Построение линии пересечения двух поверхностей в ортогональных и аксонометрических проекциях. Методические указания по выполнению контрольных заданий.

Save this PDF as:
 WORD  PNG  TXT  JPG

Размер: px
Начинать показ со страницы:

Download "Построение линии пересечения двух поверхностей в ортогональных и аксонометрических проекциях. Методические указания по выполнению контрольных заданий."

Транскрипт

1 Министерство путей сообщения Российской Федерации Департамент кадров и учебных заведений САМАРСКАЯ ГОСУДАРСТВЕННАЯ АКАДЕМИЯ ПУТЕЙ СООБЩЕНИЯ Кафедра Инженерной графики Построение линии пересечения двух поверхностей в ортогональных и аксонометрических проекциях Методические указания по выполнению контрольных заданий. Составитель: А. А. Логунцов Самара 2003

2 УДК / Построение линии пересечения двух поверхностей в ортогональных и аксонометрических проекциях: Методические указания по выполнению контрольных заданий. Составитель А.А. Логунцов Самара: СамГАПС, с. Утверждены на заседании кафедры 08 октября 2003г, протокол 3. Печатается по решению редакционно-издательского совета академии. В данных методических указаниях предложены варианты контрольных заданий и их решения. Методические указания предназначены для студентов 1- го курса механических специальностей дневной формы обучения. Составители: Логунцов Александр Алексеевич Рецензенты: доцент СамГСХА, Ларионов Ю.В.; доцент СамГАПС Зиновьева Т.Ю. Редактор И.А. Шимина Компьютерная верстка: А.А. Егоров Подписано в печать Формат 60*90 1/16. Бумага писчая. Печать оперативная. Усл. п. л. 1. Тираж 100. Заказ 188. Самарская государственная академия путей сообщения,

3 1. СОДЕРЖАНИЕ И ЦЕЛЬ РАБОТЫ Современное развитие промышленности и транспорта, в том числе и железнодорожного, предъявляет повышенные требования к специалистам инженернотехнического профиля. Одно из главных требований знание предмета черчения, инженерной графики. На большинстве сложных чертежей имеются поверхности со сложными линиями их пересечения. Целью данных методических указаний является овладение студентами техникой построения этих линий пересечения. Представленные в методических указаниях задачи решаются в несколько этапов: 1. Построить линию пересечения поверхностей способом вспомогательных секущих плоскостей или способом вспомогательных секущих сфер. 2. Отметить видимость линий пересечения и поверхностей. 3. Построить данные поверхности с линией пересечения в аксонометрической проекции. Каждая задача эпюра выполняется на листе формата А3 в масштабе 1:1 с нанесением размеров. Все построения на чертеже сохраняются. Пример решения задачи на построение линии пересечения поверхности представлен на рис ОБЩИЕ СВЕДЕНИЯ О ПОСТРОЕНИИ ЛИНИИ ПЕРЕСЕЧЕНИЯ ДВУХ ПОВЕРХНОСТЕЙ Для того чтобы построить линию пересечения двух поверхностей нужно найти ряд общих точек, принадлежащих им, и затем эти точки соединить в определенной последовательности. Линия пересечения двух поверхностей в общем виде представляет собой пространственную кривую, которая может распадаться на две части и более. Для того чтобы найти произвольную точку линии пересечения поступают так (рис.2.1): 1. Вводится вспомогательная секущая поверхность. На рис введена плоскость Г П 2 (Г 2 ). 2. Строится линия пересечения вспомогательной поверхности с каждой из заданных. В данном примере окружность m есть линия пересечения плоскости Г с поверхностью Ф, а окружность n - линия пересечения с поверхностью Λ, т.е. m = Г П Ф; n = Г П Λ. 3. На пересечении линий m и n отмечается общая точка К, принадлежащая линии пересечения. К j = m п n. Последовательно вводя ряд вспомогательных секущих поверхностей находим необходимое число точек, принадлежащих искомой линии пересечения заданных поверхностей. Определение проекций линии пересечения обычно начинают с построения опорных точек, т.е. точек расположенных на очерках поверхности (точки, определяющие границы видимости проекций кривой), точек, удаленных на экстремальные (min и max) расстояния от плоскости проекций. Затем определяют произвольные или случайные точки кривой. 3

4 Если любые произвольные точки определяются с помощью одного и того же приема, то для нахождения опорных точек, как правило, приходится пользоваться различными способами. Опорные точки позволяют видеть, в каких пределах расположены проекции линии пересечения поверхностей и, где между ними имеет смысл определить промежуточные точки. В некоторых случаях линия пересечения поверхностей второго порядка распадается на плоские кривые второго порядка. Тогда, если заранее известен вид кривых, можно провести построение этих кривых по их основным элементам. При построении линии пересечения необходимо иметь ввиду, что ее проекции всегда располагаются в пределах площади наложения одноименных проекций пересекающихся поверхностей. Рис ОСНОВНЫЕ СПОСОБЫ ПОСТРОЕНИЯ ЛИНИИ ВЗАИМНОГО ПЕРЕСЕЧЕНИЯ ПОВЕРХНОСТЕЙ Общим способом построения точек линии пересечения поверхностей является способ вспомогательных секущих поверхностей - посредников. Вспомогательная поверхность пересекает данные поверхности по линиям (желательно графически простым - прямым или окружностям). Поэтому в качестве поверхностей - посредников принимают плоскости или сферы. Отсюда и способы построения линий пересечения поверхностей - способ вспомогательных секущих плоскостей и способ вспомогательных секущих сфер. Применение того или иного способа зависит от типа данных поверхностей и от их взаимного расположения. 4

5 3.1. Способ вспомогательных секущих плоскостей Вспомогательные секущие плоскости могут быть общего и частного положения. Плоскости общего положения имеют ограниченное применение. Их удобно использовать при построении линий пересечения конических (пирамидальных) и цилиндрических (призматических) поверхностей общего вида, когда основания этих поверхностей расположены в одной и той же плоскости. В остальных случаях в качестве вспомогательных секущих плоскостей применяют проецирующие плоскости. Такие плоскости пересекают заданные поверхности по графически простым линиям. Часто проецирующие плоскости выбираются в виде плоскостей уровня - плоскостей параллельных плоскостям проекций. Выбирая ряд секущих плоскостей, можно построить последовательный ряд точек линии пересечения поверхностей. Пример. Построить линию пересечения двух поверхностей - конической поверхности Δ и сферы Т (рис. 3.1). Заданные поверхности имеют общую (фронтальную) плоскость симметрии, определяемую осью конуса i и осью сферы i. Построение линии пересечения начнем с определения опорных точек. Сначала отмечаем очевидные общие 1 и 7 точки поверхностей в пересечении их главных меридианов δ и τ, так как поверхности имеют общую фронтальную плоскость симметрии Ф (Ф 1 ). Фронтальные проекции точек 1 2 (7 2 ) = δ 2 n τ 2. Горизонтальные проекции точек 1 1 = nτ 1, 7 1 = nτ 1. Эти опорные точки являются наивысшей 1 и наинизшей 7 точками линии пересечения, а также точками видимости на плоскости П 2. Брать вспомогательные фронтальные плоскости параллельные П для построения следующих точек неудобно, так как они будут пересекать конус по гиперболам. Графически простые линии (окружности параллелей) на данных поверхностях получаются от пересечения их горизонтальными плоскостями уровня Г. Первую такую вспомогательную плоскость Г (Г 2 ) берем на уровне экватора сферы h (h 2 ). Эта плоскость пересекает конус по параллели n. В пересечении n и h, параллелей конуса и сферы, находятся точки видимости линии пересечения на плоскости П 1 h 1 п n 1 = 4 1 (4 1 ); п h 2 (или n 2 )= 4 2 (4 2 ). Промежуточные точки 6 и 6 линии пересечения построены с помощью плоскости Г (Г 2 ), пересекающей поверхности по параллелям h и m. h 1 п m 1 = 6 1 (6 1 ); п h 2 = 6 2 (6 2 ). Аналогично построены точки 2(2') и 3(3') с помощью вспомогательных плоскостей Г'' (Г 2 '')и Г"' (Г 2 '"). 5

