Линейные модели: жатые чувства

Save this PDF as:
 WORD  PNG  TXT  JPG

Размер: px
Начинать показ со страницы:

Download "Линейные модели: жатые чувства"

Транскрипт

1 Линейные модели: жатые чувства И. Куралёнок, Н. Поваров Яндекс СПб, 2015 И. Кураленок, Н. Поваров, Яндекс Санкт-Петербург, 2015 Стр. 1 из 20

2 План 1 Постановка задачи восстановления сигнала Пример Разложение сигнала в Фурье и постановка в нахождении коэффициентов 2 LASSO для восстановления сигнала Теорема о качестве восстановленного сигнала (Candes et al. 2006) Стабильность решения: RIP, RRfND (Candes et al. 2006) LASSO persistency theorem (Bickel et al., 2009) И. Кураленок, Н. Поваров, Яндекс Санкт-Петербург, 2015 Стр. 1 из 20

3 Пример Сергей Юрьевич любит смотреть телевизор и рассуждать. Есть мнение, что в основном по телевизору "льют воду". Надо понять как часто надо обращать внимание на то, что проиходит на экране, чтобы не упустить "нить". И. Кураленок, Н. Поваров, Яндекс Санкт-Петербург, 2015 Стр. 2 из 20

4 Пример: постановка задачи В телевизоре хотят сказать x 0 (β ) Говорят много (n), но информации там мало (k) Матрица A (X ) язык передачи y 0 (y) то, что мы видим Хотим устроить язык передачи так, чтобы минимизировать количество наблюдений, для восстановления ˆβ как можно ближе к правде β Картинка из Tutorial ICML2010 by Irina Rish & Genady Grabarnik И. Кураленок, Н. Поваров, Яндекс Санкт-Петербург, 2015 Стр. 3 из 20

5 Restricted isometry property Пусть A матрица m n, 1 s n. Если существует δ s, такая что: (1 δ s ) y 2 2 A s y 2 2 (1 + δ s ) y 2 2 для любой подматрицы A s, состоящей из s столбцов матрицы A, и y. Тогда матрица A удовлетворяет s-ограниченным изометрическим свойством (s-restricted Isometry Property). И. Кураленок, Н. Поваров, Яндекс Санкт-Петербург, 2015 Стр. 4 из 20

6 Решение точной задачи Если язык (матрица A) устроен правильно (удовлетворяет k-rip), то решение: min x 1 x:y 0 =Ax восстановит загаданный x 0. Или в наших обозначениях: β = min β:y=x β β 1 И. Кураленок, Н. Поваров, Яндекс Санкт-Петербург, 2015 Стр. 5 из 20

7 Сюрприз compressed sensing y = X β + ɛ Если компоненты матрицы X независимые, одинаково распределенные, нормальные, то β можно восстановить точно с большой вероятностью: из O(klog( n )) измерений; k решив оптимизацию где-то мы уже такое видели arg min β β 1 y X β < ɛ И. Кураленок, Н. Поваров, Яндекс Санкт-Петербург, 2015 Стр. 6 из 20

8 Линейная регрессия vs. восстановление сигнала Решают одну и ту же задачу Одни и те же алгоритмы Учиться сложнее: нету влияния на построение матрицы X ; в частности нет гарантий на свойства матрицы X ; наличие в β большого количество нулей лишь наше предположение. И. Кураленок, Н. Поваров, Яндекс Санкт-Петербург, 2015 Стр. 7 из 20

9 Постановка в терминах RFP I Будем рассматривать множество возможных наблюдений как ось времени, тогда можно рассматривать передачу информации о загаданном β как моделирование сигнала через разложение в Фурье. При этом, для простоты, будем считать, что количество возможных наблюдений совпадает с размерностью вектора β, в этом случае мы можем рассматривать преобразование как линейную систему DFT: z z ω = Fβ = n t=0 β te 2πiωt n Возвращаясь к примеру, для Сергея Юрьевича, если он смотрел до конца, и все хорошо понимал, ситуация выглядит как-то так: ˆβ = F 1 Fβ = 1 n F Fβ = β И. Кураленок, Н. Поваров, Яндекс Санкт-Петербург, 2015 Стр. 8 из 20

10 План 1 Постановка задачи восстановления сигнала Пример Разложение сигнала в Фурье и постановка в нахождении коэффициентов 2 LASSO для восстановления сигнала Теорема о качестве восстановленного сигнала (Candes et al. 2006) Стабильность решения: RIP, RRfND (Candes et al. 2006) LASSO persistency theorem (Bickel et al., 2009) И. Кураленок, Н. Поваров, Яндекс Санкт-Петербург, 2015 Стр. 8 из 20

11 Постановка в терминах RFP II В новых обозначениях: arg min β β 1 y X β < ɛ arg min β β 1 (Fβ) Ω (Fβ ) Ω < ɛ где Ω множество моментов наблюдения. И. Кураленок, Н. Поваров, Яндекс Санкт-Петербург, 2015 Стр. 9 из 20

12 LASSO для восстановления сигнала Для начала решим задачу в которой наблюдения точные: z = (Fβ ) k, k Ω При этом будем решать arg min β β 1 (Fβ) k = (Fβ ) k, k Ω с равными размерностями β и Fβ. Оказывается, что F 1 F RIP. Так что ˆβ = β. И. Кураленок, Н. Поваров, Яндекс Санкт-Петербург, 2015 Стр. 10 из 20

13 Теорема о качестве восстановленного сигнала для RFP Theorem (Candes et al. (2006)) β C n, {i Z n β i 0} = S Ω Z n одно из равновероятных множеств фиксированного размера Ω зафиксируем точность B c вероятностью P 1 O(n B ) мы можем точно восстановить ˆβ = β, если: Ω C BS log n где C B 23(B + 1) И. Кураленок, Н. Поваров, Яндекс Санкт-Петербург, 2015 Стр. 11 из 20

14 Выводы из теоремы Теорема рассказывает о свойствах случайной DFT проекции Загаданный вектор β может быть восстановлен: с высокой вероятностью используя LASSO количество наблюдений пропорционально количеству ненулей в загаданном сигнале И. Кураленок, Н. Поваров, Яндекс Санкт-Петербург, 2015 Стр. 12 из 20

