S с плотностью стороннего заряда. По теореме Гаусса

Save this PDF as:
 WORD  PNG  TXT  JPG

Размер: px
Начинать показ со страницы:

Download "S с плотностью стороннего заряда. По теореме Гаусса"

Транскрипт

1 5 Проводники в электрическом поле 5 Проводники Проводниками называются вещества, в которых при включении внешнего поля перемещаются заряды и возникает ток Наиболее хорошими проводниками электричества являются металлы Рассмотрим основные особенности проводников ) В проводниках имеются свободные заряды, те индукционные заряды разделяются Для металлов свободными зарядами являются электроны ) В равновесии электрическое поле равно нулю Е = 0 внутри проводника Если поле не равно нулю в какой-то момент времени, то происходит перераспределение зарядов до создания такой ситуации, когда электрическое поле равно нулю внутри проводника Отсюда получаем, что div 0 и, следовательно, объемная плотность зарядов внутри однородного проводника равна тоже нулю ) Электрический заряд может располагаться только на поверхности, поскольку из-за кулоновских сил отталкивания свободные заряды разбегаются на максимально возможные расстояния 4) Так как поле внутри проводника 0, то потенциал постоянен = const проводник эквипотенциален 5) Напряженность поля на поверхности направлена перпендикулярно к ней n Иначе возникают токи по поверхности до тех пор, пока не ликвидируется тангенциальная составляющая поля Таким образом, тангенциальная составляющая = 0 4 Рис 5 Е внутри и вне проводника равна 0 Доказательство можно вблизи провести, используя теорему о циркуляции для вектора поверхности проводника и выбрав малый контур ---4, как показано на рис 5: L 4 dl 0 i i dl (5) Участки контура и можно выбрать произвольными, в том числе и бесконечно малыми по сравнению с участками и 4 Следовательно, интегралы по этим участкам можно положить равными нулю Нулю также равен интеграл по участку 4, где поле равно нулю, поскольку участок контура проходит внутри металла И в силу произвольности длины (малой) кусочка контура получаем, что Е = 0 тангенциальная составляющая и снаружи проводника равна нулю 6) Рассмотрим поле вблизи поверхности проводника Выберем цилиндрическую поверхность, охватывающую поверхность проводника (рис 5) и вырезающую на поверхности проводника площадку n Е = 0 Рис 5 с плотностью стороннего заряда По теореме Гаусса имеем для потока вектора через выбранную поверхность: d 4, (5) Поток вектора Е через нижнее основание и боковую поверхность цилиндра равен нулю Тогда получаем поле вблизи поверхности проводника равно: 4 4 n (5) Поскольку поле внутри проводника равно нулю, то получаем скачок нормальной составляющей напряженности электрического поля при переходе через поверхность проводника Примечание : в системе СИ поле вблизи поверхности заряженного проводника равно: n Скачок нормальной составляющей вектора можно (и полезно) также объяснить другим путем через суперпозицию -х полей Полное поле складывается из электрического поля 0 маленькой

2 площадки, которую можно выделить на поверхности проводника, и поля ext, возбуждаемого всеми остальными зарядами проводника (см рис 5) Поле заряженной площадки (вблизи ее поверхности) равно ext = + 0 ext 0 0 Рис 5 0 =, а внешнее поле в дырке непрерывно Тогда в силу суперпозиции поля равны: ext n, ext n (54) Вводя общую нормаль n n и n n, получаем разность полей по обе стороны от границы: (55) 4 Это является общим соотношением для нормальных составляющих поля Поскольку поле внутри проводника равно нулю 0, то снова получаем (5) 5 Метод электрических изображений Рассмотрим точечный заряд вблизи плоской металлической поверхности (рис 54) Поверхностную плотность наведенного заряда и поле вблизи металлической поверхности можно вычислять двумя + - Рис 54 способами Сосчитаем сначала поле вблизи поверхности над плоскостью и под плоскостью как сумму полей точечного заряда и заряда, наведенного на поверхности Очевидно, что знак наведенного заряда противоположен знаку точечного заряда, а поверхностная плотность распределения = -() меняется с z расстоянием, отсчитываемого от точки на плоскости, куда проектируется заряд (см рис 55) Суммарное электрическое поле есть сумма напряженности от точечного заряда и напряженности от поверхностной плотности заряда Как было показано ранее (формула (5)) продольные (тангенциальные) составляющие равны 0 При этом нормальные составляющие над металлической поверхностью складываются, а под поверхностью вычитаются, причем так, что поле под поверхностью равно 0 Итак, используя (5) и (54), имеем для нормальной составляющей поля () над поверхностью: Соответственно под поверхностью: z 4 Cos (56) 0 Cos z (57) Откуда напряженность поля вблизи поверхности и поверхностная плотность заряда для проводника равны соответственно (с учетом знаков): x + Рис 55 y

3 4, (58) Если просуммируем весь заряд, наведенный на поверхности, то получим заряд - В самом деле, рассмотрим интеграл по всей поверхности: Рис 56 d d ind (59) Оказывается, что такое же поле (58) над поверхностью можно получить, используя отраженный заряд - вместо рассмотрения поверхностной плотности заряда Этот заряд имеет противоположный знак и расположен на том же расстоянии за поверхностью (см рис 56) В самом деле, получаем вблизи поверхности суммарное поле Cos z (50) Этот метод метод изображений позволяет найти поле в любой точке выше металлической поверхности, которое определяется как векторная сумма полей от этих двух зарядов (рис 54-56): где и ' ' (5) радиус-векторы точки пространства от заряда над плоскостью и его изображением соответственно В самом общем случае метод электрических изображений это искусственный метод для расчета взаимодействия проводников с зарядами и другими полями Пусть имеется система точечных зарядов и пусть эквипотенциальная поверхность, разделяющая пространство на два полупространства I и I' (см рисунок) Задание величин зарядов,,, и потенциала на поверхности однозначным образом определяет электрическое поле в полупространстве I Аналогично в полупространстве I' По теореме единственности (единственность решения уравнения 4 ) поле определяется однозначным образом Поэтому, если сделать поверхность проводящей, то поле во всем пространстве не изменится, тк поля в I и I' независимы Тогда поле в полупространстве I можно получать двумя эквивалентными способами: ) либо как сумму полей от зарядов i и поверхности ; ) либо как сумму полей от i и 'i Совокупность зарядов 'i являются электрическим изображением зарядов i в поверхности Отсюда способ расчета взаимодействия зарядов с проводниками и полей вблизи проводников метод электрических изображений Рис 57 5 Емкость проводников Если проводнику сообщаем заряд, то он распределяется единственным образом так, чтобы поле внутри проводника было равно нулю Это справедливо, когда проводник уединенный, те когда нет по близости других тел, чьи заряды или поляризация могут перераспределять заряды на нашем проводнике Итак, рассматриваем уединенный проводник Если на него добавим еще заряд, то он распределится аналогичным образом, но только вырастет напряженность поля вблизи поверхности и потенциал проводника То есть, получаем прямую пропорциональность: I I