6 Рис.3.1 6

7 Видимость заданных поверхностей и точек линии пересечения на плоскости проекций П 2 определяет фронтальная плоскость Ф (Ф 1 ). Плоскость Ф делит поверхности конуса и сферы на две симметричные части. Те части заданных поверхностей, которые расположены перед плоскостью Ф на плоскости П 2 видимы, а значит видимы и точки 2' 3', 4', 5', 6' им принадлежащие. Точки 2, 3, 4, 5, 6 - невидимы на П 2. Так как линия пересечения - кривая, симметричная относительно плоскости Ф, то на плоскости П 2 видимая ее часть и невидимая совпадают. Изображаем на чертеже видимую часть линии пересечения сплошной основной линией. Границы видимости - точки 1 и 7. Видимость заданных поверхностей и линии пересечения на плоскости проекций П 1, определяет плоскость Г (Г 2 ) и поверхность сферы: та часть сферы, которая расположена над плоскостью Г на П 1, будет видима, значит и точки 1, 2', 2, 3, 3' на П 1 видимы, как ей принадлежащие. Точки 5, 5', 6, 6', - невидимы на П 1. Границы видимости - точки 4 и 4'. Соединяем одноименные проекции построенных точек с учетом их видимости плавными кривыми и получаем проекции искомой линии пересечения Способ вспомогательных секущих сфер Иногда, чтобы найти точки линии пересечения кривых поверхностей, проще ввести не плоскость, а поверхность - цилиндрическую, коническую или сферическую. Любая поверхность вращения пересекается с поверхностью сферы по окружности, если центр сферы лежит на оси вращения. Поэтому с помощью сферических поверхностей решаются задачи по определению линии пересечения поверхностей вращения. При этом возможны два случая: 1) если оси поверхностей пересекаются, то для определения линии пересечения используют семейство концентрических сфер (когда сферы различных радиусов проведены из одного центра); 2) если оси не пересекаются, применяют эксцентрические сферы (когда сферы проведены из разных центров, радиусы которых могут быть как одинаковыми, так и различными) Способ концентрических секущих сфер Пример. Построить линию пересечения поверхности конуса Δ и цилиндрической поверхности Т с пересекающимися во фронтальной плоскости Ф (Ф 1 ) осями вращения i и i (рис.3.2). Заданные поверхности Δ и Т имеют общую фронтальную плоскость симметрии Ф (Ф 1 ). Следовательно, главные меридианы этих поверхностей пересекаются и дают в своем пересечении точки видимости линии пересечения на плоскости П 2 или самую высокую 1 и самую низкую 7 точки. Фронтальные проекции точек: 1 2 (7 2 ) = δ 2 п τ 2. Горизонтальные проекции точек: 1 1 = пτ 1, 7 1 = пτ 1. 7

8 Рис

9 В данном примере выполнены условия, позволяющие применение вспомогательных секущих сфер для построения точек линии пересечения. Оси поверхностей вращения пересекаются в точке 0 (0 1 ; 0 2 ), которая является центром вспомогательных секущих сфер. Радиус сфер изменяется в пределах R min < R <R max. Радиус максимальной сферы определяется расстоянием от центра 0 до наиболее удаленной точки 1 (R max = ). Радиус минимальной сферы определяется как радиус сферы, касающейся одной поверхности и пересекающей другую поверхность по окружности. В данном примере сфера радиуса R касается поверхности конуса по окружности h (h 2, h 1 ) и пересекает поверхность цилиндра по окружности n (n 1, n 2 ). Плоскости этих окружностей перпендикулярны осям вращения поверхностей. В пересечении окружностей h и n отмечаем точки 4 и 4', принадлежащие линии пересечения поверхностей: 4 2 (4 2 ) = h 2 п n 2 ; 4 1 (4 1 )= п h 1. Промежуточная сфера радиуса R пересекает поверхности Δ и Т по окружностям h 1 и m, в пересечении которых определяются точки 3 и 3'. 3 2 (3 2 ) = h 2 п m 2 ; 3 1 (3 1 )= п h 1. Аналогично определены точки 6 (6') и 2 (2 ). Определим видимость точек линии пересечения на плоскости проекций П 2. Плоскостью видимости является плоскость Ф. Она делит кривую на две симметричные части, которые на П 2 совпадают. Видимая часть линии пересечения 1, 2, 3, 4, 5, 6, 7 закрывает невидимую 1, 2, 3, 4, 5, 6, 7. На плоскости П 2 изображаем видимую часть кривой сплошной основной линией. Границы видимости - точки 1 и 7. Видимость на плоскости проекций П 1 определяет поверхность цилиндра. Плоскость Σ (Σ 2 ) делит поверхность цилиндра на две части. Та часть поверхности цилиндра, которая расположена над плоскостью Σ, на плоскости П 1 видима, а значит и точки 4, 3, 2, 1, 2, 3, 4 видимы, как ей принадлежащие. Границы видимости точки 5 и 5'. Точки 5 1, 6 1, 7 1, 6' 1, 5' 1 соединяем линией невидимого контура. Соединяя одноименные проекции построенных точек с учетом их видимости, получаем проекции линии пересечения поверхностей Способ эксцентрических секущих сфер Способ эксцентрических секущих сфер применяется, когда одна из осей - проецирующая прямая, вторая линия уровня. Пример. Построить линию пересечения поверхности конуса вращения Ф и поверхности тора Ф', имеющих общую фронтальную плоскость симметрии. Оси i и i не пересекаются (рис. 3.3). Опорные точки линии пересечения (высшая 1, низшая 6) определяются пересечением главных меридианов на плоскости П 2. Для определения случайных точек, принадлежащих линии пересечения тора с конусом, можно применить вспомогательные секущие сферы, центры которых будут расположены на оси конуса. Сферы необходимо подбирать так, чтобы они пересекали тор по окружностям. 9

10 Рис

11 1. Для определения центра и радиуса вспомогательной секущей сферы проведем произвольную плоскость Σ (Σ 2 ), проходящую через ось тора (т.e. Σ П 2 ). Плоскость Σ пересечет тор по окружности радиуса L 2,C 2 с центром в точке С 2. Через центр С 2 проведем прямую перпендикулярную Σ и пересекающую ось конуса в точке О 2, т.е. линия С 2 О 2 (касательная к осевой окружности тора). Точка О 2 есть центр вспомогательной секущей сферы, а прямая O 2 L 2 - радиус этой сферы R. 2. Определим линии пересечения вспомогательной секущей сферы с конусом и тором. С конусом сфера пересекается по окружности, диаметр которой А 2 В 2. С тором сфера пересекается по окружности, диаметр которой L 2 N 2. А 2 В 2 п L 2 N 2 = 2 2. Точка 2 2 одна из точек искомой линии пересечения. Аналогично построены точки 5 2, 3 2, 4 2, 6 2. Для построения горизонтальных проекций точек линии пересечения используем параллели тора, как показано на рис. 3.3, для точек 5 1 и 6 1. Так как точки 1 и 6 принадлежат меридианам поверхностей, на П 1 они проецируются на горизонтальную ось тора и конуса, которые совпадают. Полученные точки соединяем с учетом видимости плавной кривой линией. На плоскости П 1 видимость линии пересечения определяет плоскость Г (Г 2 ). Часть линии 2 1, 1 1, 2' 1, - видима. Часть линии 3 1, 4 1, 5 1, 6 1, 5' 1, 4' 1, 3' 1, - невидима. На плоскости П 2 видимость определяет плоскость Т (Т 1 ). Относительно этой плоскости линия пересечения - симметричная линия. Видимая часть линии 6 2, 5' 2, 4' 2, 3' 2, 2' 2, 1' 2, совпадает с невидимой ее частью 6 2, 5 2, 4 2, 3 2, 2 2, 1 2. На чертеже изображаем видимую часть линии пересечения сплошной основной линией. 4. ПОСТРОЕНИЕ АКСОНОМЕТРИЧЕСКИХ ПРОЕКЦИЙ В данной работе ставится задача построить данные поверхности, с линией пересечения в прямоугольной изометрии, когда оси располагаются под и коэффициенты искажения по всем трем измерениям одинаковы. Метод координат дает удобный способ как для непосредственного построения аксонометрических изображений по заданным условиям, так и для перехода от ортогональных проекций на две плоскости к аксонометрическим, откладывая размеры, взятые с ортогональных проекций с соответствующих осей. Пример. Построить поверхности конуса и сферы, а также нанести их линию пересечения (рис. 4.1). По координатам, определенным непосредственно по ортогональному чертежу, построим аксонометрическую проекцию поверхностей. Затем по поверхности конуса проводим образующую δ, а по оси Х откладываем размер ВС. Из точки С проводим линию параллельно оси Z и откладываем отрезок С 1, тем самым находим точку 1. Аналогично определяется точка 7. Для нахождения точек 6 и 6 откладываем по оси Х размер ВD и через точкуd проводим линию параллельную оси Y, на этой линии откладываем отрезки DK и DZ. Из точек Z и K проводим линию параллельную оси Z и, отложив на ней заданные размеры, получаем точки 6 и 6. Аналогично строим точки 3, 4, 5, 2, 3, 4, 5, 2 (рис. 4.1, а). Полученные точки последовательно соединяем плавной кривой линией (рис. 4.1,б). 11