15 Упрощение рандома В теореме Ω равномерно распределена по всем множествам фиксированного размера. Такое сложно генерировать. Значительно проще Ω : j Z n, P(j Ω) = τ. Для таких проекций вероятность восстановить сигнал примерно такая же. И. Кураленок, Н. Поваров, Яндекс Санкт-Петербург, 2015 Стр. 13 из 20

16 Стабильно ли решение? Интересны два вида стабильности : стабильность: маленькие изменения в решении при малом изменении в наблюдениях (изменения в загаданном); робастность: устойчивость к шуму в данных (неточно померяли отлик y). Если мы уже решили проблему построения T (множества загаданных ненулей), то решение стабильно: ˆβ = (F T,ΩF T,Ω ) 1 F T,Ωy Из доказательства теоремы о восстановлении сигнала F T,Ω F T,Ω δe c высокой вероятностью при условии на Ω. А вот с робастностью все сложнее... И. Кураленок, Н. Поваров, Яндекс Санкт-Петербург, 2015 Стр. 14 из 20

17 Можно ли как-то подругому построить X? Пока Сергей Юрьевич получал закодированный в Фурье сигнал и раскодировал его обратным Фурье. А что, если кодировани и раскодирование сигнала происходит как-то иначе. Положим, что так: ˆβ = Φ 1 Φβ = ΨΦβ Будем рассматривать ортонормированные Φ, Ψ И. Кураленок, Н. Поваров, Яндекс Санкт-Петербург, 2015 Стр. 15 из 20

18 Когерентность базисов Definition Для пары ортонормированных базисов назовем когерентностью. µ(φ, Ψ) = n max (φ i, ψ j ) i,j Заметим, что 1 µ(φ, Ψ) n В случае Фурье получается экстремально хороший случай: µ(dft, IDFT ) = 1 И. Кураленок, Н. Поваров, Яндекс Санкт-Петербург, 2015 Стр. 16 из 20

19 Теорема о качестве восстановленного сигнала для произвольных базисов Theorem (Candes and Romberg (2006)) Для фиксированной δ > 0 и β R n, {i βi 0} < S. Выберем Ω точек для наблюдения равномерно из Z n без повторений. Если тогда решение LASSO: Ω Cµ 2 (Φ, Ψ)S log n δ ˆβ = arg min β R n β 1 (Φβ) Ω = (Ψβ ) Ω восстановит ˆβ = β с вероятностью 1 δ И. Кураленок, Н. Поваров, Яндекс Санкт-Петербург, 2015 Стр. 17 из 20

20 Возвращаемся к случаю шумных наблюдений Воспользовавшись построенной теорией для точных наблюдений, введем ряд дополнительных ограничений: 1 Вводим ограничение на модельную матрицу, что она k-rip 2 В введенных условиях получаем ограничение на робастность в рамках восстановления сигнала 3 Переходим от когерентности к условиям на собственные числа модельной матрицы И. Кураленок, Н. Поваров, Яндекс Санкт-Петербург, 2015 Стр. 18 из 20

21 LASSO persistency theorem Во введенных условиях оказывается, что (LASSO persistency theorem, Bickel et al., 2009): ( ) ˆβ log n β O m Ура, мы научились измерять смещение ˆβ в зависимости от условий задачи. К сожалению в очень жестких условиях. И. Кураленок, Н. Поваров, Яндекс Санкт-Петербург, 2015 Стр. 19 из 20

22 Что мы узнали про CS 1 Можно ставить задачу по восстановлению сигнала 2 Для решения задачи нам понадобится рандомно выбирать точки наблюдения 3 Оказывается, что решать подобные задачи нужно тем же самым LASSO 4 Эффективность решения зависит от того, как построить язык передачи информации 5 Одним из самых хороших универсальных языков (c минимально возможной когерентностью) является DFT/IDFT 6 C помощью механизма CS можно доказать устойчивость решения LASSO И. Кураленок, Н. Поваров, Яндекс Санкт-Петербург, 2015 Стр. 20 из 20

Линейные модели: уменьшаем variance

Линейные модели: уменьшаем variance Линейные модели: уменьшаем variance И. Куралёнок, Н. Поваров Яндекс СПб, 2015 И. Кураленок, Н. Поваров, Яндекс Санкт-Петербург, 2015 Стр. 1 из 24 План 1 Variance линейных моделей Воспоминания о былом Пример

Подробнее

Обучение метрики. по Tutorial on Metric Learning by Brian Kulis. И. Куралёнок, Н. Поваров. Яндекс. СПб, 2014

Обучение метрики. по Tutorial on Metric Learning by Brian Kulis. И. Куралёнок, Н. Поваров. Яндекс. СПб, 2014 Обучение метрики по Tutorial on Metric Learning by Brian Kulis И. Куралёнок, Н. Поваров Яндекс СПб, 2014 И. Кураленок, Н. Поваров, Яндекс Санкт-Петербург, 2014 Стр. 1 из 34 Метрики в контексте IBL В прошлый

Подробнее

Уменьшение размерности: обзор

Уменьшение размерности: обзор Уменьшение размерности: обзор И. Куралёнок, Н. Поваров Яндекс СПб, 2016 И. Кураленок, Н. Поваров, Яндекс Санкт-Петербург, 2016 Стр. 1 из 25 Зачем бороться с размерностью? 1 Наглядность: сложно смотреть

Подробнее

Линейные модели: уменьшаем variance

Линейные модели: уменьшаем variance Линейные модели: уменьшаем variance И. Куралёнок, Н. Поваров Яндекс СПб, 2013 И. Кураленок, Н. Поваров, Яндекс Санкт-Петербург, 2013 Стр. 1 из 25 Переобозначение параметра решающей функции! λ мало. С сегодняшнего

Подробнее

Лекция 14: Линейный оператор

Лекция 14: Линейный оператор Уральский федеральный университет, Институт математики и компьютерных наук, кафедра алгебры и дискретной математики Вступительные замечания В этой лекции мы приступаем к рассмотрению функций из векторного

Подробнее

или A (3) x 3 + x 4 = 0 x 1 + x 2 + +x 4 + x 5 = 0 x 5 = 0 x 1 + x 2 + x 3 = 0

или A (3) x 3 + x 4 = 0 x 1 + x 2 + +x 4 + x 5 = 0 x 5 = 0 x 1 + x 2 + x 3 = 0 ЛЕКЦИЯ 6. Метод ГАУССА и ДВОЙСТВЕННЫЙ БАЗИС. В этой лекции мы опишем алгоритм решения систем линейных уравнений, позволяющий найти и двойственный базис для любого базиса пространства F n 2. В Лекциях 7