4 4 ~, C, (5) где коэффициент пропорциональности есть емкость уединенного проводника С В качестве примера рассмотрим металлический шар радиуса R Пусть этот шар равномерно заряжен зарядом, тогда его потенциал определяется: d или R (5) R R По определению (5) емкость проводящего шара равна его радиусу (в системе единиц СГСЕ): C R (54) Единица емкости в системе СГСЕС (системе Гаусса): C см Примечание : в системе СИ имеем C 4 0 R и единица емкости Фарада: 9 0 Ф Кл СГСЕ 9 0 см В 00 СГСЕ Фарада очень большая величина, так Ф это емкость шара радиусом 90 9 м В рассмотрение вводят обычно величины: мф, мкф, пкф Конденсаторы Конденсаторы металлические обкладки, отделенные слоем диэлектрика Считаем, что внешние поля не влияют на поле между обкладками, заряды на обкладках равны по величине и противоположны по знаку В реальном конденсаторе это справедливо приближенно, но часто с достаточно хорошей точностью Заряд на одной из обкладок конденсатора связан с разностью потенциалов между обкладками прямо пропорционально Введем коэффициент пропорциональности емкость конденсатора: C (55) Емкость зависит от конструкции конденсатора Наиболее распространенные конденсаторы: плоский, цилиндрический и сферический Рассмотрим простейшие случаи ) Плоский конденсатор: две параллельные пластинки, между которыми расположен диэлектрик с диэлектрической проницаемостью (рис 58) Расстояние между пластинами равно d, площадь пластин равна Напряжение на конденсаторе (разность потенциалов между пластинами) равно: U Электрическое поле внутри конденсатора однородное (пренебрегая краевыми изменениями поля): 4 4 Тогда связь между напряжением и полем равна: d d 4 Откуда получаем емкость плоского конденсатора: C 4d (56) (57) Примечание 4: в системе СИ емкость плоского конденсатора C 0 d (58) ) Сферический конденсатор: обкладками являются концентрические сферы, радиусами R и R, между которыми расположен диэлектрик с диэлектрической проницаемостью (см рис 59) Разность потенциалов между обкладками определяется из соотношения Рис 58

5 5 R Рис 59 R R R И тогда емкость сферического конденсатора C R R R R (59) (50) Примечание 5: в системе СИ емкость сферического конденсатора равна C 4 0R R R R ) Цилиндрический конденсатор: обкладками являются коаксиальных цилиндрических поверхности радиусами a и b Длина цилиндров равна l (при этом считаем, что l достаточно велико по сравнению с расстоянием между обкладками), между ними расположен диэлектрик с диэлектрической проницаемостью Поле внутри цилиндрического конденсатора (между цилиндрами) легко получить по теореме Гаусса (см Глава, формула ()):, (5) где расстояние, отсчитываемое от оси симметрии, заряд, приходящийся на единицу длины одного из цилиндров Тогда разность потенциалов равна: d b b ln ln (5) a l a Следовательно, емкость цилиндрического конденсатора определяется: b a l C b ln a Примечание 6: в системе СИ емкость цилиндрического конденсатора C 0l b ln a (5)


1.23. Проводники в электрическом поле Распределение зарядов в проводнике В проводниках, в отличие от диэлектриков, концентрация свободных носителей

1.23. Проводники в электрическом поле Распределение зарядов в проводнике В проводниках, в отличие от диэлектриков, концентрация свободных носителей 1.23. Проводники в электрическом поле 1.23.а Распределение зарядов в проводнике В проводниках, в отличие от диэлектриков, концентрация свободных носителей заряда очень велика ~ 10 23 см -3. Эти заряды

Подробнее

Заряженный проводник.

Заряженный проводник. Лекция 4. Электрическое поле заряженных проводников. Энергия электростатического поля. Поле вблизи проводника. Электроёмкость проводников и конденсаторов. (Ёмкости плоского, цилиндрического и сферического

Подробнее

Лекция 5. Проводники в электростатическом поле

Лекция 5. Проводники в электростатическом поле Лекция 5. Проводники в электростатическом поле Проводниками называются вещества, в которых имеются свободные заряды, способные перемещаться по всему объему проводника. Проводниками являются все металлы,

Подробнее

1.5 Поток вектора напряженности электрического поля

1.5 Поток вектора напряженности электрического поля 1.5 Поток вектора напряженности электрического поля Ранее отмечалось, что величина вектора напряженности электрического поля равна количеству силовых линий, пронизывающих перпендикулярную к ним единичную

Подробнее

Лекция 7 Электроемкость проводника. Энергия электрического поля

Лекция 7 Электроемкость проводника. Энергия электрического поля Лекция 7 Электроемкость проводника. Энергия электрического поля Электроемкость уединенного проводника. Уединенный проводник проводник, вблизи которого нет других тел, способных повлиять на распределение

Подробнее

- закон Кулона в вакууме. Здесь. 1 4πε. где. Ф - электрическая постоянная.

- закон Кулона в вакууме. Здесь. 1 4πε. где. Ф - электрическая постоянная. Лекция (часть ). Электростатика. Электроемкость. Конденсаторы. Электростатика. Закон Кулона. Напряжённость. Принцип суперпозиции. Электрический диполь. Вопросы. Электризация тел. Взаимодействие заряженных

Подробнее

Проводники в электростатическом поле. Электроемкость. Лекция 5

Проводники в электростатическом поле. Электроемкость. Лекция 5 Проводники в электростатическом поле. Электроемкость Лекция 5 Содержание лекции: Проводники в электростатическом поле Электростатическая индукция Электрическая емкость Конденсаторы. Соединения конденсаторов

Подробнее

2. Проводники и диэлектрики в электрическом поле. Конденсаторы.

2. Проводники и диэлектрики в электрическом поле. Конденсаторы. Проводники и диэлектрики в электрическом поле Конденсаторы Напряженность электрического поля у поверхности проводника в вакууме: σ E n, где σ поверхностная плотность зарядов на проводнике, напряженность

Подробнее

1.3. Теорема Гаусса.

1.3. Теорема Гаусса. 1 1.3. Теорема Гаусса. 1.3.1. Поток вектора через поверхность. Поток вектора через поверхность одно из важнейших понятий любого векторного поля, в частности электрического d d. Рассмотрим маленькую площадку

Подробнее

Факультатив. Заряд внутри полости проводника.

Факультатив. Заряд внутри полости проводника. Факультатив Заряд внутри полости проводника Рассмотрим задачу: пусть есть незаряженный проводящий шар, внутри шара сферическая полость, в центре полости точечный заряд Найти поле E везде Сначала докажем,

Подробнее

Экзамен. Метод изображений. 2. Точечный заряд и проводящий заземленный шар.