12 Рис

13 13

14 14

15 15

16 16

СПОСОБЫ ОБРАЗОВАНИЯ ПОВЕРХНОСТЕЙ, ИХ ВЗАИМНОЕ ПЕРЕСЕЧЕНИЕ

СПОСОБЫ ОБРАЗОВАНИЯ ПОВЕРХНОСТЕЙ, ИХ ВЗАИМНОЕ ПЕРЕСЕЧЕНИЕ Министерство путей сообщения РФ Департамент кадров и учебных заведений Самарская государственная академия путей сообщения Кафедра «Инженерная графика» СПОСОБЫ ОБРАЗОВАНИЯ ПОВЕРХНОСТЕЙ, ИХ ВЗАИМНОЕ ПЕРЕСЕЧЕНИЕ

Подробнее

R min1 < R min < R min2

R min1 < R min < R min2 ЛЕКЦИИ 11-12 Решение II ГПЗ (3 случай) методом секущих плоскостей. Решение II ГПЗ (3 случай) методом концентрических сфер. Частные случаи пересечения поверхностей. Теорема Монжа. РЕШЕНИЕ II ГПЗ (3 случай)

Подробнее

ЛЕКЦИЯ 14. ВЗАИМНОЕ ПЕРЕСЕЧЕНИЕ ПОВЕРХНОСТЕЙ Способ вспомогательных секущих плоскостей

ЛЕКЦИЯ 14. ВЗАИМНОЕ ПЕРЕСЕЧЕНИЕ ПОВЕРХНОСТЕЙ Способ вспомогательных секущих плоскостей ЛЕКЦИЯ 4. ВЗАИМНОЕ ПЕРЕСЕЧЕНИЕ ПОВЕРХНОСТЕЙ 4.. Способ вспомогательных секущих плоскостей Линия пересечения двух поверхностей есть линия, принадлежащая обеим поверхностям. Следовательно, для построения

Подробнее

ОГЛАВЛЕНИЕ ВВЕДЕНИЕ... 4 ОБЩИЕ УКАЗАНИЯ И СОДЕРЖАНИЕ ЗАДАНИЯ... 5 ОСНОВНЫЕ ПОНЯТИЯ И ОПРЕДЕЛЕНИЯ... 5 ОПРЕДЕЛЕНИЕ ЛИНИИ ПЕРЕСЕЧЕНИЯ ПОВЕРХНОСТЕЙ

ОГЛАВЛЕНИЕ ВВЕДЕНИЕ... 4 ОБЩИЕ УКАЗАНИЯ И СОДЕРЖАНИЕ ЗАДАНИЯ... 5 ОСНОВНЫЕ ПОНЯТИЯ И ОПРЕДЕЛЕНИЯ... 5 ОПРЕДЕЛЕНИЕ ЛИНИИ ПЕРЕСЕЧЕНИЯ ПОВЕРХНОСТЕЙ ОГЛАВЛЕНИЕ ВВЕДЕНИЕ... 4 ОБЩИЕ УКАЗАНИЯ И СОДЕРЖАНИЕ ЗАДАНИЯ... 5 ОСНОВНЫЕ ПОНЯТИЯ И ОПРЕДЕЛЕНИЯ... 5 ОПРЕДЕЛЕНИЕ ЛИНИИ ПЕРЕСЕЧЕНИЯ ПОВЕРХНОСТЕЙ ВРАЩЕНИЯ СПОСОБОМ ВСПОМОГАТЕЛЬНЫХ ПЛОСКОСТЕЙ... 7 ОПРЕДЕЛЕНИЕ

Подробнее

НАЧЕРТАТЕЛЬНАЯ ГЕОМЕТРИЯ. ВЗАИМНОЕ ПЕРЕСЕЧЕНИЕ ПОВЕРХНОСТЕЙ

НАЧЕРТАТЕЛЬНАЯ ГЕОМЕТРИЯ. ВЗАИМНОЕ ПЕРЕСЕЧЕНИЕ ПОВЕРХНОСТЕЙ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ "ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ - УЧЕБНО- НАУЧНО-ПРОИЗВОДСТВЕННЫЙ КОМПЛЕКС" ФАКУЛЬТЕТ НОВЫХ ТЕХНОЛОГИЙ

Подробнее

Методические указания по выполнению контрольно-графического задания

Методические указания по выполнению контрольно-графического задания Методические указания по выполнению контрольно-графического задания Студенты в первом семестре, кроме решения задач в рабочей тетради, должны выполнить контрольно-графическое задание, состоящее из семи

Подробнее

НАЧЕРТАТЕЛЬНАЯ ГЕОМЕТРИЯ Часть 2

НАЧЕРТАТЕЛЬНАЯ ГЕОМЕТРИЯ Часть 2 МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ федеральное государственное бюджетное образовательное учреждение высшего образования «Курганский государственный университет» Кафедра «Автоматизация

Подробнее

Взаимное пересечение поверхностей вращения Методические указания к выполнению заданий по курсу Начертательная геометрия

Взаимное пересечение поверхностей вращения Методические указания к выполнению заданий по курсу Начертательная геометрия МИНОБРНАУКИ РОССИИ Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования Ижевский государственный технический университет имени М.Т Калашникова (ФГБОУ ВПО

Подробнее

ЛЕКЦИЯ 9 9. ВЗАИМНОЕ ПЕРЕСЕЧЕНИЕ ПОВЕРХНОСТЕЙ

ЛЕКЦИЯ 9 9. ВЗАИМНОЕ ПЕРЕСЕЧЕНИЕ ПОВЕРХНОСТЕЙ ЛЕКЦИЯ 9 9. ВЗАИМНОЕ ПЕРЕСЕЧЕНИЕ ПОВЕРХНОСТЕЙ Линия пересечения двух поверхностей в общем виде представляет собой пространственную кривую, которая может распадаться на несколько частей. Надо иметь в виду,

Подробнее

ИЗОБРАЖЕНИЕ ТЕЛ ВРАЩЕНИЯ

ИЗОБРАЖЕНИЕ ТЕЛ ВРАЩЕНИЯ Б. М. Маврин, Е. И. Балаев ИЗОБРАЖЕНИЕ ТЕЛ ВРАЩЕНИЯ Практикум Самара 2005 ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «САМАРСКИЙ

Подробнее

МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПО ВЫПОЛНЕНИЮ КУРСОВОГО ЗАДАНИЯ ПО ТЕМЕ ПОЗИЦИОННЫЕ ЗАДАЧИ

МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПО ВЫПОЛНЕНИЮ КУРСОВОГО ЗАДАНИЯ ПО ТЕМЕ ПОЗИЦИОННЫЕ ЗАДАЧИ МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПО ВЫПОЛНЕНИЮ КУРСОВОГО ЗАДАНИЯ ПО ТЕМЕ ПОЗИЦИОННЫЕ ЗАДАЧИ Москва 2015 М. А. АЙГУНЯН МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПО ВЫПОЛНЕНИЮ КУРСОВОГО ЗАДАНИЯ ПО ТЕМЕ ПОЗИЦИОННЫЕ ЗАДАЧИ Москва 2015 2

Подробнее

НАЧЕРТАТЕЛЬНАЯ ГЕОМЕТРИЯ. ИНЖЕНЕРНАЯ ГРАФИКА ПЕРЕСЕЧЕНИЕ ПРЯМОЙ И ПОВЕРХНОСТИ. ПЕРЕСЕЧЕНИЕ ПОВЕРХНОСТЕЙ ВРАЩЕНИЯ

НАЧЕРТАТЕЛЬНАЯ ГЕОМЕТРИЯ. ИНЖЕНЕРНАЯ ГРАФИКА ПЕРЕСЕЧЕНИЕ ПРЯМОЙ И ПОВЕРХНОСТИ. ПЕРЕСЕЧЕНИЕ ПОВЕРХНОСТЕЙ ВРАЩЕНИЯ ФЕДЕРАЛЬНОЕ АГЕНСТВО ПО ОБРАЗОВАНИЮ Брянский государственный технический университет Утверждаю Ректор университета А. В. Лагерев 2007 г. НАЧЕРТАТЕЛЬНАЯ ГЕОМЕТРИЯ. ИНЖЕНЕРНАЯ ГРАФИКА ПЕРЕСЕЧЕНИЕ ПРЯМОЙ