Подробнее

Два подхода к заполнению пропусков и прогнозированию временных рядов, основанные на SSA

Два подхода к заполнению пропусков и прогнозированию временных рядов, основанные на SSA Два подхода к заполнению пропусков и прогнозированию временных рядов, основанные на SSA Жукова Марина Михайловна, гр. 522 Санкт-Петербургский Государственный Университет Математико-механический факультет

Подробнее

Генетические алгоритмы

Генетические алгоритмы Генетические алгоритмы И. Куралёнок, Н. Поваров Яндекс СПб, 2015 И. Кураленок, Н. Поваров, Яндекс Санкт-Петербург, 2015 Стр. 1 из 22 Содержание 1 Генетические алгоритмы 2 Свойства генетических алгоритмов

Подробнее

Конспект к лекции 4. (Санкт-Петербург, 9 апреля

Конспект к лекции 4. (Санкт-Петербург, 9 апреля Конспект к лекции 4. (Санкт-Петербург, 9 апреля 2017 г.) 9 Матрица графа. Граф c n вершинами описывается матрицей смежности M размерности n ˆ n, в которой элемент m ij равно числу рёбер, соединяющих i-ую

Подробнее

Лекция 6: Система координат. Координаты точки

Лекция 6: Система координат. Координаты точки Лекция 6: Система координат. Координаты точки Уральский федеральный университет, Институт математики и компьютерных наук, кафедра алгебры и дискретной математики Вступительные замечания В этой лекции мы

Подробнее

Верхняя оценка сложности параллельного мультиплексора в классе схем из функциональных элементов

Верхняя оценка сложности параллельного мультиплексора в классе схем из функциональных элементов Верхняя оценка сложности параллельного мультиплексора в классе схем из функциональных элементов Основные определения и обозначения Рассматриваются схемы из функциональных элементов в некотором полном базисе.

Подробнее

5. Линейные коды (продолжение)

5. Линейные коды (продолжение) 17 5. Линейные коды (продолжение) Проверочная матрица кода. Другой способ задания линейного подпространства C F n размерности k состоит в указании n k линейных уравнений, которым удовлетворяют координаты

Подробнее

( x) Заметим, что мы можем отождествить линейную функцию с линейным отображением L в одномерное арифметическое пространство.

( x) Заметим, что мы можем отождествить линейную функцию с линейным отображением L в одномерное арифметическое пространство. 79 Линейные функции Определение и примеры линейных функций Определение Будем говорить, что на линейном пространстве L задана функция от одного вектора, если каждому вектору x L сопоставлено число ( x)

Подробнее

Лекция 8: Базис векторного пространства

Лекция 8: Базис векторного пространства Уральский федеральный университет, Институт математики и компьютерных наук, кафедра алгебры и дискретной математики Вступительные замечания В курсе аналитической геометрии важную роль играли понятия базиса

Подробнее

Алгоритмы и структуры данных Лекция 3: Быстрое преобразование Фурье

Алгоритмы и структуры данных Лекция 3: Быстрое преобразование Фурье Алгоритмы и структуры данных Лекция 3: Быстрое преобразование Фурье А. Куликов Академия современного программирования А. Куликов (AMSE) 3. Быстрое преобразование Фурье 1 / 24 План лекции 1 Быстрое вычисление

Подробнее

Семинары по байесовским методам

Семинары по байесовским методам Семинары по байесовским методам Евгений Соколов sokolov.evg@gmail.com 5 декабря 2014 г. 2 Нормальный дискриминантный анализ Нормальный дискриминантный анализ это частный случай байесовской классификации,

Подробнее

Тема 2-5: Ранг матрицы

Тема 2-5: Ранг матрицы Тема 2-5: Ранг матрицы А. Я. Овсянников Уральский федеральный университет Институт математики и компьютерных наук кафедра алгебры и дискретной математики алгебра и геометрия для механиков (2 семестр) В

Подробнее

1 Быстрое вычисление значений в точках. 2 Комплексные корни из единицы. 3 Быстрое преобразование Фурье. 4 Интерполяция. Факт

1 Быстрое вычисление значений в точках. 2 Комплексные корни из единицы. 3 Быстрое преобразование Фурье. 4 Интерполяция. Факт План лекции Алгоритмы и структуры данных Лекция 3: Быстрое преобразование Фурье А Куликов Академия современного программирования А Куликов (AMSE) 1 / 23 А Куликов (AMSE) 2 / 23 Умножение многочленов Умножение

Подробнее

a 1, a 2,..., a m, m 1, x 1 a 1 + x 2 a x m a m

a 1, a 2,..., a m, m 1, x 1 a 1 + x 2 a x m a m ГЛАВА 8. ПОДПРОСТРАНСТВА 1 1. СУММА И ПЕРЕСЕЧЕНИЕ ПОДПРОСТРАНСТВ Множество L векторов линейного пространства X называется подпространством, если из того, что x, y L вытекает, что αx + βy L при любых комплексных

Подробнее

Матричные вычисления и нормальное распределение

Матричные вычисления и нормальное распределение Курс: Байесовские методы машинного обучения, Дата: 9 октября Матричные вычисления и нормальное распределение Дивергенция Кульбака-Лейблера 5 p(x) (x) 5 p(x) (x) 5 5 5 5 5 5-5 5 KL( p) min -5 5 KL(p ) min

Подробнее

Лекция 16: Образ и ядро линейного оператора

Лекция 16: Образ и ядро линейного оператора Лекция 16: Образ и ядро линейного оператора Уральский федеральный университет, Институт математики и компьютерных наук, кафедра алгебры и дискретной математики Вступительные замечания В этой лекции мы

Подробнее

1 Введение. 2 Масштабирование и направление скорейшего спуска. 4 Алгоритм Кармаркара. 5 Анализ алгоритма

1 Введение. 2 Масштабирование и направление скорейшего спуска. 4 Алгоритм Кармаркара. 5 Анализ алгоритма с/к Эффективные алгоритмы Лекция 17: Полиномиальный алгоритм для задачи линейного программирования А. Куликов Computer Science клуб при ПОМИ http://logic.pdmi.ras.ru/ infclub/ А. Куликов (CS клуб при ПОМИ)

