Сборник задач для самостоятельного решения по теме "Предел функции" Составители: А.Н. Максименко, А.Н. Морозов

Save this PDF as:
 WORD  PNG  TXT  JPG

Размер: px
Начинать показ со страницы:

Download "Сборник задач для самостоятельного решения по теме "Предел функции" Составители: А.Н. Максименко, А.Н. Морозов"

Транскрипт

1 ББК В 65я73-4 С 3 УДК 57 Учебное издание Сборник задач для самостоятельного решения по теме "Предел функции" Составители: АН Максименко, АН Морозов Сборник задач для самостоятельного решения по теме "Предел функции"/ Сост АН Максименко, АН Морозов; Яросл гос ун-т Ярославль, с Составители: Максименко Александр Николаевич Морозов Анатолий Николаевич Сборник содержит более 300 задач по темам График функции, Предел последовательности и Предел функции На все вычислительные задачи даны ответы Кроме того, сборник снабжен приложениями, содержащими справочный материал: графики основных элементарных функций и основные пределы Сборник задач по теме Предел функции предназначен для студентов, обучающихся по специальностям: Прикладная информатика в экономике) и Математическое обеспечение и администрирование информационных систем дисциплина Математический анализ, блок ЕН), очной формы обучения Редактор, корректор АА Антонова Компьютерная верстка АН Максименко Подписано в печать Формат 60х84/6 Бумага тип Усл печ л,0 Уч-изд л,5 Тираж 00 экз Рецензент кафедра дискретного анализа ЯрГУ c Ярославский государственный университет им ПГ Демидова, 005 c АН Максименко, АН Морозов, 005 Оригинал-макет подготовлен редакционно-издательским отделом ЯрГУ Отпечатано на ризографе Ярославский государственный университет 50000, г Ярославль, ул Советская, 4

2 6 Графическое изображение функции Построить графики функций -й степени параболы): Приложение I: графики некоторых функций 4 = a, если a =,,, 5 = + c, если c = 0,,, 6 = 0 ), если 0 = 0,,, В следующих примерах построить график функции = a +b+c, приведя ее к виду = 0 + a 0 ) : 7 = + 8 = = 8 0 = 3 + Построить схематично графики функций степени выше второй: = + ) 3 = = ) + ) 4 = 4 Построить графики дробно-линейных функций гиперболы): 5 = 6 = + 7 = = 3 c O = c Рис Прямые = c и = = c O Рис Парабола = O Рис 3 Кубическая парабола = 3 Построить в одной системе координат графики функций: 9 =, =, = 3 0 =, =, = Построить графики иррациональных функций: = ± 4 окружность) = 3 3 = ± эллипс) 4 = ± гипербола) O Построить графики тригонометрических функций: 5 = cos 0 ), если 0 = 0, π, 3π, π, π 4 6 = si, если =,, 3, 7 = cos 8 = cos 9 = si + cos 30 = 6 si 8 cos Рис 4 Гипербола = O Рис 5 График дробной функции = Построить графики показательных и логарифмических функций: 3 = a, если a =,, e e =, 78 ) 3 = log a, если a = 0,,, e 33 = log + ) 34 = lg 35 = log O Рис 6 Парабола верхняя ветвь) = O Рис 7 Кубическая парабола = 3

3 0 Последовательность Предел последовательности 34 Второй замечательный предел 7 Возьмем произвольное число ε > 0 Неравенство < ε будет выполнено, если / + ) < ε, т е при > /ε В качестве N возьмем какое-нибудь натуральное число, удовлетворяющее условию N > /ε, например, положим N равным целой части от /ε Тогда для всех N выполнены неравенства = + N + < ε Это и означает, что есть предел последовательности {/ + )}, т е + = Пример Доказать исходя из определения, что = 0 Предварительно покажем, что для всех N справедливо > Для этого воспользуемся формулой бинома Ньютона где C k = a + b) = a + a b + + C k a k b k + + ab + b, ) и, по соглашению,! ) k + ) = для k =,,,, k)!k! k k ) C 0 = C = Точнее, нам понадобится следствие этой формулы неравенство типа Бернулли + b) > + b b > 0) ) Запишем = + ), тогда, в силу неравенства Бернулли, > + >, =,, Следовательно, для всех N выполнено 0 < Пусть ε > 0, выберем натуральное N такое, что /N < ε Например, положим N равным целой части от Тогда для всех N справедливо ε Значит, = 0 0 < N < ε и Пример 0 Найти + ) + Здесь +) = + и + Пример Найти 0 Здесь si 0 + = 0 Поступим следующим образом: + ) = e l+) + = e 0 = + si ) = и 0 0 Пример Найти Имеем: Поэтому ) ) ) = Следовательно, si = = + + = + + = = 0 3 ) = + ) )si ) 89 + ) + +) 9 +3) 0 + si ) 94 0 cos) Пример 3 Доказать, что 0 l+) = Имеем: 93 0 cos) ; l + ) = [l + ) ] = l[ + ) ] = l e = 0 0 0