Подробнее

МИНОБРНАУКИ РОССИИ Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования

МИНОБРНАУКИ РОССИИ Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования МИНОБРНАУКИ РОССИИ Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Ухтинский государственный технический университет» (УГТУ) ИНЖЕНЕРНАЯ ГРАФИКА ПРОЕКЦИИ

Подробнее

Кафедра «Начертательная геометрия и инженерная графика» НАЧЕРТАТЕЛЬНАЯ ГЕОМЕТРИЯ

Кафедра «Начертательная геометрия и инженерная графика» НАЧЕРТАТЕЛЬНАЯ ГЕОМЕТРИЯ МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Курганский государственный университет» Кафедра

Подробнее

ПЕРЕСЕЧЕНИЕ ГЕОМЕТРИЧЕСКИХ ТЕЛ

ПЕРЕСЕЧЕНИЕ ГЕОМЕТРИЧЕСКИХ ТЕЛ Б. М. Маврин, Е. И. Балаев ПЕРЕСЕЧЕНИЕ ГЕОМЕТРИЧЕСКИХ ТЕЛ Практикум Самара 2005 ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «САМАРСКИЙ

Подробнее

Взаимное пересечение поверхностей Все задачи по построению линии пересечения поверхностей подразделяются на три типа: пересечение многогранников;

Взаимное пересечение поверхностей Все задачи по построению линии пересечения поверхностей подразделяются на три типа: пересечение многогранников; Взаимное пересечение поверхностей Все задачи по построению линии пересечения поверхностей подразделяются на три типа: пересечение многогранников; пересечение многогранника с поверхностью вращения; пересечение

Подробнее

ЛЕКЦИЯ 15. ВЗАИМНОЕ ПЕРЕСЕЧЕНИЕ ПОВЕРХНОСТЕЙ

ЛЕКЦИЯ 15. ВЗАИМНОЕ ПЕРЕСЕЧЕНИЕ ПОВЕРХНОСТЕЙ ЛЕКЦИЯ 15. ВЗАИМНОЕ ПЕРЕСЕЧЕНИЕ ПОВЕРХНОСТЕЙ 15.1. Частные случаи пересечения поверхностей второго порядка 15.2. Способ сфер 15.1. Частные случаи пересечения поверхностей второго порядка При взаимном пересечении

Подробнее

Построение линий пересечения поверхностей вращения

Построение линий пересечения поверхностей вращения 2811 Построение линий пересечения поверхностей вращения Методические указания для студентов всех специальностей Иваново 2008 Федеральное агентство по образованию Государственное образовательное учреждение

Подробнее

Рабочая тетрадь для решения задач по дисциплинам «Начертательная геометрия» и «Инженерная графика» (для студентов заочной формы обучения)

Рабочая тетрадь для решения задач по дисциплинам «Начертательная геометрия» и «Инженерная графика» (для студентов заочной формы обучения) Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования «Омский государственный технический университет» Рабочая тетрадь для решения задач

Подробнее

ПЕРЕСЕЧЕНИЕ ГЕОМЕТРИЧЕСКИХ ОБРАЗОВ

ПЕРЕСЕЧЕНИЕ ГЕОМЕТРИЧЕСКИХ ОБРАЗОВ МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ Учреждение образования «Брестский государственный технический университет» Кафедра начертательной геометрии и инженерной графики ПЕРЕСЕЧЕНИЕ ГЕОМЕТРИЧЕСКИХ

Подробнее

П О С Т Р О Е Н И Е Л И Н И И П Е Р Е С Е Ч Е Н И Я П О В Е Р Х Н О С Т Е Й

П О С Т Р О Е Н И Е Л И Н И И П Е Р Е С Е Ч Е Н И Я П О В Е Р Х Н О С Т Е Й Федеральное агенство по образованию Государственное образовательное учреждение высшего профессионального образования «Хабаровский государственный технический университет» П О С Т Р О Е Н И Е Л И Н И И

Подробнее

ПОСТРОЕНИЕ ЛИНИИ ПЕРЕСЕЧЕНИЯ ПОВЕРХНОСТЕЙ

ПОСТРОЕНИЕ ЛИНИИ ПЕРЕСЕЧЕНИЯ ПОВЕРХНОСТЕЙ 3 ПОСТРОЕНИЕ ЛИНИИ ПЕРЕСЕЧЕНИЯ ПОВЕРХНОСТЕЙ Хабаровск 4 2004 Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования «Хабаровский государственный

Подробнее

СЕЧЕНИЕ ПОВЕРХНОСТИ ПЛОСКОСТЬЮ

СЕЧЕНИЕ ПОВЕРХНОСТИ ПЛОСКОСТЬЮ ФЕДЕРАЛЬНОЕ АГЕНТСТВО ЖЕЛЕЗНОДОРОЖНОГО ТРАНСПОРТА ИРКУТСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ПУТЕЙ СООБЩЕНИЯ СЕЧЕНИЕ ПОВЕРХНОСТИ ПЛОСКОСТЬЮ Методические указания к выполнению эпюра 3 по дисциплине «Начертательная

Подробнее

УДК :55(057) Д 82 Думицкая, Н. Г. Комплект заданий по начертательной геометрии [Текст]: метод. указания /Н.Г. Думицкая, О.Н. Попков. - Ухта: УГТ

УДК :55(057) Д 82 Думицкая, Н. Г. Комплект заданий по начертательной геометрии [Текст]: метод. указания /Н.Г. Думицкая, О.Н. Попков. - Ухта: УГТ Федеральное агентство по образованию Ухтинский государственный технический университет КОМПЛЕКТ ЗАДАНИЙ ПО НАЧЕРТАТЕЛЬНОЙ ГЕОМЕТРИИ Методические указания Ухта 2006 УДК 514.18:55(057) Д 82 Думицкая, Н.

Подробнее

МЕТОДИЧЕСКИЕ УКАЗАНИЯ. к выполнению эпюра 2

МЕТОДИЧЕСКИЕ УКАЗАНИЯ. к выполнению эпюра 2 ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ Тольяттинский государственный университет Кафедра «Начертательная геометрия и черчение» МЕТОДИЧЕСКИЕ УКАЗАНИЯ к выполнению эпюра 2 Тольятти 2004 Методические указания

Подробнее

В.И. Коростелев, В.И. Кочетов, С.И. Лазарев ПЕРЕСЕЧЕНИЕ ПОВЕРХНОСТЕЙ В АКСОНОМЕТРИИ

В.И. Коростелев, В.И. Кочетов, С.И. Лазарев ПЕРЕСЕЧЕНИЕ ПОВЕРХНОСТЕЙ В АКСОНОМЕТРИИ В.И. Коростелев, В.И. Кочетов, С.И. Лазарев ПЕРЕСЕЧЕНИЕ ПОВЕРХНОСТЕЙ В АКСОНОМЕТРИИ ИЗДАТЕЛЬСТВО ТГТУ Министерство образования и науки Российской Федерации Государственное образовательное учреждение высшего

Подробнее

Составители: Ж.С. Калинина, С.И. Иванова, Ю.В. Скрипкина. Рецензент

Составители: Ж.С. Калинина, С.И. Иванова, Ю.В. Скрипкина. Рецензент УДК 621.882.(083.131) Составители: Ж.С. Калинина, С.И. Иванова, Ю.В. Скрипкина Рецензент Кандидат технических наук, доцент В.В. Кривошеев ИНЖЕНЕРНАЯ ГРАФИКА. ПЕРЕСЕЧЕНИЕ ПОВЕРХНОСТЕЙ: методические указания

Подробнее

МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ Государственное образовательное учреждение высшего профессионального образования «Оренбургский государственный университет» Кафедра начертательной геометрии,

Подробнее

КОНСПЕКТ ЛЕКЦИЙ ПО НАЧЕРТАТЕЛЬНОЙ ГЕОМЕТРИИ. Преподаватель Студент Группа

КОНСПЕКТ ЛЕКЦИЙ ПО НАЧЕРТАТЕЛЬНОЙ ГЕОМЕТРИИ. Преподаватель Студент Группа КОНСПЕКТ ЛЕКЦИЙ ПО НАЧЕРТАТЕЛЬНОЙ ГЕОМЕТРИИ Преподаватель Студент Группа 1 ПРЕДМЕТ И МЕТОД НАЧЕРТАТЕЛЬНОЙ ГЕОМЕТРИИ Начертательная геометрия это один из разделов геометрии, изучающий методы изображения

Подробнее

Контрольные вопросы по курсу «Начертательная геометрия»

Контрольные вопросы по курсу «Начертательная геометрия» Контрольные вопросы по курсу «Начертательная геометрия» Тема: «Комплексный чертёж. Позиционные задачи» 1. Какие методы проецирования Вы знаете? 2. Сформулируйте основные свойства прямоугольного (ортогонального)