Подробнее

23. Базис векторного пространства

23. Базис векторного пространства Уральский федеральный университет, Институт математики и компьютерных наук, кафедра алгебры и дискретной математики Определение базиса Определение Базисом векторного пространства называется упорядоченная

Подробнее

41. Симметрические операторы

41. Симметрические операторы 41 Симметрические операторы Линейные операторы, действующие в евклидовых пространствах, обладают дополнительными свойствами по сравнению с линейными операторами в векторных пространствах без скалярного

Подробнее

ЛЕКЦИЯ 17 КРИТЕРИЙ РАУСА-ГУРВИЦА. МАЛЫЕ КОЛЕБАНИЯ

ЛЕКЦИЯ 17 КРИТЕРИЙ РАУСА-ГУРВИЦА. МАЛЫЕ КОЛЕБАНИЯ ЛЕКЦИЯ 17 КРИТЕРИЙ РАУСА-ГУРВИЦА. МАЛЫЕ КОЛЕБАНИЯ 1. Устойчивость линейной системы Рассмотрим систему двух уравнений. Уравнения возмущенного движения имеют вид: dx 1 dt = x + ax 3 1, dx dt = x 1 + ax 3,

Подробнее

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование»

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ Московский государственный технический университет имени Н.Э. Баумана Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» À.Í. Êàíàòíèêîâ, À.Ï. Êðèùåíêî

Подробнее

V и λ R ) выполняются равенства

V и λ R ) выполняются равенства Линейные преобразования Определение линейного преобразования Пусть V линейное пространство Если указано правило по которому каждому вектору x из V ставится в соответствие единственный вектор y из V то

Подробнее

ЛЕКЦИЯ 4. Задание подпространств уравнениями, системы линейных уравнений, ранг матрицы.

ЛЕКЦИЯ 4. Задание подпространств уравнениями, системы линейных уравнений, ранг матрицы. ЛЕКЦИЯ 4. Задание подпространств уравнениями, системы линейных уравнений, ранг матрицы. Основные результаты Лекции 4. 1) Любое подпространство V k F n 2 размерности k задается некоторой системой из n k

Подробнее

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование»

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ Московский государственный технический университет имени Н.Э. Баумана Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» À.Í. Êàíàòíèêîâ,

Подробнее

Алгоритм Шора. Ю. Лифшиц. 12 декабря 2005 г. (a) Разложение чисел на множители (b) Квантовые вычисления (c) Эмуляция классических вычислений

Алгоритм Шора. Ю. Лифшиц. 12 декабря 2005 г. (a) Разложение чисел на множители (b) Квантовые вычисления (c) Эмуляция классических вычислений Алгоритм Шора Ю. Лифшиц. 1 декабря 005 г. План лекции 1. Подготовка (a) Разложение чисел на множители (b) Квантовые вычисления (c) Эмуляция классических вычислений. Алгоритм Саймона (a) Квантовый параллелизм

Подробнее

Линейное сглаживание экспериментальных данных

Линейное сглаживание экспериментальных данных Линейное сглаживание экспериментальных данных В. И. Полищук С.-Петербургский Государственный Политехнический Университет (polischook@ list.ru) 25 сентября 2005 г. Аннотация Вариант изложения указанной

Подробнее

13. Билинейные и квадратичные функции

13. Билинейные и квадратичные функции 95 Билинейные и квадратичные функции Билинейная функция Определение Билинейной функцией (билинейной формой) на линейном пространстве L называется функция от двух векторов из L линейная по каждому из своих

Подробнее

Машинное обучение: обзор целевых функций

Машинное обучение: обзор целевых функций Машинное обучение: обзор целевых функций И. Куралёнок, Н. Поваров Яндекс СПб, 2013 И. Кураленок, Н. Поваров, Яндекс Санкт-Петербург, 2013 Стр. 1 из 35 Задача на сегодня Строить варианты целевой функции

Подробнее

Решения задач по алгебре за второй семестр

Решения задач по алгебре за второй семестр Решения задач по алгебре за второй семестр Д.В. Горковец, Ф.Г. Кораблев, В.В. Кораблева 1 Линейные векторные пространства Задача 1. Линейно зависимы ли векторы в R 4? a 1 = (4, 5, 2, 6), a 2 = (2, 2, 1,

Подробнее

АЛГЕБРА модуль 3: Квадратичные и билинейные формы

АЛГЕБРА модуль 3: Квадратичные и билинейные формы АЛГЕБРА модуль 3: Квадратичные и билинейные формы 1 Квадратичные формы Мы рассматриваем конечномерные векторные пространства над полем k, где 0. Определение 1.1 Функция f : V k на векторном пространстве

Подробнее

План лекции. с/к Эффективные алгоритмы Лекция 18: Задача полуопределённого программирования. План лекции. Положительно полуопределенные матрицы

План лекции. с/к Эффективные алгоритмы Лекция 18: Задача полуопределённого программирования. План лекции. Положительно полуопределенные матрицы План лекции с/к Эффективные алгоритмы Лекция 18: Задача полуопределённого А. Куликов 1 Задача полуопределённого Задача о максимальном разрезе Computer Science клуб при ПОМИ http://logic.pdmi.ras.ru/ infclub/

Подробнее

Если существует предел y этой последовательности, она и будет решением исходной задачи, так как будет законен предельный переход.

Если существует предел y этой последовательности, она и будет решением исходной задачи, так как будет законен предельный переход. Метод Ритца Выделяют два основных типа методов решения вариационных задач. К первому типу относятся методы, сводящие исходную задачу к решению дифференциальных уравнений. Эти методы очень хорошо развиты

Подробнее

Тема 2-11: Собственные векторы и собственные значения

Тема 2-11: Собственные векторы и собственные значения Тема 2-11: Собственные векторы и собственные значения А. Я. Овсянников Уральский федеральный университет Институт математики и компьютерных наук кафедра алгебры и дискретной математики алгебра и геометрия

Подробнее

Лекция 3. Линейная регрессия, Оценки регрессионых параметров, Лектор Сенько Олег Валентинович

Лекция 3. Линейная регрессия, Оценки регрессионых параметров, Лектор Сенько Олег Валентинович Лекция 3 Линейная регрессия, Оценки регрессионых параметров, Лектор Сенько Олег Валентинович Курс «Математические основы теории прогнозирования» 4-й курс, III поток Сенько Олег Валентинович () МОТП, лекция

Подробнее

Два метода прогнозирования временных рядов

Два метода прогнозирования временных рядов Два метода прогнозирования временных рядов Попов Сергей Альбертович, гр. 522 Санкт-Петербургский государственный университет Математико-механический факультет Кафедра статистического моделирования Научный

Подробнее

3 Конечномерные гладкие задачи с равенствами

3 Конечномерные гладкие задачи с равенствами 3 Конечномерные гладкие задачи с равенствами и неравенствами В этом параграфе даются необходимые и достаточные условия экстремума в гладкой конечномерной задаче с ограничениями типа равенств и неравенств.