4 4 Последовательность Предел последовательности 33 Первый замечательный предел 3 Пользуясь указанным свойством, найти: ) / , Неопределенности, содержащие разность корней, раскрываются с помощью формул сокращенного умножения Пример 5 Найти + ) Преобразуем формулу общего члена: + = + ) + + ) + + Поскольку = 0, то + ) = = + + = = ) Пример 6 Пусть a > Доказать, что a = Обозначим a = α, тогда α > 0 и a = + α ) + α > α по неравенству Бернулли )), т е 0 < α < a/ для всех Значит, α = 0, и a = + α) = Пользуясь указанным свойством, найти, если равно: , , , ) ) Другим приемом нахождения предела от иррационального выражения является перевод иррациональности из числителя в знаменатель или, наоборот, из знаменателя в числитель Указанные операции обычно проделываются с помощью формул сокращенного умножения Пример 4 Вычислить a a = a a a a a a, где a > 0 a a a) + a) = a = + a a ) + a a+ 3 a ) ) + 33 Первый замечательный предел ) + a) ) При решении задач с тригонометрическими функциями во многих случаях используется формула si = 3) 0 нулю: Пример 5 Найти 0 si5 Перейдем к новой переменной t = 5, тогда t тоже будет стремиться к si 5 si t = 0 t 0 t 5 si t = 5 = 5 = 5 t 0 t

5 3 Определение предела функции 9 3 Предел функции 3 Определение предела функции Предел функции при ± Рассмотрим функцию = f), определенную на интервале [,+ ) Число a называется пределом функции f) при, стремящемся к +, если для любого числа ε > 0 найдется такое ε, что при всех > ε выполняется неравенство f) a < ε Обозначения предела функции f) при, стремящемся к + : f) = a; + f) a при + Аналогично определяется предел функции f) при : f) = a ε > 0 ε < ε : f) a < ε Замечание Чтобы найти предел функции f) при, следует сделать замену переменной: t = f) = f t) t + Бесконечные пределы Если при + функция f) неограниченно растет, то пишут f) = + и функцию f) называют бесконечно большой + при + 4 Пример 9 Найти + Числитель и знаменатель при + являются бесконечно большими функциями Имеем неопределенность вида Разделим числитель и знаменатель на и к полученной функции применим теорему о пределе частного: + 4 = + 4/ / / = + 4/ ) / + / ) = Пример 0 Найти Имеем неопределенность Разделим числитель и знаменатель на : 4 + = 4 + Теперь предел знаменателя равен, а числитель есть бесконечно большая функция, поэтому = + Найти пределы функций: ) Найти: а) f); б) f); если: + +3) 3 3 ) f) = arctg 7 f) = arcctg 8 f) = e 9 f) = + 0 f) = th f) = l+e ) f) = Односторонние пределы В отличие от последовательностей функции могут иметь сложное поведение и при конечных значениях переменной Рассмотрим функцию f), определенную в некоторой окрестности точки 0; в самой точке 0 функция может быть и не определена Число a называется пределом слева функции f) при стремящемся к 0 или в точке 0) и обозначается f) = a, 0 0 если для любого числа ε > 0 найдется такое δ > 0, что при всех, удовлетворяющих условию 0 δ < < 0, выполняется неравенство f) a < ε Аналогично определяется предел справа стремится к 0, оставаясь больше 0) f) = a ε > 0 δ > 0 0, 0 + δ) : f) a < ε 0 +0 Когда 0 = 0, то вместо 0 0 пишут 0, вместо пишут +0

6 3 Предел функции 3 Монотонные последовательности Число e 5 4 Пример Найти Так как числитель 4 и знаменатель дроби имеют предел в точке =, равный нулю имеет место неопределенность вида 0 ), то теорема 0 о пределе частного непосредственно неприменима Для раскрытия неопределенности преобразуем данную функцию Разделив числитель и знаменатель на, получим при равенство 4 = + + Так как + ) 0, то по теореме о пределе частного находим = + + ) + = + ) = a+)+a a 3 a ) 4 3 a+) 3 a Теорема о пределе сложной функции Если существуют ϕ) = a и f) = b, 0 a то сложная функция fϕ)) также имеет предел в точке 0 и справедливо равенство fϕ)) = f) = b 0 a Такое вычисление называют заменой переменной В частности, выражения, содержащие иррациональности, приводятся к рациональному виду во многих случаях путем введения новой переменной Пример 3 Найти Полагая + = 6, получаем: = + = + + = 3 + ) Предложение = Пользуясь указанным свойством, найти, если равно: Пример 7 Доказать, что = 0! Если k, то /k, поэтому для всех N справедливо 0 <! = 3 = 4 4 Так как = 0, то и = 0! Найти, если равно: ) 56 +)! 57 0,3)! ! !) 60 +! ++)! 6 / ++)! 3 +!) 6 65 log Предложение 3 Пусть a >, тогда a = 0 Найти, если равно: lg + log 5 +) lg 3,5 lg log 4 +) 64 log +3),3 67 lg 0 lg 3 Монотонные последовательности Число e Последовательность, N, называют возрастающей неубывающей), если для любого выполнено неравенство < + соответственно, +) Аналогично, последовательность, N, называют убывающей невозрастающей), если для любого выполнено > + соответственно, +) Невозрастающие и неубывающие последовательности называют монотонными