Подробнее

Камчатский государственный технический университет КАФЕДРА ТЕОРЕТИЧЕСКОЙ МЕХАНИКИ. Е.А. Степанова, Н.И. Надольская ПРОЕКЦИИ ГЕОМЕТРИЧЕСКИХ ТЕЛ

Камчатский государственный технический университет КАФЕДРА ТЕОРЕТИЧЕСКОЙ МЕХАНИКИ. Е.А. Степанова, Н.И. Надольская ПРОЕКЦИИ ГЕОМЕТРИЧЕСКИХ ТЕЛ Камчатский государственный технический университет КАФЕДРА ТЕОРЕТИЧЕСКОЙ МЕХАНИКИ Е.А. Степанова, Н.И. Надольская ПРОЕКЦИИ ГЕОМЕТРИЧЕСКИХ ТЕЛ Методическое пособие для студентов (курсантов) первого курса

Подробнее

12. ПЕРЕСЕЧЕНИЕ ПОВЕРХНОСТИ ПЛОСКОСТЬЮ Пересечение плоскости с поверхностью частного и общего положения

12. ПЕРЕСЕЧЕНИЕ ПОВЕРХНОСТИ ПЛОСКОСТЬЮ Пересечение плоскости с поверхностью частного и общего положения . ПЕРЕСЕЧЕНИЕ ПОВЕРХНОСТИ ПЛОСКОСТЬЮ.. Пересечение плоскости с поверхностью частного и общего положения.. Плоскости касательные к поверхности.. Пересечение плоскости с поверхностью частного и общего положения

Подробнее

Фаткуллина А.А. Для студентов Направления подготовки Архитектура; Дизайн архитектурной среды Уровень подготовки: бакалавриат

Фаткуллина А.А. Для студентов Направления подготовки Архитектура; Дизайн архитектурной среды Уровень подготовки: бакалавриат МИНОБРНАУКИ РФ Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Московский архитектурный институт (государственная академия)» (МАРХИ) Кафедра «Начертательной

Подробнее

Поверхности вращения Позиционные и метрические задачи

Поверхности вращения Позиционные и метрические задачи 2868 Поверхности вращения Позиционные и метрические задачи Методические указания для студентов всех специальностей Иваново 2009 Федеральное агентство по образованию Государственное образовательное учреждение

Подробнее

Федеральное агентство по образованию Восточно-Сибирский государственный технологический университет Кафедра «Инженерная и компьютерная графика»

Федеральное агентство по образованию Восточно-Сибирский государственный технологический университет Кафедра «Инженерная и компьютерная графика» Федеральное агентство по образованию Восточно-Сибирский государственный технологический университет Кафедра «Инженерная и компьютерная графика» МЕТОДИЧЕСКИЕ УКАЗАНИЯ И КОНТРОЛЬНЫЕ ЗАДАНИЯ по начертательной

Подробнее

Инженерная графика. Задания

Инженерная графика. Задания Инженерная графика Кривальцевич Татьяна Владимировна Задания К лекции «Пересечение геометрических тел плоскостями. Построение разверток» Омск-2010 Требования к выполнению заданий: 1. Задание выполнить

Подробнее

1. МЕТОДЫ ПРОЕЦИРОВАНИЯ

1. МЕТОДЫ ПРОЕЦИРОВАНИЯ 1. МЕТОДЫ ПРОЕЦИРОВАНИЯ 1. Назовите основные методы проецирования геометрических форм. Приведите схему аппарата проецирования. 2. Какие виды параллельных проекций Вы знаете? Приведите схему аппарата проецирования.

Подробнее

Лекция 9 ПОСТРОЕНИЕ ЛИНИИ ПЕРЕСЕЧЕНИЯ ПОВЕРХНОСТЕЙ (СПОСОБ ВСПОМОГАТЕЛЬНЫХ СФЕР)

Лекция 9 ПОСТРОЕНИЕ ЛИНИИ ПЕРЕСЕЧЕНИЯ ПОВЕРХНОСТЕЙ (СПОСОБ ВСПОМОГАТЕЛЬНЫХ СФЕР) Лекция 9 ПОСТРОЕНИЕ ЛИНИИ ПЕРЕСЕЧЕНИЯ ПОВЕРХНОСТЕЙ (СПОСОБ ВСПОМОГАТЕЛЬНЫХ СФЕР) В начертательной геометрии точки, принадлежащие линии пересечения двух поверхностей, находят с помощью способа вспомогательных

Подробнее

Лекция 8 ПОСТРОЕНИЕ ЛИНИИ ПЕРЕСЕЧЕНИЯ ПОВЕРХНОСТЕЙ (СПОСОБ ВСПОМОГАТЕЛЬНЫХ ПЛОСКОСТЕЙ)

Лекция 8 ПОСТРОЕНИЕ ЛИНИИ ПЕРЕСЕЧЕНИЯ ПОВЕРХНОСТЕЙ (СПОСОБ ВСПОМОГАТЕЛЬНЫХ ПЛОСКОСТЕЙ) Лекция 8 ПОСТРОЕНИЕ ЛИНИИ ПЕРЕСЕЧЕНИЯ ПОВЕРХНОСТЕЙ (СПОСОБ ВСПОМОГАТЕЛЬНЫХ ПЛОСКОСТЕЙ) Две поверхности пересекаются по линии, которая одновременно принадлежит каждой из них. В зависимости от вида и взаимного

Подробнее

ЛЕКЦИЯ 8 8. КРИВЫЕ ПОВЕРХНОСТИ 8.1. ПОВЕРХНОСТИ ВРАЩЕНИЯ

ЛЕКЦИЯ 8 8. КРИВЫЕ ПОВЕРХНОСТИ 8.1. ПОВЕРХНОСТИ ВРАЩЕНИЯ ЛЕКЦИЯ 8 8. КРИВЫЕ ПОВЕРХНОСТИ 8.1. ПОВЕРХНОСТИ ВРАЩЕНИЯ Поверхности вращения образуются вращением линии l вокруг прямой i оси вращения. Они могут быть линейчатыми и нелинейчатыми (криволинейными). Определитель

Подробнее

Лекция 16. ПРОЕКЦИИ КОНУСА Коническая поверхность направляющей линии прямым кру- говым конусом Построение конуса в прямоуголь- ной изометрии

Лекция 16. ПРОЕКЦИИ КОНУСА Коническая поверхность направляющей линии прямым кру- говым конусом Построение конуса в прямоуголь- ной изометрии Лекция 16. ПРОЕКЦИИ КОНУСА Конус тело вращения. Прямой круговой конус относится к одному из видов тел вращения. Коническая поверхность образуется прямой линией, проходящей через некоторую неподвижную точку

Подробнее

Рис. 43. Пересечение пирамиды плоскостью

Рис. 43. Пересечение пирамиды плоскостью Пересечение поверхности плоскостью При пересечении любой поверхности плоскостью получается некоторая плоская фигура, которая называется сечением. Плоскости, с помощью которых получается сечение, называются

Подробнее

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ КУРГАНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ. Кафедра начертательной геометрии и графики

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ КУРГАНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ. Кафедра начертательной геометрии и графики МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ КУРГАНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ Кафедра начертательной геометрии и графики НАЧЕРТАТЕЛЬНАЯ ГЕОМЕТРИЯ Методические указания и контрольные задания

Подробнее

Е.В. Белоенко, Т.Ю. Дайнатович ПОСТРОЕНИЕ РАЗВЕРТОК ПОВЕРХНОСТЕЙ ГЕОМЕТРИЧЕСКИХ ТЕЛ

Е.В. Белоенко, Т.Ю. Дайнатович ПОСТРОЕНИЕ РАЗВЕРТОК ПОВЕРХНОСТЕЙ ГЕОМЕТРИЧЕСКИХ ТЕЛ МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ

Подробнее

ИНЖЕНЕРНАЯ ГРАФИКА Расчетно-графическая и контрольная работы

ИНЖЕНЕРНАЯ ГРАФИКА Расчетно-графическая и контрольная работы Министерство образования и науки Российской Федерации Уральский федеральный университет имени первого Президента России Б. Н. Ельцина Т. И. Кириллова Л. Ю. Стриганова ИНЖЕНЕРНАЯ ГРАФИКА Расчетно-графическая

Подробнее

Министерство образования Российской Федерации Восточно-Сибирский государственный технологический университет.