Экзамен. Метод изображений. 2. Точечный заряд и проводящий заземленный шар. Экзамен. Метод изображений.. Точечный заряд и проводящий заземленный шар. Рассмотрим задачу. Дан проводящий заземленный шар радиусом и точечный заряд на расстоянии a> от центра шара. Найти потенциал в

Подробнее

Теорема Гаусса. Применение теоремы Гаусса к расчету полей

Теорема Гаусса. Применение теоремы Гаусса к расчету полей Теорема Гаусса Применение теоремы Гаусса к расчету полей Основные формулы Электростатическое поле можно задать, указав для каждой точки величину и направление вектора Совокупность этих векторов образует

Подробнее

ОБЩАЯ ФИЗИКА. Электричество. Лекции 6-7 ПРОВОДНИКИ В ЭЛЕКТРИЧЕСКОМ ПОЛЕ. КОНДЕНСАТОРЫ. ЭНЕРГИЯ ЭЛЕКТРИЧЕСКОГО ПОЛЯ

ОБЩАЯ ФИЗИКА. Электричество. Лекции 6-7 ПРОВОДНИКИ В ЭЛЕКТРИЧЕСКОМ ПОЛЕ. КОНДЕНСАТОРЫ. ЭНЕРГИЯ ЭЛЕКТРИЧЕСКОГО ПОЛЯ ОБЩАЯ ФИЗИКА. Электричество. Лекции 6-7 ПРОВОДНИКИ В ЭЛЕКТРИЧЕСКОМ ПОЛЕ. КОНДЕНСАТОРЫ. ЭНЕРГИЯ ЭЛЕКТРИЧЕСКОГО ПОЛЯ Равновесие зарядов в проводниках Поле вблизи поверхности заряженного проводника Электростатический

Подробнее

ПОВТОРЕНИЕ ЭЛЕКТРОСТАТИКИ

ПОВТОРЕНИЕ ЭЛЕКТРОСТАТИКИ ПОВТОРЕНИЕ ЭЛЕКТРОСТАТИКИ 0.. Уравнения Максвелла. Уравнения Максвелла в интегральной форме: CG 4 Hdl jd Dd c c t Edl Bd c t Bd 0 Dd 4q Hdl jd Dd (0..) t Edl Bd t (0..) Bd 0 (0..) Dd q (0..4) Уравнения

Подробнее

4. ЕМКОСТЬ. ЭНЕРГИЯ ЭЛЕКТРОСТАТИЧЕСКОГО ПОЛЯ

4. ЕМКОСТЬ. ЭНЕРГИЯ ЭЛЕКТРОСТАТИЧЕСКОГО ПОЛЯ 4 ЕМКОСТЬ ЭНЕРГИЯ ЭЛЕКТРОСТАТИЧЕСКОГО ПОЛЯ Емкость конденсатора можно рассчитать, используя соотношение между его зарядом и разностью потенциалов между его обкладками (см пример 4) Энергия электростатического

Подробнее

ϕ 2 (x) 2 q l ln x a + A, A = q ( 2 q l ln 1 + q l B = q l C = ϕ 3 (0) = q B = ϕ 1 (x) = q x.

ϕ 2 (x) 2 q l ln x a + A, A = q ( 2 q l ln 1 + q l B = q l C = ϕ 3 (0) = q B = ϕ 1 (x) = q x. Урок 2 Емкость Задача 20) Оценить емкость: а) металлической пластинки с размерами h a и б) цилиндра с a Решение а) Рассмотрим потенциал пластины на расстояниях x На этом расстоянии можно всю пластину считать

Подробнее

ЛЕКЦИЯ 4 ЭЛЕКТРИЧЕСКОЕ ПОЛЕ В ДИЭЛЕКТРИКАХ. ЭНЕРГИЯ ЭЛЕКТРИЧЕСКОГО ПОЛЯ

ЛЕКЦИЯ 4 ЭЛЕКТРИЧЕСКОЕ ПОЛЕ В ДИЭЛЕКТРИКАХ. ЭНЕРГИЯ ЭЛЕКТРИЧЕСКОГО ПОЛЯ ЛЕКЦИЯ 4 ЭЛЕКТРИЧЕСКОЕ ПОЛЕ В ДИЭЛЕКТРИКАХ. ЭНЕРГИЯ ЭЛЕКТРИЧЕСКОГО ПОЛЯ На прошлой лекции было показано, что в отсутствии свободных зарядов поле D не обращается в ноль. Из теоремы Гаусса следует, что D

Подробнее

Теоретическая справка к лекции 5

Теоретическая справка к лекции 5 Теоретическая справка к лекции 5 Электрический заряд. 19 Элементарный электрический заряд e 1, 6 1 Кл. Заряд электрона отрицательный ( e e), заряд протона положительный ( p N e электронов и N P протонов

Подробнее

Глава 3 ПРОВОДНИКИ В ЭЛЕКТРОСТАТИЧЕСКОМ ПОЛЕ. ЭЛЕКТРОЕМКОСТЬ Теоретический материал

Глава 3 ПРОВОДНИКИ В ЭЛЕКТРОСТАТИЧЕСКОМ ПОЛЕ. ЭЛЕКТРОЕМКОСТЬ Теоретический материал 8 ЭЛЕКТРИЧЕСТВО И МАГНЕТИЗМ МЕТОДИКА РЕШЕНИЯ ЗАДАЧ Глава ПРОВОДНИКИ В ЭЛЕКТРОСТАТИЧЕСКОМ ПОЛЕ ЭЛЕКТРОЕМКОСТЬ Теоретический материал Проводники это материальные тела, в которых при наличии внешнего электрического

Подробнее

C= R емкость проводящего шара равна его радиусу (в системе единиц СГС Гаусса). емкость шара в системе СИ. Емкость земного шара C 720 мкф.

C= R емкость проводящего шара равна его радиусу (в системе единиц СГС Гаусса). емкость шара в системе СИ. Емкость земного шара C 720 мкф. Экзамен Электрическая емкость уединенного проводника Рассмотрим уединенный проводник Сообщим проводнику заряд Заряды как-то распределятся по поверхности проводника Все точки проводника будут иметь один

Подробнее

Таким образом, мы пришли к закону (5).

Таким образом, мы пришли к закону (5). Конспект лекций по курсу общей физики Часть II Электричество и магнетизм Лекция. ЭЛЕКТРИЧЕСКОЕ ПОЛЕ В ВАКУУМЕ (продолжение).4. Теорема Остроградского Гаусса. Применение теоремы Докажем теорему для частного

Подробнее

9. Проводники в электростатическом поле Равновесие зарядов на проводнике Е=0 (9.1.1)

9. Проводники в электростатическом поле Равновесие зарядов на проводнике Е=0 (9.1.1) 9. Проводники в электростатическом поле 9.1. Равновесие зарядов на проводнике Носители заряда в проводнике способны перемещаться под действием сколь угодно малой силы. Поэтому для равновесия зарядов на

Подробнее

Д. А. Паршин, Г. Г. Зегря Физика Электромагнетизм (часть 1) Лекция 21 ЛЕКЦИЯ 21

Д. А. Паршин, Г. Г. Зегря Физика Электромагнетизм (часть 1) Лекция 21 ЛЕКЦИЯ 21 1 ЛЕКЦИЯ 21 Электростатика. Медленно меняющиеся поля. Уравнение Пуассона. Решение уравнения Пуассона для точечного заряда. Потенциал поля системы зарядов. Напряженность электрического поля системы зарядов.