7 6 3 Предел функции Определение предела Основные свойства и, кроме того, g) = 0, 0 то делают следующее преобразование: f)) g) = e g)l f) = e g) l f)) И вопрос сводится к нахождению предела 0 g)l f)) 3 В остальных случаях вопрос о нахождении предела решается непосредственно Пример 9 Найти + Найдем предел для выражения в скобках: + = + = Следовательно, искомый предел представляет собой неопределенность вида Преобразуем выражение под знаком предела: Т к + = + = + = + есть бесконечно малая функция при, то + и, следовательно, Окончательно получаем = e = e = e + + = e Доказать следующие равенства: + ) = = 3 + = 3 + = = 9 0,9) = 0 9 Является ли число a пределом последовательности { }, если существует такое натуральное число N, что для любого ε > 0 и для любого N справедливо неравенство a < ε? 93 Привести пример такой последовательности { }, что > для всех N, а = Ограниченные последовательности Говорят, что последовательность, N, ограничена снизу, если существует число C такое, что для всех N верно неравенство C Последовательность, N, ограничена сверху, если существует число C такое, что для всех N верно неравенство C И, наконец, последовательность, N, ограничена, если существуют числа C и C такие, что для всех N выполнено C C Свойства сходящихся последовательностей: Если последовательность имеет предел, то она ограничена Теорема о трех последовательностях Если для всех N или начиная с некоторого номера 0) выполнено то z и = z = a, = a 3 Если = 0, а последовательность {} ограничена, то = 0 Произведение бесконечно малой последовательности на ограниченную есть бесконечно малая последовательность)

8 7 Список литературы [] Бараненков ГС, Демидович БП, Ефименко ВА, Коган СМ, Лунц ГЛ, Поршнева ЕФ, Сычева ЕП, Фролов СВ, Шостак РЯ, Янпольский АР Задачи и упражнения по математическому анализу для ВТУЗов// Под ред БП Демидовича -е изд, испр М: Физматлит, 96 [] Демидович БП Сборник задач и упражнений по математическому анализу: Учеб пособие // М: ООО Издательство Астрель ; ООО Издательство АСТ, 00 [3] Кудрявцев ЛД, Кутасов АД, Чехлов ВИ, Шабунин МИ Сборник задач по математическому анализу Том Предел Непрерывность Дифференцируемость: Учеб пособие // Под ред ЛД Кудрявцева -е изд, перераб М: Физматлит, 003 Используя свойства модуля, построить графики функций: 36 = 37 = + ) 38 = 39 = si + si 40 = si si 4 = lg { 3 при, 4 = при > 43 sig = при > 0, 0 при = 0, при < 0 3 Обратная функция Пусть функция = f) такова, что для любых, Df), где, выполнено f ) f ) это условие выполняется для строго монотонных функций) Тогда для каждого Ef) найдется только одно значение Df) такое, что f) = Функцию, определенную на Ef) и сопоставляющую каждому значению Ef) такое Df), что f) =, называют обратной для функции f и обозначают f, т е = f ), Ef) Замечание Часто обозначение f ) путают с f)), в то время как последняя запись означает f) График обратной функции = f ) рассматриваемый относительно переменной ) симметричен графику функции = f), относительно прямой = Иллюстрацией к этому правилу служит рис = = + O Рис Функция = и обратная к ней = + В одной системе координат построить график функции f) и обратной к ней f ): 44 f) = si, [ π, π ] 45 f) = cos, [0, π]

9 Приложение II: основные пределы Пределы последовательностей: = 0 k > 0); k q k = 0 q < ); = ; log a q = 0 q < ); a = a > 0); a! = 0; = 0 a > ); + ) = e, где e =, Первый замечательный предел и его следствия: si = ; arcsi 0 tg = ; arctg = ; 0 = Второй замечательный предел и его следствия: + ) = e; + 0 ) = e; e a 0 = ; 0 = la; l+) log = ; a +) 0 = l a Содержание Графическое изображение функции 4 Последовательность Предел последовательности 9 Определение предела Основные свойства 9 Арифметические свойства сходящихся последовательностей 3 Монотонные последовательности Число e 5 4 Разные задачи 7 3 Предел функции 8 3 Определение предела функции 8 3 Свойства пределов 0 33 Первый замечательный предел 3 34 Второй замечательный предел 5 35 Задачи для повторения 8 ОТВЕТЫ 9 Список литературы 30 Приложение I: графики некоторых функций 3 Приложение II: основные пределы 34

СБОРНИК ЗАДАЧ ДЛЯ САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ ПО ТЕМЕ ПРЕДЕЛ ФУНКЦИИ

СБОРНИК ЗАДАЧ ДЛЯ САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ ПО ТЕМЕ ПРЕДЕЛ ФУНКЦИИ Министерство образования и науки Российской Федерации Ярославский государственный университет им ПГ Демидова Кафедра дискретного анализа СБОРНИК ЗАДАЧ ДЛЯ САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ ПО ТЕМЕ ПРЕДЕЛ ФУНКЦИИ

Подробнее

МАТЕМАТИЧЕСКИЙ АНАЛИЗ Часть 1. Предел числовой последовательности. Предел функции. Непрерывность функции.

МАТЕМАТИЧЕСКИЙ АНАЛИЗ Часть 1. Предел числовой последовательности. Предел функции. Непрерывность функции. МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «МАМИ» Кафедра «Высшая математика» Бодунов МА, Бородина СИ, Показеев ВВ, Теуш БЛ, Ткаченко ОИ МАТЕМАТИЧЕСКИЙ

Подробнее

Элементы высшей математики

Элементы высшей математики Кафедра математики и информатики Элементы высшей математики Учебно-методический комплекс для студентов СПО, обучающихся с применением дистанционных технологий Модуль Теория пределов Составитель: доцент

Подробнее

КАЗАНСКИЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ ИНСТИТУТ ФИЗИКИ. Т. Ю. Альпин, А. И. Егоров, П. Е. Кашаргин, С. В. Сушков

КАЗАНСКИЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ ИНСТИТУТ ФИЗИКИ. Т. Ю. Альпин, А. И. Егоров, П. Е. Кашаргин, С. В. Сушков КАЗАНСКИЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ ИНСТИТУТ ФИЗИКИ Т Ю Альпин, А И Егоров, П Е Кашаргин, С В Сушков ПРАКТИЧЕСКИЕ ЗАНЯТИЯ ПО МАТЕМАТИЧЕСКОМУ АНАЛИЗУ Часть I: Комплексные числа Предел функции Казань 013 Печатается

Подробнее

ПРЕДЕЛЫ ПОСЛЕДОВАТЕЛЬНОСТЕЙ И ФУНКЦИЙ НЕПРЕРЫВНОГО АРГУМЕНТА

ПРЕДЕЛЫ ПОСЛЕДОВАТЕЛЬНОСТЕЙ И ФУНКЦИЙ НЕПРЕРЫВНОГО АРГУМЕНТА ГОУВПО КЫРГЫЗСКО-РОССИЙСКИЙ СЛАВЯНСКИЙ УНИВЕРСИТЕТ КАФЕДРА ВЫСШЕЙ МАТЕМАТИКИ Л.Г. Лелевкина, И.В. Гончарова, Н.М. Комарцов ПРЕДЕЛЫ ПОСЛЕДОВАТЕЛЬНОСТЕЙ И ФУНКЦИЙ НЕПРЕРЫВНОГО АРГУМЕНТА Учебно-методическое

Подробнее

МАТЕМАТИЧЕСКИЙ АНАЛИЗ 1. МЕТОД МАТЕМАТИЧЕСКОЙ ИНДУКЦИИ. ТОЧНЫЕ ГРАНИЦЫ ЧИСЛОВЫХ МНОЖЕСТВ

МАТЕМАТИЧЕСКИЙ АНАЛИЗ 1. МЕТОД МАТЕМАТИЧЕСКОЙ ИНДУКЦИИ. ТОЧНЫЕ ГРАНИЦЫ ЧИСЛОВЫХ МНОЖЕСТВ ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «ВОРОНЕЖСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ» Утверждено научно-методическим советом математического

Подробнее

Московский государственный технический университет. имени Н.Э.Баумана. Ф.Х. Ахметова, С.Н. Ефремова, Т.А. Ласковая ВВЕДЕНИЕ В АНАЛИЗ. ТЕОРИЯ ПРЕДЕЛОВ.

Московский государственный технический университет. имени Н.Э.Баумана. Ф.Х. Ахметова, С.Н. Ефремова, Т.А. Ласковая ВВЕДЕНИЕ В АНАЛИЗ. ТЕОРИЯ ПРЕДЕЛОВ. Московский государственный технический университет имени Н.Э.Баумана Ф.Х. Ахметова, С.Н. Ефремова, Т.А. Ласковая ВВЕДЕНИЕ В АНАЛИЗ. ТЕОРИЯ ПРЕДЕЛОВ. Часть Методические указания к выполнению домашнего задания

Подробнее

Равномерная непрерывность функций одной переменной.

Равномерная непрерывность функций одной переменной. МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ им. М.В. Ломоносова Ф И З И Ч Е С К И Й Ф А К У Л Ь Т Е Т КАФЕДРА МАТЕМАТИКИ В.Ф. Бутузов, Н.Т. Левашова, Н.Е. Шапкина Равномерная непрерывность функций одной переменной.

Подробнее

ЧИСЛОВЫЕ И ФУНКЦИОНАЛЬНЫЕ РЯДЫ. РЯДЫ ФУРЬЕ.

ЧИСЛОВЫЕ И ФУНКЦИОНАЛЬНЫЕ РЯДЫ. РЯДЫ ФУРЬЕ. Министерство образования Российской Федерации Ульяновский государственный технический университет ЧИСЛОВЫЕ И ФУНКЦИОНАЛЬНЫЕ РЯДЫ РЯДЫ ФУРЬЕ Ульяновск УДК 57(76) ББК 9 я 7 Ч-67 Рецензент кандфиз-матнаук

Подробнее

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ПУТЕЙ СООБЩЕНИЯ (МИИТ) МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ПУТЕЙ СООБЩЕНИЯ (МИИТ)

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ПУТЕЙ СООБЩЕНИЯ (МИИТ) МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ПУТЕЙ СООБЩЕНИЯ (МИИТ) МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ПУТЕЙ СООБЩЕНИЯ МИИТ) МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ПУТЕЙ СООБЩЕНИЯ МИИТ) Кафедра "Прикладная математика-1" Ю.С.Семёнов Кафедра "Прикладная математика-1"

Подробнее

b) lim a) lim (4x + 3) = 1; d) lim c) lim x 2 1 5(x 2 + 1) = 114 x 2 (x2 4x + 8) = 4; x 2 x 2 +1 = 3 5 ; x 1 2(x+1) = 1 4. x 3

b) lim a) lim (4x + 3) = 1; d) lim c) lim x 2 1 5(x 2 + 1) = 114 x 2 (x2 4x + 8) = 4; x 2 x 2 +1 = 3 5 ; x 1 2(x+1) = 1 4. x 3 Занятие Вычисление пределов - : определения, теоремы о пределах, некоторые частные приемы вычисления пределов. Определение предела. Пусть f() функция, определенная в проколотой окрестности точки 0. Число