Министерство образования Российской Федерации Восточно-Сибирский государственный технологический университет. Министерство образования Российской Федерации Восточно-Сибирский государственный технологический университет. МЕТОДИЧЕСКИЕ УКАЗАНИЯ И КОНТРОЛЬНЫЕ ЗАДАНИЯ по начертательной геометрии для студентов механических

Подробнее

B' 2 C' 2 2' 2 3' 2 1' 2 C' 1 2' 1

B' 2 C' 2 2' 2 3' 2 1' 2 C' 1 2' 1 7. РАЗВЕРТКИ ПОВЕРХНОСТЕЙ. АКСОНОМЕТРИЧЕСКИЕ ПРОЕКЦИИ 7. Построение развертки наклонных призматических, цилиндрических и конических поверхностей способом нормального сечения. 7.. Построение развертки наклонных

Подробнее

Инженерная графика. Лекция 5

Инженерная графика. Лекция 5 Инженерная графика Кривальцевич Татьяна Владимировна Лекция 5 «Пересечение геометрических тел плоскостями. Построение разверток» Омск-2010 Пересечение поверхностей плоскостью Инженерная графика Кривальцевич

Подробнее

РЕШЕНИЕ ПОЗИЦИОННЫХ ЗАДАЧ

РЕШЕНИЕ ПОЗИЦИОННЫХ ЗАДАЧ Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования Омский государственный технический университет РЕШЕНИЕ ПОЗИЦИОННЫХ ЗАДАЧ Методические

Подробнее

Методические указания по теме «Взаимное пересечение тел» для студентов всех специальностей

Методические указания по теме «Взаимное пересечение тел» для студентов всех специальностей Федеральное агентство по образованию Российской Федерации Государственное образовательное учреждение высшего профессионального образования «Ивановский государственный химико-технологический университет»

Подробнее

1. ОБЩИЙ АЛГОРИТМ РЕШЕНИЯ ЗАДАЧИ О ПЕРЕСЕЧЕНИИ ПОВЕРХНОСТЕЙ

1. ОБЩИЙ АЛГОРИТМ РЕШЕНИЯ ЗАДАЧИ О ПЕРЕСЕЧЕНИИ ПОВЕРХНОСТЕЙ ОГЛАВЛЕНИЕ ВВЕДЕНИЕ.. 4 1. ОБЩИЙ АЛГОРИТМ РЕШЕНИЯ ЗАДАЧИ О ПЕРЕСЕЧЕНИИ ПОВЕРХНОСТЕЙ 5 1.1. Построение характерных точек..... 5 1.2. Построение промежуточных точек линий взаимного пересечения заданных поверхностей...

Подробнее

Центральные вопросы темы: сущность методов центрального, параллельного и прямоугольного проецирований и их свойства; обратимость чертежа.

Центральные вопросы темы: сущность методов центрального, параллельного и прямоугольного проецирований и их свойства; обратимость чертежа. Вопросы к блоку 1 спец. 230101 Введение. Предмет начертательной геометрии. Метод проецирования. Комплексный чертеж Монжа. Центральное (коническое) проецирование. Параллельное (Цилиндрическое) проецирование.

Подробнее

Рабочая тетрадь по дисциплине «Начертательная геометрия и технический рисунок»

Рабочая тетрадь по дисциплине «Начертательная геометрия и технический рисунок» Федеральное агентство по образованию РФ Владивостокский государственный университет экономики и сервиса Н.В. МЕСЕНЕВА ОРТОГОНАЛЬНЫЕ ПРОЕКЦИИ Рабочая тетрадь по дисциплине «Начертательная геометрия и технический

Подробнее

Начертательная геометрия Плоскости

Начертательная геометрия Плоскости ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ ВОЛОГОДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ Кафедра начертательной геометрии и графики Начертательная геометрия Плоскости Методические указания и задания для

Подробнее

Б 33. Комплексный чертеж цилиндра вращения. Его определитель

Б 33. Комплексный чертеж цилиндра вращения. Его определитель Б 33. Комплексный чертеж цилиндра вращения. Его определитель Поверхность, образованная прямолинейной образующей l, движущейся параллельно заданному направлению s и пересекающей направляющую m, называется

Подробнее

ПЕРЕСЕЧЕНИЕ ПОВЕРХНОСТИ ПЛОСКОСТЬЮ

ПЕРЕСЕЧЕНИЕ ПОВЕРХНОСТИ ПЛОСКОСТЬЮ 3 ПЕРЕСЕЧЕНИЕ ПОВЕРХНОСТИ ПЛОСКОСТЬЮ Хабаровск 2005 Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования 4 «Тихоокеанский государственный

Подробнее

Министерство образования и науки РФ. ФГБОУ ВПО «Псковский государственный университет» Инженерная графика. Методические указания и контрольные задания

Министерство образования и науки РФ. ФГБОУ ВПО «Псковский государственный университет» Инженерная графика. Методические указания и контрольные задания Министерство образования и науки РФ ФГБОУ ВПО «Псковский государственный университет» Шагиева Т.А. Инженерная графика Методические указания и контрольные задания для студентов ЭлМФ заочной формы обучения

Подробнее

ВЗАИМНОЕ ПЕРЕСЕЧЕНИЕ МНОГОГРАННЫХ И КРИВОЛИНЕЙНЫХ ПОВЕРХНОСТЕЙ

ВЗАИМНОЕ ПЕРЕСЕЧЕНИЕ МНОГОГРАННЫХ И КРИВОЛИНЕЙНЫХ ПОВЕРХНОСТЕЙ ФЕДЕРАЛЬНОЕ АГЕНТСТВО ВОЗДУШНОГО ТРАНСПОРТА ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ГРАЖДАНСКОЙ

Подробнее

УЧЕБНОЕ ПОСОБИЕ по курсу «Начертательная геометрия»

УЧЕБНОЕ ПОСОБИЕ по курсу «Начертательная геометрия» Федеральное агентство по образованию Тольяттинский государственный университет Кафедра «Начертательная геометрия и черчение» УЧЕБНОЕ ПОСОБИЕ по курсу «Начертательная геометрия» МОДУЛЬ 3 Тольятти 2007 УДК

Подробнее

Министерство образования и науки Российской Федерации

Министерство образования и науки Российской Федерации Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Комсомольский-на-Амуре государственный технический

Подробнее

Рис. 3. Плоскости проекций

Рис. 3. Плоскости проекций Чертеж точки Чертеж в системе прямоугольных проекций образуется при проецировании геометрического образа на две либо три взаимно перпендикулярных плоскости: горизонтальную плоскость H, фронтальную V и

Подробнее

НАЧЕРТАТЕЛЬНАЯ ГЕОМЕТРИЯ. ИНЖЕНЕРНАЯ ГРАФИКА ВЫПОЛНЕНИЕ ЧЕРТЕЖА МОДЕЛИ, СОДЕРЖАЩЕЙ ЛИНИИ ПЕРЕСЕЧЕНИЯ

НАЧЕРТАТЕЛЬНАЯ ГЕОМЕТРИЯ. ИНЖЕНЕРНАЯ ГРАФИКА ВЫПОЛНЕНИЕ ЧЕРТЕЖА МОДЕЛИ, СОДЕРЖАЩЕЙ ЛИНИИ ПЕРЕСЕЧЕНИЯ ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ Брянский государственный технический университет Утверждаю Ректор университета О.Н. Федонин 2014 г. НАЧЕРТАТЕЛЬНАЯ ГЕОМЕТРИЯ. ИНЖЕНЕРНАЯ ГРАФИКА ВЫПОЛНЕНИЕ ЧЕРТЕЖА

Подробнее

1. Метод проекций. Проекции точки.

