис. 80: C b 2 Рис. 81: одинакова и равна 12 А. Найти индукцию магнитного поля в точке A, одинаково уд 12 Магнитные явления 12 Магнитные явления 12.1 Магнитное поле. 12.1.1 0 Можно ли намотать катушку соленоида так, чтобы при подключении к нему источника постоянного тока на обоих концах соленоида были южные

Подробнее

Измеряемые величины Формулы Обозначение и единицы измерения. Сопротивление проводника омическое (при постоянном токе)

Измеряемые величины Формулы Обозначение и единицы измерения. Сопротивление проводника омическое (при постоянном токе) В таблице представлены основные расчетные формулы по электротехнике для расчета тока, напряжения, сопротивления, мощности и других параметров электрических схем. Измеряемые величины Формулы Обозначение

Подробнее

Экзаменационные билеты «Электричество и магнетизм» (2013 г.) Лектор: проф. В.А.Алешкевич. Билет 4.

Экзаменационные билеты «Электричество и магнетизм» (2013 г.) Лектор: проф. В.А.Алешкевич. Билет 4. Экзаменационные билеты «Электричество и магнетизм» (2013 г.) Лектор: проф. В.А.Алешкевич Билет 1. 1. Электромагнитное взаимодействие и его место среди других взаимодействий в природе. Электрический заряд.

Подробнее

РАЗДЕЛ III. ЭЛЕКТРОСТАТИКА. ПОСТОЯННЫЙ ЭЛЕКТРИЧЕСКИЙ ТОК. Основные формулы E =

РАЗДЕЛ III. ЭЛЕКТРОСТАТИКА. ПОСТОЯННЫЙ ЭЛЕКТРИЧЕСКИЙ ТОК. Основные формулы E = 35 РАЗДЕЛ III. ЭЛЕКТРОСТАТИКА. ПОСТОЯННЫЙ ЭЛЕКТРИЧЕСКИЙ ТОК Основные формулы Закон Кулона F =, где F - сила взаимодействия точечных зарядов и ; r - расстояние между зарядами; ε - диэлектрическая проницаемость;

Подробнее

Лекция 2.3. Электроемкость проводников и конденсаторов. Энергия электрического

Лекция 2.3. Электроемкость проводников и конденсаторов. Энергия электрического Лекция.3. Электроемкость проводников и конденсаторов. Энергия электрического поля. План. Проводники в электростатическом поле. Электрическая емкость уединенного проводника 3. Конденсаторы 4. Энергия системы

Подробнее

ГЕНЕРАЦИЯ МАГНИТНОГО ПОЛЯ ДВИЖУЩИМИСЯ НЕМАГНИТНЫМИ ПРОВОДНИКАМИ Сокол-Кутыловский О.Л.

ГЕНЕРАЦИЯ МАГНИТНОГО ПОЛЯ ДВИЖУЩИМИСЯ НЕМАГНИТНЫМИ ПРОВОДНИКАМИ Сокол-Кутыловский О.Л. ГЕНЕРАЦИЯ МАГНИТНОГО ПОЛЯ ДВИЖУЩИМИСЯ НЕМАГНИТНЫМИ ПРОВОДНИКАМИ Сокол-Кутыловский О.Л. Известно, что постоянное магнитное поле возникает вокруг равномерно движущихся электрически заряженных частиц, например,

Подробнее

РЕШЕНИЕ НЕСТАНДАРТНЫХ ЗАДАЧ НА КОЛЕБАТЕЛЬНОЕ ДВИЖЕНИЕ

РЕШЕНИЕ НЕСТАНДАРТНЫХ ЗАДАЧ НА КОЛЕБАТЕЛЬНОЕ ДВИЖЕНИЕ Автор: Мухамедов Марат Русланович ученик 11 класса Руководитель: Лопушнян Герда Анатольевна канд пед наук, учитель физики МБОУ гимназия 7 г Балтийск, Калининградская область DOI 1021661/r-112616 РЕШЕНИЕ

Подробнее

ИЗМЕРЕНИЕ ЛОГАРИФМИЧЕСКОГО ДЕКРЕМЕНТА И ДОБРОТНОСТИ КОЛЕБАТЕЛЬНОГО КОНТУРА

ИЗМЕРЕНИЕ ЛОГАРИФМИЧЕСКОГО ДЕКРЕМЕНТА И ДОБРОТНОСТИ КОЛЕБАТЕЛЬНОГО КОНТУРА ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ Государственное образовательное учреждение высшего профессионального образования «НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ» УТВЕРЖДАЮ Проректор-директор

Подробнее

И. В. Яковлев Компания «Ваш репетитор» Электродинамика

И. В. Яковлев Компания «Ваш репетитор» Электродинамика И. В. Яковлев Компания «Ваш репетитор» Электродинамика Данное пособие посвящено третьему разделу «Электродинамика» кодификатора ЕГЭ по физике. Оно охватывает следующие темы. Электризация тел. Взаимодействие

Подробнее

mrn cry)l,ehtob II KYpca

mrn cry)l,ehtob II KYpca M l1hhctepctbo 06pa30BaHIUI 11 HayKH POCCniiCKOH f EOY BO «TBep CKOH f OCY)l,ap CTBeHHbIH YHHBepCI1TeT» OB0 )l,l1tejib oon_ ':...-.._- 2015 r. Pa6oLJ:a5l nporpamma )l,i1cll,i1tij1i1hbi

Подробнее

Эксперименты по обнаружению и изучению токов смещения в вакууме

Эксперименты по обнаружению и изучению токов смещения в вакууме Эксперименты по обнаружению и изучению токов смещения в вакууме Введение Несмотря на то, что со времён Максвелла, впервые введшего в физический обиход представление о токе смещения в вакууме, физическая

Подробнее

Министерство образования и науки Российской Федерации Уральский федеральный университет имени первого Президента России Б. Н.