Подробнее

Байесовское декодирование

Байесовское декодирование Академический Университет, весенний семестр 2011 Outline Коды, исправляющие ошибки 1 Коды, исправляющие ошибки 2 Определения Декодирование алгоритмом min-sum Декодирование алгоритмом min-product Суть Коды,

Подробнее

Семинары по методу главных компонент

Семинары по методу главных компонент Семинары по методу главных компонент Евгений Соколов sokolov.evg@gmail.com 29 ноября 2013 г. 1 Метод главных компонент В машинном обучении часто возникает задача уменьшения размерности признакового пространства.

Подробнее

Лекция 9. Множественная линейная регрессия

Лекция 9. Множественная линейная регрессия Лекция 9. Множественная линейная регрессия Буре В.М., Грауэр Л.В. ШАД Санкт-Петербург, 2013 Буре В.М., Грауэр Л.В. (ШАД) Множественная регрессия... Санкт-Петербург, 2013 1 / 39 Cодержание Содержание 1

Подробнее

СИНТЕЗ СТОХАСТИЧЕСКОЙ МАТРИЦЫ ПО СИСТЕМЕ ЕЁ ФРАГМЕНТОВ. Басманов А.Е., Дикарев В.А.

СИНТЕЗ СТОХАСТИЧЕСКОЙ МАТРИЦЫ ПО СИСТЕМЕ ЕЁ ФРАГМЕНТОВ. Басманов А.Е., Дикарев В.А. Деп. в УкрИНТЭИ 23.01.97. 76-Уі97 СИНТЕЗ СТОХАСТИЧЕСКОЙ МАТРИЦЫ ПО СИСТЕМЕ ЕЁ ФРАГМЕНТОВ Басманов А.Е., Дикарев В.А. В работе поставлена и решена задача о синтезе (восстановлении) стохастической матрицы

Подробнее

Тема 2-4: Подпространства

Тема 2-4: Подпространства Тема 2-4: Подпространства А. Я. Овсянников Уральский федеральный университет Институт математики и компьютерных наук кафедра алгебры и дискретной математики алгебра и геометрия для механиков (2 семестр)

Подробнее

Построение базисов в ядре и образе линейного оператора.

Построение базисов в ядре и образе линейного оператора. Построение базисов в ядре и образе линейного оператора 1 Речь пойдёт о построении базисов в ядре и образе линейного оператора Будут рассмотрены два примера: первый пример с пояснениями; второй как образец

Подробнее

Некоторые решения задач из лекции 8.

Некоторые решения задач из лекции 8. кафедра Проблемы теор. физики, II курс Введение в теорию групп Некоторые решения задач из лекции 8. Задача 4. а) Алгебра Ли so(3, R) изоморфна алгебре векторов R 3. б) Обозначим через SU(2) группу унитарных

Подробнее

u ik λ k v kj + c ij, (1) u 2 ik =

u ik λ k v kj + c ij, (1) u 2 ik = В. В. Стрижов. «Информационное моделирование». Конспект лекций. Сингулярное разложение Сингулярное разложение (Singular Values Decomposition, SVD) является удобным методом при работе с матрицами. Cингулярное

Подробнее

СОДЕРЖАНИЕ 1. ЗАДАНИЕ ЭТАПЫ РАБОТЫ Формирование математической модели задачи Решение прямой задачи симплекс-методом...

СОДЕРЖАНИЕ 1. ЗАДАНИЕ ЭТАПЫ РАБОТЫ Формирование математической модели задачи Решение прямой задачи симплекс-методом... СОДЕРЖАНИЕ. ЗАДАНИЕ.... ЭТАПЫ РАБОТЫ..... Формирование математической модели задачи..... Решение прямой задачи симплекс-методом..... Построение двойственной задачи... 6.4. Решение прямой и двойственной

Подробнее

Конспект лекции «Уменьшение размерности описания данных: метод главных компонент» по курсу «Математические основы теории прогнозирования» 2011

Конспект лекции «Уменьшение размерности описания данных: метод главных компонент» по курсу «Математические основы теории прогнозирования» 2011 Конспект лекции «Уменьшение размерности описания данных: метод главных компонент» по курсу «Математические основы теории прогнозирования» 2 Проблема анализа многомерных данных При решении различных задач

Подробнее

ЛИНЕЙНАЯ АЛГЕБРА ВМЕСТЕ С MAPLE

ЛИНЕЙНАЯ АЛГЕБРА ВМЕСТЕ С MAPLE ЛИНЕЙНАЯ АЛГЕБРА ВМЕСТЕ С MAPLE Усов В.В. 1 Скалярное произведение в арифметическом пространстве 1.1 Определение. Основные свойства Скалярное произведение (X, Y ) векторов X = (x 1, x 2,..., x n ), Y =

Подробнее

28. Фундаментальная система решений однородной системы линейных уравнений

28. Фундаментальная система решений однородной системы линейных уравнений 28. Фундаментальная система решений однородной системы линейных уравнений Уральский федеральный университет, Институт математики и компьютерных наук, кафедра алгебры и дискретной математики Размерность

Подробнее

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование»

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ Московский государственный технический университет имени Н.Э. Баумана Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» À.Í. Êàíàòíèêîâ, À.Ï. Êðèùåíêî

Подробнее

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование»

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ Московский государственный технический университет имени Н.Э. Баумана Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» À.Í. Êàíàòíèêîâ,

Подробнее

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование»

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ Московский государственный технический университет имени Н.Э. Баумана Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» À.Í. Êàíàòíèêîâ,