Подробнее

Д. А. Паршин, Г. Г. Зегря Физика Электростатика Лекция 21 ЛЕКЦИЯ 21

Д. А. Паршин, Г. Г. Зегря Физика Электростатика Лекция 21 ЛЕКЦИЯ 21 ЛЕКЦИЯ 21 Электростатика. Медленно меняющиеся поля. Условия медленно меняющихся полей. Уравнение Пуассона. Решение уравнения Пуассона для точечного заряда. Потенциал поля системы зарядов. Напряженность

Подробнее

Генкин Б.И. Элементы содержания, проверяемые на ЕГЭ по физике. Пособие для повторения учебного материала. Санкт-Петербург:

Генкин Б.И. Элементы содержания, проверяемые на ЕГЭ по физике. Пособие для повторения учебного материала. Санкт-Петербург: Генкин Б.И. Элементы содержания, проверяемые на ЕГЭ по физике. Пособие для повторения учебного материала. Санкт-Петербург: http://audto-um.u, 013 3.1 ЭЛЕКТРИЧЕСКОЕ ПОЛЕ 3.1.1 Электризация тел Электрический

Подробнее

1.17. Емкость проводников и конденсаторов

1.17. Емкость проводников и конденсаторов 7 Емкость проводников и конденсаторов Емкость уединенного проводника Рассмотрим заряженный уединенный проводник, погруженный в неподвижный диэлектрик Разность потенциалов между двумя любыми точками проводника

Подробнее

Лекц ия 6 Электроемкость. Конденсаторы

Лекц ия 6 Электроемкость. Конденсаторы Лекц ия 6 Электроемкость. Конденсаторы Вопросы. Электроемкость. Конденсаторы. Соединение конденсаторов в батарее. 6.. Электроемкость уединенного проводника Сообщенный уединенному проводнику заряд распределяется

Подробнее

4πε. Тема 2.1. Электростатика. 1. Основные законы электростатики

4πε. Тема 2.1. Электростатика. 1. Основные законы электростатики Тема.. Электростатика. Основные законы электростатики Все тела в природе способны электризоваться, т. е. приобретать электрический заряд. Всякий процесс заряжения сводится к разделению зарядов, при котором

Подробнее

Конденсатор. Энергия электрического поля

Конденсатор. Энергия электрического поля И. В. Яковлев Материалы по физике MathUs.ru Конденсатор. Энергия электрического поля Темы кодификатора ЕГЭ: электрическая ёмкость, конденсатор, энергия электрического поля конденсатора. Предыдущие две

Подробнее

Связь между напряженностью электростатического поля и потенциалом

Связь между напряженностью электростатического поля и потенциалом Потенциал. Связь напряженности и потенциала Основные теоретические сведения Связь между напряженностью электростатического поля и потенциалом Напряженность электрического поля величина, численно равная

Подробнее

модулю, но разных по знаку зарядов направлен: A) 1; 4 B) 2; C) 3;

модулю, но разных по знаку зарядов направлен: A) 1; 4 B) 2; C) 3; ЭКЗАМЕНАЦИОННЫЕ ТЕСТЫ «ФИЗИКА-II» для специальностей ВТ и СТ. Квантование заряда физически означает, что: A) любой заряд можно разделить на бесконечно малые заряды; B) фундаментальные константы квантовой

Подробнее

ЛЕКЦИЯ 2 ПОТЕНЦИАЛ ЭЛЕКТРИЧЕСКОГО ПОЛЯ. МЕТОД ИЗОБРАЖЕНИЙ

ЛЕКЦИЯ 2 ПОТЕНЦИАЛ ЭЛЕКТРИЧЕСКОГО ПОЛЯ. МЕТОД ИЗОБРАЖЕНИЙ ЛЕКЦИЯ 2 ПОТЕНЦИАЛ ЭЛЕКТРИЧЕСКОГО ПОЛЯ. МЕТОД ИЗОБРАЖЕНИЙ На этой лекции будут рассмотрены понятие потенциала электрического поля и метод изображения. Задача 1.23. С какой поверхностной плотностью σ(θ)

Подробнее

Факультатив. Связь силы и потенциальной энергии для любых потенциальных полей. W. = мы получили E= ϕ. ϕ r E dl

Факультатив. Связь силы и потенциальной энергии для любых потенциальных полей. W. = мы получили E= ϕ. ϕ r E dl Факультатив Связь силы и потенциальной энергии для любых потенциальных полей W F ' ϕ и E ϕ r E d q' q' = мы получили E= ϕ и из ( ) r Тогда, повторив выкладки, мы из равенства W( r) ( F, d) = r получим

Подробнее

Лекция 12 (3) Поляризация диэлектриков. Проводники. Электроемкость

Лекция 12 (3) Поляризация диэлектриков. Проводники. Электроемкость Лекция (3) Поляризация диэлектриков. Проводники. Электроемкость Предисловие Материал этой лекции частично повторяет школьную программу (пункты 8 и 9; см. ниже), частично описан в теоретической части лабораторных

Подробнее

Проводники в электростатическом поле. Конденсаторы. Лекция 2.3.

Проводники в электростатическом поле. Конденсаторы. Лекция 2.3. Проводники в электростатическом поле. Конденсаторы Лекция.3. ПРОВОДНИКИ В ЭЛЕКТРОСТАТИЧЕСКОМ ПОЛЕ. Напряженность и потенциал электростатического поля в проводнике.. Определение напряженности электростатического

Подробнее

Если двум изолированным друг от друга проводникам сообщить заряды q 1 и q 2, то между ними возникает некоторая разность потенциалов Δφ, зависящая от

Если двум изолированным друг от друга проводникам сообщить заряды q 1 и q 2, то между ними возникает некоторая разность потенциалов Δφ, зависящая от Если двум изолированным друг от друга проводникам сообщить заряды q 1 и q 2, то между ними возникает некоторая разность потенциалов Δφ, зависящая от величин зарядов и геометрии проводников. Разность потенциалов

Подробнее

ПОДГОТОВКА К ЕГЭ по ФИЗИКЕ

ПОДГОТОВКА К ЕГЭ по ФИЗИКЕ Национальный исследовательский ядерный университет «МИФИ» ПОДГОТОВКА К ЕГЭ по ФИЗИКЕ Преподаватель: кандидат физико-математических наук, доцент кафедры физики, Грушин Виталий Викторович Напряжённость и

Подробнее

1.13. Поляризация диэлектриков

1.13. Поляризация диэлектриков 3 Поляризация диэлектриков Связанные заряды Заряды в диэлектрике под действием поля могут смещаться из своих положений равновесия лишь на малые расстояния порядка атомных Диэлектрик состоит из электрически

Подробнее

IX Электростатика. Метод суперпозиции и теорема Гаусса. Диэлектрики

IX Электростатика. Метод суперпозиции и теорема Гаусса. Диэлектрики IX Электростатика. Метод суперпозиции и теорема Гаусса. Диэлектрики Обладать зарядом - одно из свойств материи, такое же, как обладать массой. Заряженные тела создают вокруг себя особый вид материальной

Подробнее

КЛ 3 Вариант 1 КЛ 3 Вариант 2 КЛ 3 Вариант 3

КЛ 3 Вариант 1 КЛ 3 Вариант 2 КЛ 3 Вариант 3 КЛ 3 Вариант 1 1. Записать формулу для вектора напряженности электрического поля, если известен электростатический потенциал. Пояснить действие оператора градиента на скалярную функцию. 2. Вывести уравнение

Подробнее

Однородным называется электростатическое поле, во всех напряженность одинакова по величине и направлению, т.е. E const.