Подробнее

Методические указания

Методические указания Московский государственный технический университет имени Н. Э. Баумана Методические указания В.Я. Томашпольский, М.Н. Шевченко, И.О. Янов ЧИСЛОВЫЕ РЯДЫ Издательство МГТУ им. Н. Э. Баумана Московский государственный

Подробнее

Кафедра экономической теории и моделирования экономических процессов ПРЕДЕЛЫ

Кафедра экономической теории и моделирования экономических процессов ПРЕДЕЛЫ МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Курганский государственный университет» Кафедра

Подробнее

Тригонометрические ряды Фурье

Тригонометрические ряды Фурье Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Сибирский государственный индустриальный университет»

Подробнее

Министерство образования и науки Российской Федерации. РОССИЙСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ НЕФТИ И ГАЗА имени И.М.ГУБКИНА

Министерство образования и науки Российской Федерации. РОССИЙСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ НЕФТИ И ГАЗА имени И.М.ГУБКИНА Министерство образования и науки Российской Федерации РОССИЙСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ НЕФТИ И ГАЗА имени И.М.ГУБКИНА Г.Г. Литова, Д.Ю. Ханукаева ПРЕДЕЛЫ Пособие для студентов, обучающихся по специальности

Подробнее

МИНИСТЕРСТВО НАУКИ И ОБРАЗОВАНИЯ РФ ГОУ ВПО «НОВОСИБИРСКИЙ ГОСУДАРСТВЕННЫЙ ПЕДАГОГИЧЕСКИЙ УНИВЕРСИТЕТ» О.В. Скворцова ВЫСШАЯ МАТЕМАТИКА

МИНИСТЕРСТВО НАУКИ И ОБРАЗОВАНИЯ РФ ГОУ ВПО «НОВОСИБИРСКИЙ ГОСУДАРСТВЕННЫЙ ПЕДАГОГИЧЕСКИЙ УНИВЕРСИТЕТ» О.В. Скворцова ВЫСШАЯ МАТЕМАТИКА МИНИСТЕРСТВО НАУКИ И ОБРАЗОВАНИЯ РФ ГОУ ВПО «НОВОСИБИРСКИЙ ГОСУДАРСТВЕННЫЙ ПЕДАГОГИЧЕСКИЙ УНИВЕРСИТЕТ» О.В. Скворцова ВЫСШАЯ МАТЕМАТИКА Предел. Непрерывность. Производная. Интеграл Утверждено Редакционно-издательским

Подробнее

{ z } { 1 2 3, 4,..., ( 1) n = ; ,, n,...}

{ z } { 1 2 3, 4,..., ( 1) n = ; ,, n,...} Тема Теория пределов Как мы понимаем слово «предел»? В повседневной жизни мы часто употребляем термин «предел», не углубляясь в его сущность В нашем представлении чаще всего предел отождествляется с понятием

Подробнее

С.А. Лавренченко. Доказательство: Повести самостоятельно. Указание: Применить произведения, взяв

С.А. Лавренченко. Доказательство: Повести самостоятельно. Указание: Применить произведения, взяв Лекция 4 1 СА Лавренченко Вычисление пределов 1 Правила вычисления пределов Пусть действительная константа и целое положительное число При условии, что существуют оба предела и, имеют место следующие десять

Подробнее

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ Московский государственный университет приборостроения и информатики кафедра высшей

Подробнее

Лекция 1 Вещественные числа.

Лекция 1 Вещественные числа. Лекция 1 Вещественные числа. 1. Рациональные числа. Простейшими числами являются целые положительные числа 1, 2,..., используемые при счете. Они называются натуральными числами, и люди их знали так много

Подробнее

Математический анализ

Математический анализ Кафедра математики и информатики Математический анализ Учебно-методический комплекс для студентов ВПО, обучающихся с применением дистанционных технологий Модуль 4 Приложения производной Составитель: доцент

Подробнее

Òåîðåìû î ïðåäåëàõ. 1 Îñíîâíûå òåîðåìû î ïðåäåëàõ. Âîë åíêî Þ.Ì. Ñîäåðæàíèå ëåêöèè. lim. [f (x) + g (x)] = lim. f (x) + lim

Òåîðåìû î ïðåäåëàõ. 1 Îñíîâíûå òåîðåìû î ïðåäåëàõ. Âîë åíêî Þ.Ì. Ñîäåðæàíèå ëåêöèè. lim. [f (x) + g (x)] = lim. f (x) + lim Òåîðåìû î ïðåäåëàõ Âîë åíêî Þ.Ì. Ñîäåðæàíèå ëåêöèè Основные теоремы о пределах. Предел числовой последовательности. Первый замечательный предел. Второй замечательный предел. Экспонента. Натуральный логарифм.

Подробнее

Пензенский государственный педагогический университет имени В.Г.Белинского. О.Г.Никитина РЯДЫ. Учебное пособие

Пензенский государственный педагогический университет имени В.Г.Белинского. О.Г.Никитина РЯДЫ. Учебное пособие Пензенский государственный педагогический университет имени ВГБелинского РЯДЫ ОГНикитина Учебное пособие Пенза Печатается по решению редакционно-издательского совета Пензенского государственного педагогического

Подробнее

Методические рекомендации по выполнению контрольной работы по дисциплине «Элементы высшей математики».