Подробнее

Алгоритмы для NP-трудных задач Лекция 9: Приближенные алгоритмы

Алгоритмы для NP-трудных задач Лекция 9: Приближенные алгоритмы Алгоритмы для NP-трудных задач Лекция 9: Приближенные алгоритмы А. Куликов Computer Science клуб при ПОМИ http://logic.pdmi.ras.ru/ infclub/ А. Куликов (Computer Science клуб) 9. Приближенные алгоритмы

Подробнее

Параграф посвящен вопросу о существовании матрицы, обратной к данной, и способам вычисления такой матрицы. AB = BA = E,

Параграф посвящен вопросу о существовании матрицы, обратной к данной, и способам вычисления такой матрицы. AB = BA = E, 31 Обратная матрица Параграф посвящен вопросу о существовании матрицы, обратной к данной, и способам вычисления такой матрицы 1 Критерий существования и свойства обратной матрицы Определение Пусть A квадратная

Подробнее

Тема 2-19: Билинейные и квадратичные формы

Тема 2-19: Билинейные и квадратичные формы Тема 2-19: Билинейные и квадратичные формы А. Я. Овсянников Уральский федеральный университет Институт математики и компьютерных наук кафедра алгебры и дискретной математики алгебра и геометрия для механиков

Подробнее

Заметки по матричным вычислениям и нормальному распределению

Заметки по матричным вычислениям и нормальному распределению Заметки по матричным вычислениям и нормальному распределению Матричные вычисления Здесь и далее вектора будут обозначаться жирным шрифтом x,y,, а матрицы заглавными буквами A,B, При этом под вектором всегда

Подробнее

Лекция 8: Плоскость. Б.М.Верников. Уральский федеральный университет,

Лекция 8: Плоскость. Б.М.Верников. Уральский федеральный университет, Уральский федеральный университет, Институт математики и компьютерных наук, кафедра алгебры и дискретной математики Вступительные замечания Эта лекция посвящена изучению плоскости. Излагаемый в ней материал

Подробнее

О СВЯЗИ МЕЖДУ КОЭФФИЦИЕНТАМИ ПРОСТОЙ И МНОЖЕСТВЕННОЙ РЕГРЕССИОННЫХ МОДЕЛЕЙ В. Г. Панов, А. Н. Вараксин

О СВЯЗИ МЕЖДУ КОЭФФИЦИЕНТАМИ ПРОСТОЙ И МНОЖЕСТВЕННОЙ РЕГРЕССИОННЫХ МОДЕЛЕЙ В. Г. Панов, А. Н. Вараксин Сибирский математический журнал Январь февраль, 2010. Том 51, 1 УДК 519.233.5+519.654 О СВЯЗИ МЕЖДУ КОЭФФИЦИЕНТАМИ ПРОСТОЙ И МНОЖЕСТВЕННОЙ РЕГРЕССИОННЫХ МОДЕЛЕЙ В. Г. Панов, А. Н. Вараксин Аннотация. Рассмотрена

Подробнее

Различные алгоритмы выделения остовного дерева и проверки гиперграфа на связность

Различные алгоритмы выделения остовного дерева и проверки гиперграфа на связность Различные алгоритмы выделения остовного дерева и проверки гиперграфа на связность Сыров Денис Игоревич, гр. 522 Санкт-Петербургский государственный университет Математико-механический факультет Кафедра

Подробнее

Системы линейных алгебраических уравнений Часть 2. Прямые и итерационные методы решения. Скалько Юрий Иванович Цыбулин Иван

Системы линейных алгебраических уравнений Часть 2. Прямые и итерационные методы решения. Скалько Юрий Иванович Цыбулин Иван Системы линейных алгебраических уравнений Часть 2. Прямые и итерационные методы решения Скалько Юрий Иванович Цыбулин Иван Методы решения СЛАУ Прямые и итерационные методы Численные методы решения СЛАУ

Подробнее

Лекция 15: Собственные значения и собственные векторы. оператора

Лекция 15: Собственные значения и собственные векторы. оператора Лекция 15: Собственные значения и собственные векторы линейного оператора Уральский федеральный университет, Институт математики и компьютерных наук, кафедра алгебры и дискретной математики Определение

Подробнее

Г. Г. Магарил-Ильяев, К. Ю. Осипенко

Г. Г. Магарил-Ильяев, К. Ю. Осипенко УДК 575 О НАИЛУЧШЕМ ВЫБОРЕ ИНФОРМАЦИИ В ЗАДАЧЕ ВОССТАНОВЛЕНИЯ ФУНКЦИЙ ПО СПЕКТРУ Г Г Магарил-Ильяев, К Ю Осипенко В работе рассматривается следующая задача Пусть имеется возможность измерить (вообще говоря,

Подробнее

Глава 7. ЭЛЕМЕНТЫ ТЕОРИИ МАТРИЧНЫХ ИГР

Глава 7. ЭЛЕМЕНТЫ ТЕОРИИ МАТРИЧНЫХ ИГР Глава 7. ЭЛЕМЕНТЫ ТЕОРИИ МАТРИЧНЫХ ИГР В теории игр исследуется процесс принятия решений в конфликтных ситуациях, т. е. в случаях, когда существует несколько сторон с разными интересами. Различают игры

Подробнее

Лекция 18: Ортонормированный базис

Лекция 18: Ортонормированный базис Уральский федеральный университет, Институт математики и компьютерных наук, кафедра алгебры и дискретной математики Ортогональные и ортонормированные наборы векторов Из определения угла между векторами

Подробнее

Разрезы графов. Д. П. Ветров 1 Д. А. Кропотов 2 А. А. Осокин 1. Спецкурс «Структурные методы анализа изображений и сигналов» Разрезы графов.

Разрезы графов. Д. П. Ветров 1 Д. А. Кропотов 2 А. А. Осокин 1. Спецкурс «Структурные методы анализа изображений и сигналов» Разрезы графов. Д. П. 1 Д. А. Кропотов 2 А. А. Осокин 1 1 МГУ, ВМиК, каф. ММП 2 ВЦ РАН Спецкурс «Структурные методы анализа изображений и сигналов» План 1 2 3 4 5 Альфа-расширение Потоки в сетях Рассмотрим неориентированный

Подробнее

Лекция 9: Подпространства

Лекция 9: Подпространства Уральский федеральный университет, Институт математики и компьютерных наук, кафедра алгебры и дискретной математики Определение подпространства. Примеры подпространств (1) Определение Непустое подмножество

Подробнее

Комментарии к теме «Характеристические функции»

Комментарии к теме «Характеристические функции» Комментарии к теме «Характеристические функции» Практические занятия по теории вероятностей, 322 гр., СМ, 2013 г. В. В. Некруткин 1 Определение и основные свойства Сначала сделаем следующее замечание.