Однородным называется электростатическое поле, во всех напряженность одинакова по величине и направлению, т.е. E const. Тема ТЕОРЕМА ОСТРОГРАДСКОГО-ГАУССА Силовые линии напряженности электростатического поля Поток вектора напряженности 3 Теорема Остроградского-Гаусса 4 Применение теоремы Остроградского-Гаусса к расчету

Подробнее

19. Теорема Гаусса и ее применение к вычислению электрических полей простейших распределений плотности заряда.

19. Теорема Гаусса и ее применение к вычислению электрических полей простейших распределений плотности заряда. 19. Теорема Гаусса и ее применение к вычислению электрических полей простейших распределений плотности заряда. dφ ( E, ds) определение потока поля E через произвольно ориентированную площадку ds, где вектор

Подробнее

r 2 r. E + = 2κ a, E = 2κ a

r 2 r. E + = 2κ a, E = 2κ a 1. Электростатика 1 1. Электростатика Урок 2 Теорема Гаусса 1.1. (1.19 из задачника) Используя теорему Гаусса, найти: а) поле плоскости, заряженной с поверхностной плотностью σ; б) поле плоского конденсатора;

Подробнее

Лекц ия 3 Графический показ электрических полей. Теорема Гаусса и ее применение

Лекц ия 3 Графический показ электрических полей. Теорема Гаусса и ее применение Лекц ия Графический показ электрических полей. Теорема Гаусса и ее применение Вопросы. Графический показ электрических полей. Поток вектора напряженности электрического поля. Теорема Гаусса и ее применение..1.

Подробнее

ФИЗИКА ЭЛЕКТРОСТАТИКА

ФИЗИКА ЭЛЕКТРОСТАТИКА Челябинский институт путей сообщения филиал Уральского государственного университета путей сообщения Кафедра естественно-научных дисциплин ФИЗИКА ЭЛЕКТРОСТАТИКА Учебно-методическое пособие к практическим

Подробнее

Применим теорему Гаусса для пунктирного цилиндра соосного обоим проводникам: = 4π Q.

Применим теорему Гаусса для пунктирного цилиндра соосного обоим проводникам: = 4π Q. Экзамен Емкости простейших конденсаторов 3 Цилиндрический конденсатор Цилиндрический конденсатор это два соосных проводящих цилиндра Длина цилиндров гораздо больше радиусов l0 >> > Применим теорему Гаусса

Подробнее

q1 r 0 q r q r r r r r Из последнего равенства следует, что векторы r 1

q1 r 0 q r q r r r r r Из последнего равенства следует, что векторы r 1 . Два точечных заряда 7 Кл и 4 7 Кл находятся на расстоянии = 6,5 см друг от друга. Найти положение точки, в которой напряженность электростатического поля E равна нулю. Рассмотреть случаи: а) одноименных

Подробнее

4 ЭЛЕКТРОСТАТИЧЕСКОЕ ПОЛЕ ПРИ НАЛИЧИИ ПРОВОДНИКОВ

4 ЭЛЕКТРОСТАТИЧЕСКОЕ ПОЛЕ ПРИ НАЛИЧИИ ПРОВОДНИКОВ 4 ЭЛЕКТРОСТАТИЧЕСКОЕ ПОЛЕ ПРИ НАЛИЧИИ ПРОВОДНИКОВ Проводники электричества это вещества, содержащие свободные заряжённые частицы. В проводящих телах электрические заряды могут свободно перемещаться в пространстве.

Подробнее

Вариант q 1 q 2 q 3 1 q -q q 2 -q q -q 3 q -q 2q

Вариант q 1 q 2 q 3 1 q -q q 2 -q q -q 3 q -q 2q Задание. Тема Электростатическое поле в вакууме. Задача (Электростатическое поле системы точечных зарядов) Вариант-. В вершинах равностороннего треугольника со стороной а находятся точечные заряды q q

Подробнее

1. Электростатика Урок 5 Уравнение Пуассона и Лапласа Решение

1. Электростатика Урок 5 Уравнение Пуассона и Лапласа Решение 1. Электростатика 1 1. Электростатика Урок 5 Уравнение Пуассона и Лапласа Уравнение для потенциала с источниками зарядами) уравнение Пуассона и уравнение без источников уравнение Лапласа Уравнение Пуассона

Подробнее

Закон Кулона. Напряженность и потенциал. Электричество

Закон Кулона. Напряженность и потенциал. Электричество Закон Кулона. Напряженность и потенциал Электричество План Закон Кулона Напряженность электростатического поля Принцип суперпозиции Теорема Гаусса Циркуляция вектора напряженности Потенциал электростатического

Подробнее

Задачи по магнитостатике

Задачи по магнитостатике Версия (последняя версия доступна по ссылке) Задачи по магнитостатике Примечание Читая задачи имейте в виду что в печатном тексте вектор обозначается просто жирной буквой без черты или стрелки над буквой

Подробнее

Поляризованность связана с характеристиками поля соотношением:

Поляризованность связана с характеристиками поля соотношением: ЗАДАЧИ Задача. Точечный сторонний заряд находится в центре шара из однородного диэлектрика с проницаемостью ε. Найти поляризованность, как функцию радиуса-вектора относительно центра шара, а так же связанный

Подробнее

ВОПРОСЫ К ЗАЧЕТУ С ОЦЕНКОЙ ПО ОСНОВАМ ЭЛЕКТРОДИНАМИКИ

ВОПРОСЫ К ЗАЧЕТУ С ОЦЕНКОЙ ПО ОСНОВАМ ЭЛЕКТРОДИНАМИКИ ВОПРОСЫ К ЗАЧЕТУ С ОЦЕНКОЙ ПО ОСНОВАМ ЭЛЕКТРОДИНАМИКИ ФИЗИЧЕСКИЕ ОПРЕДЕЛЕНИЯ 1. В каких единицах измеряется электрический заряд в СИ и СГСЭ (ГС)? Как связаны между собой эти единицы для заряда? Заряд протона

Подробнее

Практическое занятие 6. Электростатика. На самостоятельную работу: 4, 11, 15, 19.