1. Метод проекций. Проекции точки. Теоретические разделы начертательной геометрии (краткое изложение). Метод проекций. Проекции точки. Метод проекций Пространство Способ отображения пространства Геометрические образы: Требования к чертежу

Подробнее

1. Указать правильный ответ Ось проекций 0У это

1. Указать правильный ответ Ось проекций 0У это НАЧЕРТАТЕЛЬНАЯ ГЕОМЕТРИЯ Тестовые задания 7 вариант Хабаровск 2014 0 Тема 1.Точка 1. Указать правильный ответ Ось проекций 0У это 1 линия пересечения плоскостей П 1 и П 2 2 линия пересечения плоскостей

Подробнее

НАЧЕРТАТЕЛЬНАЯ ГЕОМЕТРИЯ

НАЧЕРТАТЕЛЬНАЯ ГЕОМЕТРИЯ МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ ГОУ ВПО «СИБИРСКАЯ ГОСУДАРСТВЕННАЯ ГЕОДЕЗИЧЕСКАЯ АКАДЕМИЯ» Л.В. Пивкина НАЧЕРТАТЕЛЬНАЯ ГЕОМЕТРИЯ СБОРНИК ЗАДАЧ

Подробнее

ЛЕКЦИЯ ПОЗИЦИОННЫЕ ЗАДАЧИ

ЛЕКЦИЯ ПОЗИЦИОННЫЕ ЗАДАЧИ ЛЕКЦИЯ 3. 3. ПОЗИЦИОННЫЕ ЗАДАЧИ Позиционными называют задачи, связанные с определением взаимного расположения геометрических фигур. Обычно в этих задачах определяется взаимная принадлежность фигур или

Подробнее

ИЗОБРАЖЕНИЕ МНОГОГРАННИКОВ

ИЗОБРАЖЕНИЕ МНОГОГРАННИКОВ Б. М. Маврин, Е. И. Балаев ИЗОБРАЖЕНИЕ МНОГОГРАННИКОВ Практикум Самара 2005 ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «САМАРСКИЙ

Подробнее

ГОСУДАРСТВЕННОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «БЕЛОРУССКО-РОССИЙСКИЙ УНИВЕРСИТЕТ» Кафедра «Инженерная графика» ИНЖЕНЕРНАЯ ГРАФИКА

ГОСУДАРСТВЕННОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «БЕЛОРУССКО-РОССИЙСКИЙ УНИВЕРСИТЕТ» Кафедра «Инженерная графика» ИНЖЕНЕРНАЯ ГРАФИКА ГОСУДАРСТВЕННОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «БЕЛОРУССКО-РОССИЙСКИЙ УНИВЕРСИТЕТ» Кафедра «Инженерная графика» ИНЖЕНЕРНАЯ ГРАФИКА Методические рекомендации к практическим занятиям для

Подробнее

НАЧЕРТАТЕЛЬНАЯ ГЕОМЕТРИЯ. ИНЖЕНЕРНАЯ ГРАФИКА ПОВЕРХНОСТИ. ТОЧКА И ЛИНИЯ, ПРИНАДЛЕЖАЩИЕ ПОВЕРХНОСТИ

НАЧЕРТАТЕЛЬНАЯ ГЕОМЕТРИЯ. ИНЖЕНЕРНАЯ ГРАФИКА ПОВЕРХНОСТИ. ТОЧКА И ЛИНИЯ, ПРИНАДЛЕЖАЩИЕ ПОВЕРХНОСТИ 1 ФЕДЕРАЛЬНОЕ АГЕНСТВО ПО ОБРАЗОВАНИЮ Брянский государственный технический университет Утверждаю Ректор университета А. В. Лагерев 2007 г. НАЧЕРТАТЕЛЬНАЯ ГЕОМЕТРИЯ. ИНЖЕНЕРНАЯ ГРАФИКА ПОВЕРХНОСТИ. ТОЧКА

Подробнее

МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ВОЛГОГРАДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ВОЛЖСКИЙ ПОЛИТЕХНИЧЕСКИЙ ИНСТИТУТ (ФИЛИАЛ)

МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ВОЛГОГРАДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ВОЛЖСКИЙ ПОЛИТЕХНИЧЕСКИЙ ИНСТИТУТ (ФИЛИАЛ) МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ВОЛГОГРАДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ВОЛЖСКИЙ ПОЛИТЕХНИЧЕСКИЙ ИНСТИТУТ (ФИЛИАЛ) З. И. Полякова, Н. А. Сторчак, Н. А. Мишустин, В. Е. Костин,

Подробнее

Министерство образования и науки Российской Федерации

Министерство образования и науки Российской Федерации Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Комсомольский-на-Амуре государственный технический

Подробнее

ЭКЗАМЕНАЦИОННЫЕ ВОПРОСЫ к курсу «Инженерная графика» Часть 1. Начертательная геометрия 1. Методы проецирования. Центральное проецирование. Параллельное проецирование. Ортогональное проецирование точки.

Подробнее

Лекция 7 ПЕРЕСЕЧЕНИЕ ПОВЕРХНОСТИ С ПЛОСКОСТЬЮ И С ПРЯМОЙ ЛИНИЕЙ

Лекция 7 ПЕРЕСЕЧЕНИЕ ПОВЕРХНОСТИ С ПЛОСКОСТЬЮ И С ПРЯМОЙ ЛИНИЕЙ Лекция 7 ПЕРЕСЕЧЕНИЕ ПОВЕРХНОСТИ С ПЛОСКОСТЬЮ И С ПРЯМОЙ ЛИНИЕЙ В предыдущих лекциях рассматривались чертежи простейших геометрических фигур (точек, прямых, плоскостей) и произвольных кривых линий и поверхностей,

Подробнее

Свойства ортогонального проецирования кривой

Свойства ортогонального проецирования кривой 6. КРИВЫЕ ЛИНИИ И ПОВЕРХНОСТИ. 6.1. КОМПЛЕКСНЫЙ ЧЕРТЕЖ КРИВОЙ ЛИНИИ Кривая линия представляет собой геометрическое место последовательных положений непрерывно перемещающейся в пространстве точки. Если

Подробнее

ДВОЙНОЕ ПРОНИЦАНИЕ ПОВЕРХНОСТЕЙ

ДВОЙНОЕ ПРОНИЦАНИЕ ПОВЕРХНОСТЕЙ МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ Государственное образовательное учреждение высшего профессионального образования «Оренбургский государственный университет» Кафедра начертательной геометрии,

Подробнее

НАЧЕРТАТЕЛЬНАЯ ГЕОМЕТРИЯ

НАЧЕРТАТЕЛЬНАЯ ГЕОМЕТРИЯ Т.И. Кириллова, Л.Ю. Елькина НАЧЕРТАТЕЛЬНАЯ ГЕОМЕТРИЯ Электронное текстовое издание Учебно-методические указания к курсовой работе по начертательной геометрии для студентов всех форм обучения направления

Подробнее

ПОСТРОЕНИЕ РАЗВЕРТОК

ПОСТРОЕНИЕ РАЗВЕРТОК МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Государственное образовательное учреждение высшего профессионального образования УЛЬЯНОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ПОСТРОЕНИЕ РАЗВЕРТОК

Подробнее

ЛЕКЦИЯ 7 7. МНОГОГРАННИКИ. ПЕРЕСЕЧЕНИЕ МНОГОГРАННИКОВ С ПЛОСКОСТЬЮ И ПРЯМОЙ.

ЛЕКЦИЯ 7 7. МНОГОГРАННИКИ. ПЕРЕСЕЧЕНИЕ МНОГОГРАННИКОВ С ПЛОСКОСТЬЮ И ПРЯМОЙ. ЛЕКЦИЯ 7 7. МНОГОГРАННИКИ. ПЕРЕСЕЧЕНИЕ МНОГОГРАННИКОВ С ПЛОСКОСТЬЮ И ПРЯМОЙ. Гранные поверхности это поверхности, образованные перемещением прямолинейной образующей по ломаной линии. Часть этих поверхностей

Подробнее

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ Государственное образовательное учреждение высшего профессионального образования «Курский государственный технический университет» Кафедра начертательной геометрии

Подробнее

Развертки поверхностей

Развертки поверхностей Развертки поверхностей Разверткой поверхности называется плоская фигура, полученная в результате совмещения всех точек поверхности с одной плоскостью. Между поверхностью и ее разверткой устанавливается

Подробнее

Т. В. Мошкова, В. А. Тюрина. Сечение комбинированной поверхности вращения плоскостью

Т. В. Мошкова, В. А. Тюрина. Сечение комбинированной поверхности вращения плоскостью Министерство образования и науки Российской Федерации Федеральное бюджетное государственное образовательное учреждение высшего профессионального образования «Нижегородский государственный архитектурно-строительный

Подробнее

Инженерная графика. Исходные данные заданий по проекционному черчению. 14 вариант

Инженерная графика. Исходные данные заданий по проекционному черчению. 14 вариант Инженерная графика. Исходные данные заданий по проекционному черчению 14 вариант Омск 2008 2 Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования

Подробнее

СПОСОБЫ ПРЕОБРАЗОВАНИЯ ЧЕРТЕЖА

СПОСОБЫ ПРЕОБРАЗОВАНИЯ ЧЕРТЕЖА Б. М. Маврин, Е. И. Балаев СПОСОБЫ ПРЕОБРАЗОВАНИЯ ЧЕРТЕЖА Практикум Самара 2005 ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «САМАРСКИЙ

Подробнее

Федеральное агентство по образованию. Восточно-Сибирский государственный технологический университет. Инженерная графика

Федеральное агентство по образованию. Восточно-Сибирский государственный технологический университет. Инженерная графика Федеральное агентство по образованию Восточно-Сибирский государственный технологический университет Инженерная графика Методические указания с вариантами заданий для студентов технологических специальностей