Министерство образования и науки Российской Федерации Уральский федеральный университет имени первого Президента России Б. Н. Министерство образования и науки Российской Федерации Уральский федеральный университет имени первого Президента России Б. Н. Ельцина ИЗУЧЕНИЕ ЗАТУХАЮЩИХ ЭЛЕКТРОМАГНИТНЫХ КОЛЕБАНИЙ Методические указания

Подробнее

ϕ =, если положить потенциал на

ϕ =, если положить потенциал на . ПОТЕНЦИАЛ. РАБОТА СИЛ ЭЛЕКТРОСТАТИЧЕСКОГО ПОЛЯ Потенциал, создаваемый точечным зарядом в точке A, находящейся на, если положить потенциал на бесконечности равным нулю: φ( ). Потенциал, создаваемый в

Подробнее

АНТЕННЫ И УСТРОЙСТВА СВЧ

АНТЕННЫ И УСТРОЙСТВА СВЧ Камчатский государственный технический университет Кафедра радиооборудования судов Г.И. Дружин АНТЕННЫ И УСТРОЙСТВА СВЧ Методические указания и задания к расчетно-графическим работам для студентов и курсантов

Подробнее

Количество теплоты. Конденсатор

Количество теплоты. Конденсатор И. В. Яковлев Материалы по физике MathUs.ru Количество теплоты. Конденсатор В данном листке рассматриваются задачи на расчёт количества теплоты, которое выделяется в цепях, состоящих из резисторов и конденсаторов.

Подробнее

Передающие линии СВЧ

Передающие линии СВЧ Передающие линии СВЧ Типы линий Линии передачи или фидеры служат для передачи электромагнитной энергии от источника к нагрузке. Существующие линии диапазона сверхвысоких частот можно разделить на две группы.

Подробнее

И. В. Яковлев Материалы по физике MathUs.ru. Фотоэффект

И. В. Яковлев Материалы по физике MathUs.ru. Фотоэффект И. В. Яковлев Материалы по физике MathUs.ru Фотоэффект Темы кодификатора ЕГЭ: гипотеза М. Планка о квантах, фотоэффект, опыты А. Г. Столетова, уравнение Эйнштейна для фотоэффекта. Фотоэффект это выбивание

Подробнее

Рассмотрена на заседании цикловой комиссии технологических дисциплин протокол 1 от «28» августа 2013 года.

Рассмотрена на заседании цикловой комиссии технологических дисциплин протокол 1 от «28» августа 2013 года. Рабочая программа учебной дисциплины разработана на основе Федерального государственного образовательного стандарта (далее ФГОС) по специальности среднего профессионального образования 600«Технология молока

Подробнее

8. Характеристики и свойства гармонических волн

8. Характеристики и свойства гармонических волн 8. Характеристики и свойства гармонических волн 07 19 Источником гармонических волн являются гармонические колебания. Собственно говоря, волна и представляет собой колебание, распространяющееся в пространстве.

Подробнее

Рабочая программа. физике. _Муниципальное бюджетное общеобразовательное. «Гатчинская средняя общеобразовательная школа 1»

Рабочая программа. физике. _Муниципальное бюджетное общеобразовательное. «Гатчинская средняя общеобразовательная школа 1» _Муниципальное бюджетное общеобразовательное учреждение «Гатчинская средняя общеобразовательная школа 1» Приложение к образовательной программе среднего общего образования, утверждѐнной Приказом 80 от

Подробнее

Д. А. Паршин, Г. Г. Зегря Физика Магнитостатика Лекция 1 ЛЕКЦИЯ 1

Д. А. Паршин, Г. Г. Зегря Физика Магнитостатика Лекция 1 ЛЕКЦИЯ 1 1 ЛЕКЦИЯ 1 Релятивистский характер магнитного поля. Магнитное поле равномерно движущегося точечного заряда. Уравнения для средних значений магнитного поля. Уравнение для векторного потенциала. Векторный

Подробнее

Пояснительная записка

Пояснительная записка Пояснительная записка При составлении программы были использованы следующие правовые документы федеральный компонент государственного стандарта среднего (полного) общего образования по физике, утвержденный

Подробнее

Нижегородский государственный университет им. Н.И.Лобачевского. Национальный исследовательский университет

Нижегородский государственный университет им. Н.И.Лобачевского. Национальный исследовательский университет Нижегородский государственный университет им НИЛобачевского Национальный исследовательский университет Учебно-научный и инновационный комплекс Новые многофункциональные материалы и нанотехнологии Чередник

Подробнее