Практическое занятие 6. Электростатика. На самостоятельную работу: 4, 11, 15, 19. Практическое занятие 6. Электростатика. Закон Кулона. Напряженность электрического поля точечных зарядов. На занятии: 2, 6, 10, 18 На самостоятельную работу: 4, 11, 15, 19. 2. Два шарика массой m=0,1 г

Подробнее

1.8. Теорема Остроградского Гаусса

1.8. Теорема Остроградского Гаусса 1.8. Теорема Остроградского Гаусса Анализ электрических полей может быть упрощён при использовании специальной теоремы Остроградского Гаусса. Математическая формулировка теоремы впервые была получена Михаилом

Подробнее

уч. год. 3, 11 кл. Физика. Электростатика. Законы постоянного тока.

уч. год. 3, 11 кл. Физика. Электростатика. Законы постоянного тока. 8. Проводники Проводниками называют тела, в которых находится достаточно много заряженных частиц, имеющих возможность перемещаться по всему проводнику под действием электрического поля. Эти частицы называются

Подробнее

2 Электричество. Основные формулы и определения. F = k q 1 q 2 / r 2, где k - коэффициент пропорциональности, r расстояние между зарядами.

2 Электричество. Основные формулы и определения. F = k q 1 q 2 / r 2, где k - коэффициент пропорциональности, r расстояние между зарядами. 2 Электричество Основные формулы и определения Сила взаимодействия F между двумя неподвижными точечными зарядами q 1 и q 2 вычисляется по закону Кулона: F = k q 1 q 2 / r 2, где k - коэффициент пропорциональности,

Подробнее

Содержание. Общие методические указания 4 Рабочая программа раздела «Электричество и магнетизм» 6

Содержание. Общие методические указания 4 Рабочая программа раздела «Электричество и магнетизм» 6 Содержание Общие методические указания 4 Рабочая программа раздела «Электричество и магнетизм» 6 Основы электричества и магнетизма 7 1. Электростатика 7. Постоянный электрический ток 3 3. Электромагнетизм

Подробнее

ЛЕКЦИЯ 5 ДИЭЛЕКТРИКИ. ОБЪЕМНЫЕ ТОКИ

ЛЕКЦИЯ 5 ДИЭЛЕКТРИКИ. ОБЪЕМНЫЕ ТОКИ ЛЕКЦИЯ 5 ДИЭЛЕКТРИКИ. ОБЪЕМНЫЕ ТОКИ 1. Диэлектрики Задача 3.53. Заряженный непроводящий шар радиуса R = 4 см разделен пополам. Шар находится во внешнем однородном поле E 0 = 300 В/см, направленному перпендикулярно

Подробнее

ϕ =, если положить потенциал на

ϕ =, если положить потенциал на . ПОТЕНЦИАЛ. РАБОТА СИЛ ЭЛЕКТРОСТАТИЧЕСКОГО ПОЛЯ Потенциал, создаваемый точечным зарядом в точке A, находящейся на, если положить потенциал на бесконечности равным нулю: φ( ). Потенциал, создаваемый в

Подробнее

Глава 4 ДИЭЛЕКТРИКИ В ЭЛЕКТРОСТАТИЧЕСКОМ ПОЛЕ Теоретический материал

Глава 4 ДИЭЛЕКТРИКИ В ЭЛЕКТРОСТАТИЧЕСКОМ ПОЛЕ Теоретический материал ЭЛЕКТРИЧЕСТВО И МАГНЕТИЗМ МЕТОДИКА РЕШЕНИЯ ЗАДАЧ Глава 4 ДИЭЛЕКТРИКИ В ЭЛЕКТРОСТАТИЧЕСКОМ ПОЛЕ 4 Теоретический материал Диэлектрики это материальные тела, в которых нет свободных зарядов, способных под

Подробнее

J i = 0, Ek = J i R i.

J i = 0, Ek = J i R i. 1 Электрический ток 1 1 Электрический ток Урок 15 Закон сохранения заряда Закон Ома Направленное движение электрических зарядов q ток J J = dq/dt Вектор плотности тока j = ρv = env Закон Ома в дифференциальной

Подробнее

6. ЭЛЕКТРОСТАТИКА. 6.1 Основные понятия и определения

6. ЭЛЕКТРОСТАТИКА. 6.1 Основные понятия и определения 49 6 ЭЛЕКТРОСТАТИКА 6 Основные понятия и определения Электростатикой называется раздел физики, изучающий взаимодействие неподвижных электрических зарядов и характеристики их электрических полей Электрическим

Подробнее

ПРОВОДНИКИ. Физика ВВЕДЕНИЕ

ПРОВОДНИКИ. Физика ВВЕДЕНИЕ 34 Можаев Виктор Васильевич Кандидат физико-математических наук, доцент кафедры общей физики Московского физико-технического института (МФТИ), член редколлегии журнала «Квант» ПРОВОДНИКИ ПРОВОДНИКИ В В

Подробнее

I. ЭЛЕКТРИЧЕСТВО F 4 E 4

I. ЭЛЕКТРИЧЕСТВО F 4 E 4 I. ЭЛЕКТРИЧЕСТВО.. Электрическое поле в вакууме Справочные сведения Закон Кулона электростатического поля точечного заряда F Напряженность поля точечного заряда равна: где - заряд, создающий поле, - радиус-вектор,

Подробнее

Санкт-Петербургский государственный электротехнический университет «ЛЭТИ»

Санкт-Петербургский государственный электротехнический университет «ЛЭТИ» Санкт-Петербургский государственный электротехнический университет «ЛЭТИ» кафедра физики ИССЛЕДОВАНИЕ ЭЛЕКТРОСТАТИЧЕСКОГО ПОЛЯ ЗАРЯЖЕННЫХ ПРОВОДНИКОВ МЕТОДОМ МОДЕЛИРОВАНИЯ (электроемкость, энергия электрического

Подробнее

E(r) = W = 1. q i ϕ k = 1 ( (6) = 1

E(r) = W = 1. q i ϕ k = 1 ( (6) = 1 1. Электростатика 1 1. Электростатика Урок 8 Электростатика в среде Уравнения Максвела в однородной среде с диэлектрической проницаемостью в дифференциальной форме имеют вид: div D = 4πρ своб, rot E =

Подробнее

1.10. Общая задача электростатики

1.10. Общая задача электростатики 1 110 Общая задача электростатики Вектор напряженности электрического поля неподвижного точечного заряда вычисляется по формуле 1 Q E =, (1) 3 4π Используя принцип суперпозиции, нетрудно вычислить напряженность

Подробнее

1. Электростатика Урок 9 Метод изображений. Сфера Решение

1. Электростатика Урок 9 Метод изображений. Сфера Решение 1. Электростатика 1 1. Электростатика Урок 9 Метод изображений. Сфера 1.1. (Задача 2.27 Заряд находится внутри (вне заземленной (изолированной проводящей сферы радиуса на расстоянии, от ее центра. Найти