Подробнее

Вологодский государственный технический университет ИНЖЕНЕРНАЯ ГРАФИКА. Методические указания и задания для самостоятельной работы студентов

Вологодский государственный технический университет ИНЖЕНЕРНАЯ ГРАФИКА. Методические указания и задания для самостоятельной работы студентов Министерство образования и науки Российской Федерации Вологодский государственный технический университет Кафедра начертательной геометрии и графики ИНЖЕНЕРНАЯ ГРАФИКА Методические указания и задания для

Подробнее

2 УДК Д 82 Думицкая Н.Г. Сечение геометрических тел плоскостями и развёртки их поверхностей: Метод/ указания / Н.Г. Думицкая, Ю.А. Мучулаев.- У

2 УДК Д 82 Думицкая Н.Г. Сечение геометрических тел плоскостями и развёртки их поверхностей: Метод/ указания / Н.Г. Думицкая, Ю.А. Мучулаев.- У МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ УХТИНСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ СЕЧЕНИЕ ГЕОМЕТРИЧЕСКИХ ТЕЛ ПЛОСКОСТЯМИ И РАЗВЁРТКИ ИХ ПОВЕРХНОСТЕЙ Методические указания по начертательной

Подробнее

Методические указания.

Методические указания. Методические указания. Рабочая тетрадь предназначена для подготовки к практическим занятиям по курсу «Начертательной геометрии», а также для проработки материала в аудитории. При подготовке к практическому

Подробнее

Б. М. МАВРИН, Е. И. БАЛАЕВ ТОЧКА, ПРЯМАЯ И ПЛОСКОСТЬ НА ЧЕРТЕЖЕ

Б. М. МАВРИН, Е. И. БАЛАЕВ ТОЧКА, ПРЯМАЯ И ПЛОСКОСТЬ НА ЧЕРТЕЖЕ Б. М. МАВРИН, Е. И. БАЛАЕВ ТОЧКА, ПРЯМАЯ И ПЛОСКОСТЬ НА ЧЕРТЕЖЕ Практикум Самара 2005 ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

Подробнее

Оригинальные приемы решения некоторых позиционных задач в начертательной геометрии /586005

Оригинальные приемы решения некоторых позиционных задач в начертательной геометрии /586005 Оригинальные приемы решения некоторых позиционных задач в начертательной геометрии 77-48211/586005 # 05, май 2013 Суфляева Н. Е. УДК 515(076.5) Россия, МГТУ им. Н.Э. Баумана sufnat@yandex.ru При составлении

Подробнее

ПОЗИЦИОННЫЕ ЗАДАЧИ. Методические указания для студентов всех специальностей. Иваново 2001

ПОЗИЦИОННЫЕ ЗАДАЧИ. Методические указания для студентов всех специальностей. Иваново 2001 2193 ПОЗИЦИОННЫЕ ЗАДАЧИ Методические указания для студентов всех специальностей Иваново 2001 Министерство образования Российской Федерации Ивановская государственная текстильная академия Кафедра начертательной

Подробнее

1. ОБЩИЕ ТРЕБОВАНИЯ К ВЫПОЛНЕНИЮ ГРАФИЧЕСКИХ РАБОТ

1. ОБЩИЕ ТРЕБОВАНИЯ К ВЫПОЛНЕНИЮ ГРАФИЧЕСКИХ РАБОТ ВВЕДЕНИЕ Курс начертательной геометрии и инженерной графики осуществляет общеинженерную подготовку студентов. Теоретические основы курса, развивающие общегеометрическую подготовку студентов в инженерном

Подробнее

ОПОРНЫЕ КОНСПЕКТЫ ПО НАЧЕРТАТЕЛЬНОЙ ГЕОМЕТРИИ

ОПОРНЫЕ КОНСПЕКТЫ ПО НАЧЕРТАТЕЛЬНОЙ ГЕОМЕТРИИ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «САМАРСКИЙ ГОСУДАРСТВЕННЫЙ АЭРОКОСМИЧЕСКИЙ УНИВЕРСИТЕТ имени академика С.П. КОРОЛЁВА (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)»

Подробнее

РАБОЧАЯ ТЕТРАДЬ ПО ИНЖЕНЕРНОЙ ГРАФИКЕ

РАБОЧАЯ ТЕТРАДЬ ПО ИНЖЕНЕРНОЙ ГРАФИКЕ 0 Л.Д. Письменко РАБОЧАЯ ТЕТРАДЬ ПО ИНЖЕНЕРНОЙ ГРАФИКЕ Ульяновск 2007 ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ 1 Государственное образовательное учреждение высшего профессионального образования УЛЬЯНОВСКИЙ

Подробнее

ПОВЕРХНОСТИ. СПОСОБЫ ОБРАЗОВАНИЯ И ИХ ВЗАИМНОЕ ПЕРЕСЕЧЕНИЕ

ПОВЕРХНОСТИ. СПОСОБЫ ОБРАЗОВАНИЯ И ИХ ВЗАИМНОЕ ПЕРЕСЕЧЕНИЕ МИНИСТЕРСТВО РОССИЙСКОЙ ФЕДЕРАЦИИ ПО ДЕЛАМ ГРАЖДАНСКОЙ ОБОРОНЫ, ЧЕРЕЗВЫЧАЙНЫМ СИТУАЦИЯМ И ЛИКВИДАЦИИ ПОСЛЕДСТВИЙ СТИХИЙНЫХ БЕДСТВИЙ Академия Государственной противопожарной службы О.В. Токарева, С.М. Червоноокая

Подробнее

Федеральное агентство по образованию Восточно-Сибирский государственный технологический университет. Инженерная графика

Федеральное агентство по образованию Восточно-Сибирский государственный технологический университет. Инженерная графика Федеральное агентство по образованию Восточно-Сибирский государственный технологический университет Инженерная графика Методические указания с вариантами заданий для студентов специальности ЗЧС (защита

Подробнее

Оглавление Введение... 2 Конструирование поверхностей-посредников... 3 Пример конструирования форм поверхностей-посредников (развёрнутый состав

Оглавление Введение... 2 Конструирование поверхностей-посредников... 3 Пример конструирования форм поверхностей-посредников (развёрнутый состав Введение... 2 Конструирование поверхностей-посредников... 3 Пример конструирования форм поверхностей-посредников (развёрнутый состав действий).... 5 Литература... 19 2 Введение Настоящее пособие составлено

Подробнее

Кафедра "Инженерная графика и технология рекламы"

Кафедра Инженерная графика и технология рекламы МИНОБРНАУКИ РОССИИ Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Ижевский государственный технический университет имени М.Т. Калашникова" Кафедра

Подробнее

ГЕОМЕТРИЧЕСКИЕ ХАРАКТЕРИСТИКИ ПРОЕКЦИЙ ЛИНИЙ ПЕРЕСЕЧЕНИЯ ПОВЕРХНОСТЕЙ ВТОРОГО ПОРЯДКА С ОБЩЕЙ ПЛОСКОСТЬЮ СИММЕТРИИ

ГЕОМЕТРИЧЕСКИЕ ХАРАКТЕРИСТИКИ ПРОЕКЦИЙ ЛИНИЙ ПЕРЕСЕЧЕНИЯ ПОВЕРХНОСТЕЙ ВТОРОГО ПОРЯДКА С ОБЩЕЙ ПЛОСКОСТЬЮ СИММЕТРИИ МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ Донецкий национальный технический университет Червоненко А. П., Катькалова Е. А. ГЕОМЕТРИЧЕСКИЕ ХАРАКТЕРИСТИКИ ПРОЕКЦИЙ ЛИНИЙ ПЕРЕСЕЧЕНИЯ ПОВЕРХНОСТЕЙ ВТОРОГО ПОРЯДКА

Подробнее

Начертательная геометрия

Начертательная геометрия МИНИСТЕРСТВО ПУТЕЙ СООБЩЕНИИ РОССИЙСКОЙ ФЕДЕРАЦИИ УРАЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ПУТЕЙ СООБЩЕНИЙ Кафедра графики Л.В. Туркина Начертательная геометрия Примеры решения задач Часть 2 Екатеринбург

Подробнее

ПЕРЕСЕЧЕНИЕ ПОВЕРХНОСТЕЙ

ПЕРЕСЕЧЕНИЕ ПОВЕРХНОСТЕЙ ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «ТЮМЕНСКИЙ ГОСУДАРСТВЕННЫЙ НЕФТЕГАЗОВЫЙ УНИВЕРСИТЕТ» Технологический институт Кафедра

Подробнее