Методические рекомендации по выполнению контрольной работы по дисциплине «Элементы высшей математики». МИНИСТЕРСТВО ОБЩЕГО И ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ РОСТОВСКОЙ ОБЛАСТИ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ПРОФЕССИОНАЛЬНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ РОСТОВСКОЙ ОБЛАСТИ «ДОНСКОЙ БАНКОВСКИЙ КОЛЛЕДЖ» Методические

Подробнее

ПРАКТИЧЕСКИЕ ЗАНЯТИЯ ПО МАТЕМАТИЧЕСКОМУ АНАЛИЗУ (1 СЕМЕСТР)

ПРАКТИЧЕСКИЕ ЗАНЯТИЯ ПО МАТЕМАТИЧЕСКОМУ АНАЛИЗУ (1 СЕМЕСТР) ПРАКТИЧЕСКИЕ ЗАНЯТИЯ ПО МАТЕМАТИЧЕСКОМУ АНАЛИЗУ ( СЕМЕСТР) А. А. Пожарский Занятие. Принцип математической индукции. Задачи по []: 0. Задачи по [2]: 27. Занятие 2. Основные понятия комбинаторики: факториал,

Подробнее

ОПРЕДЕЛЕННЫЙ ИНТЕГРАЛ МЕТОДИЧЕСКИЕ УКАЗАНИЯ И КОНТРОЛЬНЫЕ ЗАДАНИЯ

ОПРЕДЕЛЕННЫЙ ИНТЕГРАЛ МЕТОДИЧЕСКИЕ УКАЗАНИЯ И КОНТРОЛЬНЫЕ ЗАДАНИЯ Министерство образования и науки Украины Севастопольский национальный технический университет ОПРЕДЕЛЕННЫЙ ИНТЕГРАЛ МЕТОДИЧЕСКИЕ УКАЗАНИЯ И КОНТРОЛЬНЫЕ ЗАДАНИЯ для студентов всех специальностей очной формы

Подробнее

ВЫСШАЯ МАТЕМАТИКА Второй семестр. Курс лекций для студентов экономических специальностей вузов

ВЫСШАЯ МАТЕМАТИКА Второй семестр. Курс лекций для студентов экономических специальностей вузов МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ УО «Белорусский государственный экономический университет» М.П. Дымков ВЫСШАЯ МАТЕМАТИКА Второй семестр Курс лекций для студентов экономических специальностей

Подробнее

Основы алгебры. Числовые множества. Глава 1

Основы алгебры. Числовые множества. Глава 1 Глава 1 Основы алгебры Числовые множества Рассмотрим основные числовые множества. Множество натуральных чисел N включает числа вида 1, 2, 3 и т. д., которые используются для счета предметов. Множество

Подробнее

РАЦИОНАЛЬНЫЕ МЕТОДЫ РЕШЕНИЯ ЗАДАЧ ПО МАТЕМАТИЧЕСКОМУ АНАЛИЗУ

РАЦИОНАЛЬНЫЕ МЕТОДЫ РЕШЕНИЯ ЗАДАЧ ПО МАТЕМАТИЧЕСКОМУ АНАЛИЗУ Министерство образования Российской Федерации Московский физико-технический институт Кафедра высшей математики РАЦИОНАЛЬНЫЕ МЕТОДЫ РЕШЕНИЯ ЗАДАЧ ПО МАТЕМАТИЧЕСКОМУ АНАЛИЗУ Методические указания и оптимальные

Подробнее

Задачи по высшей математике для биологов

Задачи по высшей математике для биологов МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ имени М.В. ЛОМОНОСОВА МЕХАНИКО МАТЕМАТИЧЕСКИЙ ФАКУЛЬТЕТ БИОЛОГИЧЕСКИЙ ФАКУЛЬТЕТ Бобров А.Н. Радославова Т.В. Задачи по высшей математике для биологов МОСКВА 03 УДК

Подробнее

Интегрируемость функции (по Риману) и определенный интеграл

Интегрируемость функции (по Риману) и определенный интеграл Интегрируемость функции (по Риману) и определенный интеграл Примеры решения задач 1. Постоянная функция f(x) = C интегрируема на [a, b], так как для любых разбиений и любого выбора точек ξ i интегральные

Подробнее

24 4. Интегрирование некоторых тригонометрических функций Универсальная тригонометрическая подстановка

24 4. Интегрирование некоторых тригонометрических функций Универсальная тригонометрическая подстановка СОДЕРЖАНИЕ Глава Неопределенный интеграл Первообразная и неопределенный интеграл Понятие первообразной функции и неопределённого интеграла Свойства неопределённого интеграла Таблица основных неопределённых

Подробнее

ВВЕДЕНИЕ В МАТЕМАТИКУ

ВВЕДЕНИЕ В МАТЕМАТИКУ Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Тверской государственный университет» А А Г О Л У Б Е В, Т А С П А С С К А Я ВВЕДЕНИЕ В МАТЕМАТИКУ

Подробнее

x 2 10x > x 2 10x = x(x 10) > x2 x x 2 /2 = 2 x. x 2 10x < x+ x 2 10x = 0. x 0. > 0k N : 0 < x k < и f(x k ) A = A > 0,

x 2 10x > x 2 10x = x(x 10) > x2 x x 2 /2 = 2 x. x 2 10x < x+ x 2 10x = 0. x 0. > 0k N : 0 < x k < и f(x k ) A = A > 0, Пределы Предел функции Определение предела Пусть a точка числовой прямой, a b c) Пусть функция f) опре- делена на множестве E : { b c)\{a}} Число a называется пределом функции f) при, стремящемся к a обо-

Подробнее

Глава 2. Дифференциальное и интегральное исчисление функции одной переменной 1. Основные понятия