Подробнее

ПРОВОДНИКИ В ЭЛЕКТРОСТАТИЧЕСКОМ ПОЛЕ

ПРОВОДНИКИ В ЭЛЕКТРОСТАТИЧЕСКОМ ПОЛЕ ПРОВОДНИКИ В ЭЛЕКТРОСТАТИЧЕСКОМ ПОЛЕ Проводники и диэлектрики Все известные в природе вещества (по отношению к действию на них электростатического поля) делятся на проводники полупроводники диэлектрики

Подробнее

Диэлектрики в электрическом поле Краткие теоретические сведения

Диэлектрики в электрическом поле Краткие теоретические сведения Диэлектрики в электрическом поле Краткие теоретические сведения Полярные и неполярные мо- Классификация диэлектриков. лекулы Вещество независимо от его природы и агрегатного состояния (газ, жидкость, твердое

Подробнее

Кафедра вычислительной физики ОЦЕНОЧНЫЕ МАТЕРИАЛЫ ДЛЯ ПРОВЕРКИ ОСТАТОЧНЫХ ЗНАНИЙ СТУДЕНТОВ

Кафедра вычислительной физики ОЦЕНОЧНЫЕ МАТЕРИАЛЫ ДЛЯ ПРОВЕРКИ ОСТАТОЧНЫХ ЗНАНИЙ СТУДЕНТОВ Федеральное государственное автономное образовательное учреждение высшего профессионального образования «Казанский (Приволжский) федеральный университет» Кафедра вычислительной физики ОЦЕНОЧНЫЕ МАТЕРИАЛЫ

Подробнее

17. Электрическое взаимодействие

17. Электрическое взаимодействие ПОЛЕ ((из книги Л. Д. Ландау, А.И. Ахиезер, Е.М. Лифшиц.. Курс общей физики. Механика и молекулярная физика)) 7. Электрическое взаимодействие В предыдущей главе мы дали определение понятию силы и связали

Подробнее

Лекц ия 7 Электрическое поле в диэлектриках

Лекц ия 7 Электрическое поле в диэлектриках Лекц ия 7 Электрическое поле в диэлектриках Вопросы. Диэлектрики в электрическом поле. Поляризация диэлектриков. Диэлектрическая проницаемость. Электрическое поле в диэлектриках. Вектор электрического

Подробнее

Семестр 3. Лекция 2. E,dS. E S

Семестр 3. Лекция 2. E,dS. E S Семестр Лекция Лекция Теорема Гаусса для электростатического поля Поток вектора напряжённости электрического поля Теорема Гаусса в интегральной и дифференциальной формах в вакууме и её применение для расчёта

Подробнее

3.3. Потенциальная энергия и потенциал электростатического поля

3.3. Потенциальная энергия и потенциал электростатического поля Тема 3. ПОТЕНЦИАЛ И РАБОТА ЭЛЕКТРОСТАТИЧЕСКОГО ПОЛЯ. СВЯЗЬ НАПРЯЖЕННОСТИ С ПОТЕНЦИАЛОМ 3.. Работа сил электростатического поля 3.. Теорема о циркуляции вектора напряженности электростатического поля 3.3.

Подробнее

3.6. Поток и циркуляция вектора магнитной индукции.

3.6. Поток и циркуляция вектора магнитной индукции. 1 3.6. Поток и циркуляция вектора магнитной индукции. 3.6.1.Поток вектора магнитной индукции. Как и любое векторное поле, магнитное поле может быть наглядно представлено с помощью линий вектора магнитной

Подробнее

Лекция 9. Автор: Муравьев Сергей Евгеньевич кандидат физико-математических наук, доцент кафедры теоретической ядерной физики НИЯУ МИФИ

Лекция 9. Автор: Муравьев Сергей Евгеньевич кандидат физико-математических наук, доцент кафедры теоретической ядерной физики НИЯУ МИФИ Лекция 9. Автор: Муравьев Сергей Евгеньевич кандидат физико-математических наук, доцент кафедры теоретической ядерной физики НИЯУ МИФИ В, в точку, потенциал поля в которой равен Домашнее 80 В. Какую работу

Подробнее

Рассмотрим два выражения для дипольного момента всего куска диэлектрика и приравняем их друг к другу: p= P V = P xyz =>

Рассмотрим два выражения для дипольного момента всего куска диэлектрика и приравняем их друг к другу: p= P V = P xyz => Экзамен Поляризация диэлектрика и связанные заряды (продолжение) Найдем связь между величиной поляризации и плотностью связанных зарядов При поляризации среды положительные связанные заряды смещаются вдоль

Подробнее

Движение заряженных частиц в электрическом поле

Движение заряженных частиц в электрическом поле Движение заряженных частиц в электрическом поле Основные теоретические сведения На заряд Q, помещенный в электростатическое поле напряженностью E действует кулоновская сила, равная F QE Если напряженность

Подробнее

МГТУ им. Н.Э.Баумана. В.Г.Голубев, М.А.Яковлев Методические указания к решению задач по курсу общей физики Раздел «Электростатика»

МГТУ им. Н.Э.Баумана. В.Г.Голубев, М.А.Яковлев Методические указания к решению задач по курсу общей физики Раздел «Электростатика» МГТУ им НЭБаумана ВГГолубев, МАЯковлев Методические указания к решению задач по курсу общей физики Раздел «Электростатика» Под редакцией ОС Литвинова Москва, 5 ОГЛАВЛЕНИЕ Введение Основные сведения по

Подробнее

10 класс. Конденсаторы

10 класс. Конденсаторы Электроемкость 10 класс Конденсаторы Красников В.А. А.П. Рымкевич 689. Одинаковые металлические шарики, заряженные одноименно зарядами q и 4q, находятся на расстоянии r друг от друга. Шарики привели в

Подробнее

3.8 Применение закона полного тока для расчета магнитных полей Найдем с помощью закона полного тока магнитное поле прямого тока.

3.8 Применение закона полного тока для расчета магнитных полей Найдем с помощью закона полного тока магнитное поле прямого тока. 3.8 Применение закона полного тока для расчета магнитных полей Найдем с помощью закона полного тока магнитное поле прямого тока. Пусть ток I выходит перпендикулярно из плоскости листа. Выберем вокруг него

Подробнее

Д. А. Паршин, Г. Г. Зегря Физика Электромагнетизм (часть 1) Лекция 24 ЛЕКЦИЯ 24

Д. А. Паршин, Г. Г. Зегря Физика Электромагнетизм (часть 1) Лекция 24 ЛЕКЦИЯ 24 1 ЛЕКЦИЯ 24 Электростатика диэлектриков. Индуцированные дипольные моменты атомов и молекул. Поляризуемость. Собственные дипольные моменты молекул. Вектор поляризации P. Диэлектрическая восприимчивость.

Подробнее

Экзамен. 2. Магнитное поле B внутри и снаружи длинного цилиндрического проводника с заданной плотностью тока j.