Подробнее

Лекция 13: Пространство решений однородной системы линейных уравнений

Лекция 13: Пространство решений однородной системы линейных уравнений Лекция 13: Пространство решений однородной системы линейных уравнений Уральский федеральный университет, Институт математики и компьютерных наук, кафедра алгебры и дискретной математики Вступительные замечания

Подробнее

Лекция 13: Пространство решений однородной системы линейных уравнений

Лекция 13: Пространство решений однородной системы линейных уравнений Лекция 13: Пространство решений однородной системы линейных уравнений Уральский федеральный университет, Институт математики и компьютерных наук, кафедра алгебры и дискретной математики Вступительные замечания

Подробнее

Тема 2: Матрицы и действия над ними

Тема 2: Матрицы и действия над ними Тема 2: Матрицы и действия над ними А. Я. Овсянников Уральский федеральный университет Институт математики и компьютерных наук кафедра алгебры и дискретной математики алгебра и геометрия для физиков-инженеров

Подробнее

О некорректных задачах линейной алгебры и устойчивом методе их решения

О некорректных задачах линейной алгебры и устойчивом методе их решения Доклады Академии наук СССР965 Том 63 3 А Н Тихонов О некорректных задачах линейной алгебры и устойчивом методе их решения Рассмотрим систему линейных алгебраических уравнений i m; j a ij Подобная система

Подробнее

Лекция 7: Векторные пространства

Лекция 7: Векторные пространства Уральский федеральный университет, Институт математики и компьютерных наук, кафедра алгебры и дискретной математики Вступительные замечания В этой лекции мы приступаем к изучению линейной алгебры как таковой,

Подробнее

3 Обоснование симплекс-метода

3 Обоснование симплекс-метода 1 3 Обоснование симплекс-метода 3.1 Теоремы существования, двойственности, критерий решения Приведем три теоремы, играющие важную роль при обосновании симплекс-метода. Рассмотрим задачу линейного программирования

Подробнее

Собственные числа и собственные векторы

Собственные числа и собственные векторы Собственные числа и собственные векторы 1 Для понимания этой темы нужно знать тему «Ядро и образ линейного оператора» и уметь вычислять определители Значок будет указывать на утверждения, требующие доказательств

Подробнее

СИБИРСКИЙ МАТЕМАТИЧЕСКИЙ ЖУРНАЛ Том X, 1 Январь Февраль 1969 г. В. М. МИЛЛИОНЩИКОВ ДОКАЗАТЕЛЬСТВО ДОСТИЖИМОСТИ ЦЕНТРАЛЬНЫХ ПОКАЗАТЕЛЕЙ ЛИНЕЙНЫХ СИСТЕМ

СИБИРСКИЙ МАТЕМАТИЧЕСКИЙ ЖУРНАЛ Том X, 1 Январь Февраль 1969 г. В. М. МИЛЛИОНЩИКОВ ДОКАЗАТЕЛЬСТВО ДОСТИЖИМОСТИ ЦЕНТРАЛЬНЫХ ПОКАЗАТЕЛЕЙ ЛИНЕЙНЫХ СИСТЕМ СИБИРСКИЙ МАТЕМАТИЧЕСКИЙ ЖУРНАЛ Том X, Январь Февраль 969 г В М МИЛЛИОНЩИКОВ ДОКАЗАТЕЛЬСТВО ДОСТИЖИМОСТИ ЦЕНТРАЛЬНЫХ ПОКАЗАТЕЛЕЙ ЛИНЕЙНЫХ СИСТЕМ УДК 579 С постановкой вопроса, который решается в настоящей

Подробнее

ЛЕКЦИЯ 3. Симплекс-метод. 1. Алгоритм симплекс-метода. 2. Модифицированный симплекс-метод. 3. Лексикографический симплекс-метод

ЛЕКЦИЯ 3. Симплекс-метод. 1. Алгоритм симплекс-метода. 2. Модифицированный симплекс-метод. 3. Лексикографический симплекс-метод ЛЕКЦИЯ 3 Симплекс-метод 1. Алгоритм симплекс-метода 2. Модифицированный симплекс-метод 3. Лексикографический симплекс-метод 4. Метод искусственного базиса 5. Теория двойственности ЛП. Теоремы двойственности

Подробнее

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование»

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ Московский государственный технический университет имени Н.Э. Баумана Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» À.Í. Êàíàòíèêîâ, À.Ï. Êðèùåíêî

Подробнее

Общие собственные числа двух матриц

Общие собственные числа двух матриц Дальневосточный математический журнал. 2013. Том 13. 1. C. 52 60 УДК 512.643.5 MSC2010 15A18 c Е. А. Калинина 1 Общие собственные числа двух матриц В статье предлагается новый подход к нахождению общих

Подробнее

1. Векторы Даны координаты векторов a, b, c, x в правом ортонормированном k. Показать, что векторы a, b,

1. Векторы Даны координаты векторов a, b, c, x в правом ортонормированном k. Показать, что векторы a, b, Векторы Даны координаты векторов a b c в правом ортонормированном базисе i j k Показать что векторы a b c тоже образуют базис и найти координаты вектора в базисе a b c ) ( ) a ( ) b ( ) c ( ) ) ( ) a (

Подробнее

Теорема об ожидаемой полезности и антагонистические игры. И.В.Кацев (СПб ЭМИ) Полезность и антагонистические игры / 31

Теорема об ожидаемой полезности и антагонистические игры. И.В.Кацев (СПб ЭМИ) Полезность и антагонистические игры / 31 Теорема об ожидаемой полезности и антагонистические игры ИВКацев (СПб ЭМИ) Полезность и антагонистические игры 2013 1 / 31 Пример Рассмотрим игру, похожую на покер В данный момент есть две возможности

Подробнее

Продвинутые методы многомерной оптимизации. Решение СЛАУ с помощью метода сопряжённых градиентов

Продвинутые методы многомерной оптимизации. Решение СЛАУ с помощью метода сопряжённых градиентов Курс: Методы оптимизации в машинном обучении, Продвинутые методы многомерной оптимизации Рассмотрим задачу безусловной оптимизации в многомерном пространстве: f(x) min x R N. Ранее для решения этой задачи