Глава 2. Дифференциальное и интегральное исчисление функции одной переменной 1. Основные понятия 35 Глава 2 Дифференциальное и интегральное исчисление функции одной переменной 1 Основные понятия Пусть D некоторое множество чисел Если задан закон, по которому каждому числу из множества D ставится в

Подробнее

Лекции по математическому анализу

Лекции по математическому анализу В.Ф. Бутузов Лекции по математическому анализу Часть I Москва 2012 Б у т у з о в В. Ф. Лекции по математическому анализу. Часть I. Учебное пособие содержит первую часть курса лекций по математическому

Подробнее

МАТЕМАТИКА. Квадратные корни

МАТЕМАТИКА. Квадратные корни МАТЕМАТИКА Квадратные корни Задание для 8-х классов (006-00 учебный год) 4 Введение Дорогие ребята! Вы получили очередное задание по математике. В этом задании мы знакомим вас с важным математическим понятием

Подробнее

М.И. Башмаков Математика

М.И. Башмаков Математика СРЕДНЕЕ ПРОФЕССИОНАЛЬНОЕ ОБРАЗОВАНИЕ М.И. Башмаков Математика Рекомендовано ФГУ «ФИРО» в качестве учебника для использования в учебном процессе образовательных учреждений среднего профессионального образования,

Подробнее

1. РЯДЫ ФУРЬЕ РЕШЕНИЕ ТИПОВЫХ ЗАДАЧ СПИСОК ЛИТЕРАТУРЫ ОГЛАВЛЕНИЕ

1. РЯДЫ ФУРЬЕ РЕШЕНИЕ ТИПОВЫХ ЗАДАЧ СПИСОК ЛИТЕРАТУРЫ ОГЛАВЛЕНИЕ ОГЛАВЛЕНИЕ РЯДЫ ФУРЬЕ 4 Понятие о периодической функции 4 Тригонометрический полином 6 3 Ортогональные системы функций 4 Тригонометрический ряд Фурье 3 5 Ряд Фурье для четных и нечетных функций 6 6 Разложение

Подробнее

Министерство образования и науки Российской Федерации. Кафедра высшей математики

Министерство образования и науки Российской Федерации. Кафедра высшей математики Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Сибирский государственный индустриальный университет»

Подробнее

Московский Государственный Университет Геодезии и Картографии. Кафедра высшей математики

Московский Государственный Университет Геодезии и Картографии. Кафедра высшей математики Московский Государственный Университет Геодезии и Картографии Кафедра высшей математики Высшая математика ( семестр Разделы Функции. Пределы. Дифференцирование. Интегрирование. Основные формулы по темам

Подробнее

Т. В. Родина, Е. С. Трифанова ЗАДАЧИ И УПРАЖНЕНИЯ ПО МАТЕМАТИЧЕСКОМУ АНАЛИЗУ I

Т. В. Родина, Е. С. Трифанова ЗАДАЧИ И УПРАЖНЕНИЯ ПО МАТЕМАТИЧЕСКОМУ АНАЛИЗУ I Т В Родина, Е С Трифанова ЗАДАЧИ И УПРАЖНЕНИЯ ПО МАТЕМАТИЧЕСКОМУ АНАЛИЗУ I для напр «Прикладная математика и информатика» Учебное пособие под редакцией проф И Ю Попова Санкт Петербург 0 МИНИСТЕРСТВО ОБРАЗОВАНИЯ

Подробнее

Лекция 14. Неопределенности и правило Лопиталя

Лекция 14. Неопределенности и правило Лопиталя СА Лавренченко 1 wwwlawrencenkoru Лекция 14 Неопределенности и правило Лопиталя Правило Лопитáля применяется при вычислении пределов для раскрытия неопределенностей типа или Раскрытие неопределенности

Подробнее

Теоретический материал.

Теоретический материал. 0.5 Логарифмические уравнения и неравенства. Используемая литература:. Алгебра и начала анализа 0- под редакцией А.Н.Колмогорова. Самостоятельные и контрольные работы по алгебре 0- под редакцией Е.П.Ершова

Подробнее

Список задач. для итогового контроля знаний по математическому анализу Группа НМ-101 Семестр 2. x x dx;

Список задач. для итогового контроля знаний по математическому анализу Группа НМ-101 Семестр 2. x x dx; Список задач для итогового контроля знаний по математическому анализу Группа НМ-101 Семестр 2 I. Неопределённый интеграл. Вычислить интеграл: 1. 1 sin 2x (0 x π); 2. 3. x 2 + 1 x 4 + 1 ; 3 sin 2 x 8 sin

Подробнее

Правило Лопиталя. Методические указания для практических занятий. Министерство образования и науки Российской Федерации

Правило Лопиталя. Методические указания для практических занятий. Министерство образования и науки Российской Федерации Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Сибирский государственный индустриальный университет»

Подробнее

Типовые задачи c решениями.

Типовые задачи c решениями. Типовые задачи c решениями. Формальное суммирование рядов. Формула рекурсии k a k a + a k k Формула умножения λ a k λa k Формула сложения k k k a k + b k a k + k b k k Пример Геометрическая прогрессия.