Экзамен. 2. Магнитное поле B внутри и снаружи длинного цилиндрического проводника с заданной плотностью тока j. Экзамен 2 Магнитное поле B внутри и снаружи длинного цилиндрического проводника с заданной плотностью тока j B= Bz + B + B ϕ Докажем, что B z = 0 отсутствует составляющая поля вдоль провода внутри и снаружи

Подробнее

21. Теорема Гаусса и ее применение к вычислению электрических полей простейших распределений плотности заряда.

21. Теорема Гаусса и ее применение к вычислению электрических полей простейших распределений плотности заряда. 1. Теорема Гаусса и ее применение к вычислению электрических полей простейших распределений плотности заряда. dφ ( E, ds) определение потока поля E через произвольно ориентированную площадку ds, где вектор

Подробнее

ЭЛЕКТРОСТАТИЧЕСКОЕ ПОЛЕ. 1 Как изменяется напряженность электростатического поля вдоль координат x и z, если его потенциал изменяется по закону

ЭЛЕКТРОСТАТИЧЕСКОЕ ПОЛЕ. 1 Как изменяется напряженность электростатического поля вдоль координат x и z, если его потенциал изменяется по закону ЭЛЕКТРОСТАТИЧЕСКОЕ ПОЛЕ Как изменяется напряженность электростатического поля вдоль координат и z, если его потенциал изменяется по закону (, z) z? На границе раздела двух диэлектриков ( a и a ) распределены

Подробнее

НОВОСИБИРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ. Специализированный учебно-научный центр ЭЛЕКТРИЧЕСКОЕ ПОЛЕ НОВОСИБИРСК

НОВОСИБИРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ. Специализированный учебно-научный центр ЭЛЕКТРИЧЕСКОЕ ПОЛЕ НОВОСИБИРСК НОВОСИБИРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ Специализированный учебно-научный центр ЭЛЕКТРИЧЕСКОЕ ПОЛЕ НОВОСИБИРСК 1. Закон Кулона. Подобно гравитационной силе, описываемой законом всемирного тяготения m

Подробнее

Д. А. Паршин, Г. Г. Зегря Физика Электростатика Лекция 23 ЛЕКЦИЯ 23

Д. А. Паршин, Г. Г. Зегря Физика Электростатика Лекция 23 ЛЕКЦИЯ 23 ЛЕКЦИЯ 23 Электрическое поле в веществе. Электростатика проводников. Граничные условия на поверхности проводника. Экранирование электростатического поля. Основная задача электростатики. Теорема единственности.

Подробнее

2.6. Энергия электрического поля.

2.6. Энергия электрического поля. .6. Энергия электрического поля..6.. Энергия системы зарядов. Энергию электрического поля мы уже фактически рассматривали ранее, когда вводили понятие потенциала и разности потенциалов. При сближении электрических

Подробнее

21. Теорема Гаусса и ее применение к вычислению электрических полей простейших распределений плотности заряда.

21. Теорема Гаусса и ее применение к вычислению электрических полей простейших распределений плотности заряда. 1. Теорема Гаусса и ее применение к вычислению электрических полей простейших распределений плотности заряда. dφ ( E, ds) определение потока поля E через произвольно ориентированную площадку ds, где вектор

Подробнее

Задачи для подготовки к экзамену по физике для студентов института ВМиИТ-ВМК Казанского (Приволжского) федерального университета

Задачи для подготовки к экзамену по физике для студентов института ВМиИТ-ВМК Казанского (Приволжского) федерального университета Задачи для подготовки к экзамену по физике для студентов института ВМиИТ-ВМК Казанского (Приволжского) федерального университета весенний семестр 2011/2012 уч.г. 1. Точечный заряд q находится на расстоянии

Подробнее

Московский физико-технический институт. Конденсаторы. Методическое пособие по подготовке к олимпиадам. Составитель: Паркевич Егор Вадимович

Московский физико-технический институт. Конденсаторы. Методическое пособие по подготовке к олимпиадам. Составитель: Паркевич Егор Вадимович Московский физико-технический институт Конденсаторы. Методическое пособие по подготовке к олимпиадам. Составитель: Паркевич Егор Вадимович Москва 014 Пусть у нас есть уединённый заряженный проводник с

Подробнее

2 =0,1 мккл/м 2. Определить напряженность электрического поля, созданного этими заряженными плоскостями.

2 =0,1 мккл/м 2. Определить напряженность электрического поля, созданного этими заряженными плоскостями. Задачи для подготовки к экзамену по физике для студентов факультета ВМК Казанского госуниверситета Лектор Мухамедшин И.Р. весенний семестр 2009/2010 уч.г. Данный документ можно скачать по адресу: http://www.ksu.ru/f6/index.php?id=12&idm=0&num=2

Подробнее

Экзамен. Магнитный диполь. Момент сил, действующих на виток с током в однородном магнитном поле.

Экзамен. Магнитный диполь. Момент сил, действующих на виток с током в однородном магнитном поле. Экзамен Магнитный диполь Момент сил, действующих на виток с током в однородном магнитном поле I m S определение магнитного дипольного момента тока I в контуре, ограничивающем площадку S Направление дипольного

Подробнее

Подготовка к КР-1 (часть1). Закон Кулона. Вектор Напряженности. Теорема Гаусса.

Подготовка к КР-1 (часть1). Закон Кулона. Вектор Напряженности. Теорема Гаусса. 1 Подготовка к КР-1 (часть1) Закон Кулона Вектор Напряженности Теорема Гаусса 11 Электрический заряд Электрическое взаимодействие является одним из четырех фундаментальных взаимодействий С одним из них,

Подробнее

3 ПОТЕНЦИАЛЬНЫЙ ХАРАКТЕР ЭЛЕКТРОСТАТИЧЕСКОГО ПОЛЯ

3 ПОТЕНЦИАЛЬНЫЙ ХАРАКТЕР ЭЛЕКТРОСТАТИЧЕСКОГО ПОЛЯ 3 ПОТЕНЦИАЛЬНЫЙ ХАРАКТЕР ЭЛЕКТРОСТАТИЧЕСКОГО ПОЛЯ В данном разделе мы будем изучать свойство потенциальности на примере электростатического поля в вакууме, созданного неподвижными электрическими зарядами.

Подробнее

Вопросы и задания по разделу Электричество Методические указания к самостоятельной работе для студентов всех специальностей

Вопросы и задания по разделу Электричество Методические указания к самостоятельной работе для студентов всех специальностей Государственный комитет по образованию и технической политике Российской Федерации Санкт-Петербургский государственный электротехнический университет им.в.и.ульянова (Ленина) Вопросы и задания по разделу

Подробнее

Лекция 7. Автор: Сергей Евгеньевич Муравьев кандидат физико-математических наук, доцент кафедры теоретической ядерной физики НИЯУ МИФИ

Лекция 7. Автор: Сергей Евгеньевич Муравьев кандидат физико-математических наук, доцент кафедры теоретической ядерной физики НИЯУ МИФИ Лекция 7. Автор: Сергей Евгеньевич Муравьев кандидат физико-математических наук, доцент кафедры теоретической ядерной физики НИЯУ МИФИ Взаимодействие электрических зарядов Тела могут обладать таким свойством,

Подробнее