Подробнее

Теорема Гаусса Бонне

Теорема Гаусса Бонне Теорема Гаусса Бонне Теорема Гаусса Бонне утверждает, что среднее значение гауссовой (или скалярной) кривизны на двумерном многообразии не зависит от выбора метрики и определяется исключительно топологией

Подробнее

ЛЕКЦИЯ 1 ТЕОРИЯ ВОЗМУЩЕНИЙ

ЛЕКЦИЯ 1 ТЕОРИЯ ВОЗМУЩЕНИЙ ЛЕКЦИЯ 1 ТЕОРИЯ ВОЗМУЩЕНИЙ В квантовой механике существует небольшое число задач, которые имеют физический смысл и могут быть решены точно. Физический смысл имеют следующие основные задачи: Задача о движении

Подробнее

Math-Net.Ru Общероссийский математический портал

Math-Net.Ru Общероссийский математический портал Mah-Ne.Ru Общероссийский математический портал В. М. Миллионщиков, Критерий малого изменения направлений решений линейной системы дифференциальных уравнений при малых возмущениях коэффициентов системы,

Подробнее

Системы однородных линейных уравнений

Системы однородных линейных уравнений Системы однородных линейных уравнений А И Буфетов, Н Б Гончарук, Ю С Ильяшенко 10 февраля 2015 г В этом параграфе мы займёмся самым простым типом многомерных дифференциальных уравнений линейными уравнениями

Подробнее

Статистическая теория принятия решений

Статистическая теория принятия решений Казанский Федеральный Университет, 2014 Outline 1 2 Метод ближайших соседей Линейная модель очень сильные предположения, много точек не нужно. Совсем другой подход давайте вообще никаких предположений

Подробнее

Линейная регрессия: метод наименьших квадратов

Линейная регрессия: метод наименьших квадратов Линейная регрессия: метод наименьших квадратов Академический Университет, 2012 Outline Наименьшие квадраты и ближайшие соседи Метод наименьших квадратов Метод ближайших соседей 1 Наименьшие квадраты и

Подробнее

1,..., n. даёт пару чисел xi,

1,..., n. даёт пару чисел xi, Однофакторная линейная регрессия Постановка задачи В самых разных областях знания возникает задача определения зависимости между случайными величинами, например, между ростом и весом человека, между силой

Подробнее

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ им. М.В. Ломоносова МЕХАНИКО-МАТЕМАТИЧЕСКИЙ ФАКУЛЬТЕТ Кафедра общих проблем управления КУРСОВАЯ РАБОТА

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ им. М.В. Ломоносова МЕХАНИКО-МАТЕМАТИЧЕСКИЙ ФАКУЛЬТЕТ Кафедра общих проблем управления КУРСОВАЯ РАБОТА МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ им. М.В. Ломоносова МЕХАНИКО-МАТЕМАТИЧЕСКИЙ ФАКУЛЬТЕТ Кафедра общих проблем управления КУРСОВАЯ РАБОТА "Оптимальное восстановление решения уравнения теплопроводности

Подробнее

всевозможные решения заданной системы линейных однородных уравнений:

всевозможные решения заданной системы линейных однородных уравнений: . ЯДРО ЛИНЕЙНОГО ПРЕОБРАЗОВАНИЯ Ранее мы охарактеризовали подпространство конечномерного пространства как линейную оболочку. Но возможны и другие истолкования подпространства. Пусть, e, e2, K, en какой-либо

Подробнее

ТЕОРИЯ МАТРИЧНЫХ ИГР. Задачи выбора в условиях неопределенности

ТЕОРИЯ МАТРИЧНЫХ ИГР. Задачи выбора в условиях неопределенности ТЕОРИЯ МАТРИЧНЫХ ИГР Задачи выбора в условиях неопределенности Имеется набор возможных исходов y Y, из которых один окажется совмещенным с выбранной альтернативой, но с какой именно в момент выбора неизвестно,

Подробнее

лекции 2 4 Лекция. Матроиды

лекции 2 4 Лекция. Матроиды Матроиды пересечение матроидов лекции 2 4 1 Системой подмножеств S = ( E, I) называется пара конечное множество E вместе с семейством I подмножеств множества E, замкнутым относительно включения, т.е. если

Подробнее

ЛИНЕЙНАЯ ОПТИМАЛЬНАЯ ФИЛЬТРАЦИЯ ПРИ НЕ БЕЛЫХ ШУМАХ.

ЛИНЕЙНАЯ ОПТИМАЛЬНАЯ ФИЛЬТРАЦИЯ ПРИ НЕ БЕЛЫХ ШУМАХ. УДК 63966 ЛИНЕЙНАЯ ОПТИМАЛЬНАЯ ФИЛЬТРАЦИЯ ПРИ НЕ БЕЛЫХ ШУМАХ Г Ф Савинов В работе получен алгоритм оптимального фильтра для случая когда входные воздействия и шумы представляют собой случайные гауссовы

Подробнее

СТУДЕНЧЕСКАЯ ОЛИМПИАДА ПО МАТЕМАТИКЕ МФТИ 08 ДЕКАБРЯ КУРС

СТУДЕНЧЕСКАЯ ОЛИМПИАДА ПО МАТЕМАТИКЕ МФТИ 08 ДЕКАБРЯ КУРС СТУДЕНЧЕСКАЯ ОЛИМПИАДА ПО МАТЕМАТИКЕ МФТИ 08 ДЕКАБРЯ 03 КУРС. При каких n 3 можно утверждать, что для всякой пирамиды с выпуклым n-угольником в основании и всякой точки X внутри неё сумма расстояний от

Подробнее

Тема 2-8: Образ и ядро линейного отображения

Тема 2-8: Образ и ядро линейного отображения Тема 2-8: Образ и ядро линейного отображения А. Я. Овсянников Уральский федеральный университет Институт математики и компьютерных наук кафедра алгебры и дискретной математики алгебра и геометрия для механиков

Подробнее

Интегралы и дифференциальные уравнения. Лекции 18-19

Интегралы и дифференциальные уравнения. Лекции 18-19 кафедра «Математическое моделирование» проф. П. Л. Иванков Интегралы и дифференциальные уравнения конспект лекций для студентов 1-го курса 2-го семестра специальностей РЛ1,2,3,6, БМТ1,2 Лекции 18-19 Линейные

Подробнее