Подробнее

Т.Л. Сурин Ж.В. Иванова С.В. Шерегов Методические рекомендации и задания к контрольным работам 1 и 2 по математическому анализу

Т.Л. Сурин Ж.В. Иванова С.В. Шерегов Методические рекомендации и задания к контрольным работам 1 и 2 по математическому анализу Т.Л. Сурин Ж.В. Иванова С.В. Шерегов Методические рекомендации и задания к контрольным работам и по математическому анализу (для студентов I курса математического факультета заочного отделения ) Витебск

Подробнее

МАТЕМАТИЧЕСКИЙ АНАЛИЗ Основные вопросы для подготовки к коллоквиуму 30 октября, семестр 1, часть I

МАТЕМАТИЧЕСКИЙ АНАЛИЗ Основные вопросы для подготовки к коллоквиуму 30 октября, семестр 1, часть I МАТЕМАТИЧЕСКИЙ АНАЛИЗ Основные вопросы для подготовки к коллоквиуму 30 октября, семестр, часть I Аксиоматический подход к описанию множества действительных чисел.. Сформулировать группу аксиом сложения.

Подробнее

ПРОГРАММА ДИСЦИПЛИНЫ

ПРОГРАММА ДИСЦИПЛИНЫ МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «САХАЛИНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ» ПРОГРАММА

Подробнее

К ОПРЕДЕЛЕНИЮ ЧИСЛА «E» В КУРСЕ МАТЕМАТИЧЕСКОГО АНАЛИЗА А. М. Фрумкин

К ОПРЕДЕЛЕНИЮ ЧИСЛА «E» В КУРСЕ МАТЕМАТИЧЕСКОГО АНАЛИЗА А. М. Фрумкин УДК: 5171 К ОПРЕДЕЛЕНИЮ ЧИСЛА «E» В КУРСЕ МАТЕМАТИЧЕСКОГО АНАЛИЗА 2010 А М Фрумкин канд тех наук, доцент каф электротехники, электроники и автоматики, e-mail: frumkinam@mailru Курский государственный технический

Подробнее

Тема 37 «Пределы функций»

Тема 37 «Пределы функций» Тема 37 «Пределы функций» «Математический анализ» - серьезный раздел высшей математики. «Анализируют» здесь довольно тонкие моменты: как ведет себя функция не только в целом, в своей области определения

Подробнее

РАБОЧАЯ ПРОГРАММА ПО МАТЕМАТИКЕ Программа дополнительного образования «Программа подготовки в ВУЗ»

РАБОЧАЯ ПРОГРАММА ПО МАТЕМАТИКЕ Программа дополнительного образования «Программа подготовки в ВУЗ» Автономная некоммерческая организация дополнительного образования Учебный Центр при МГТУ им. Н. Э. Баумана «Ориентир» «УТВЕРЖДАЮ» Директор АНО ДО Учебный Центр при МГТУ им. Н.Э.Баумана «Ориентир» ПАНФИЛОВА

Подробнее

ВВЕДЕНИЕ В МАТЕМАТИЧЕСКИЙ АНАЛИЗ

ВВЕДЕНИЕ В МАТЕМАТИЧЕСКИЙ АНАЛИЗ МОСКОВСКИЙ АВТОМОБИЛЬНО-ДОРОЖНЫЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ (МАДИ) АА ЗЛЕНКО ВВЕДЕНИЕ В МАТЕМАТИЧЕСКИЙ АНАЛИЗ МЕТОДИЧЕСКИЕ УКАЗАНИЯ К САМОСТОЯТЕЛЬНОЙ РАБОТЕ ПО МАТЕМАТИКЕ МОСКОВСКИЙ АВТОМОБИЛЬНО-ДОРОЖНЫЙ

Подробнее

РАЦИОНАЛЬНЫЕ ЧИСЛА Обыкновенные дроби. m или ( m ) < n. или ( m) n. Всякую неправильную дробь можно представить в виде

РАЦИОНАЛЬНЫЕ ЧИСЛА Обыкновенные дроби. m или ( m ) < n. или ( m) n. Всякую неправильную дробь можно представить в виде РАЦИОНАЛЬНЫЕ ЧИСЛА Обыкновенные дроби Определение Дроби вида, называются обыкновенными дробями Обыкновенные дроби, правильные и неправильные Определение Дробь, правильной, если < при, где Z, N Z, N Z,

Подробнее

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «САМАРСКИЙ ГОСУДАРСТВЕННЫЙ АЭРОКОСМИЧЕСКИЙ УНИВЕРСИТЕТ

Подробнее

7. Общие понятия. U n (x),n N, определены в области D. Выра-

7. Общие понятия. U n (x),n N, определены в области D. Выра- Глава Функциональные ряды 7 Общие понятия U (), N, определены в области D Выра- Определение 7 Пусть функции жение () U() U() U(), D U (5) называется функциональным рядом Каждому значению D соответствует

Подробнее

Неопределенный и определенный интегралы

Неопределенный и определенный интегралы ~ ~ Неопределенный и определенный интегралы Понятие первообразной и неопределѐнного интеграла. Определение: Функция F называется первообразной по отношению к функции f, если эти функции связаны следующим

Подробнее

Область определения функций нескольких переменных

Область определения функций нескольких переменных Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Сибирский государственный индустриальный университет»

Подробнее

МАТЕМАТИКА Часть II МАТЕМАТИЧЕСКИЙ АНАЛИЗ И ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ

МАТЕМАТИКА Часть II МАТЕМАТИЧЕСКИЙ АНАЛИЗ И ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ Российский государственный педагогический университет им АИ Герцена МАТЕМАТИКА Часть II МАТЕМАТИЧЕСКИЙ АНАЛИЗ И ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ Учебное пособие Под редакцией доктора педагогических наук Хамова

Подробнее

ГОСУДАРСТВЕННОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «БЕЛОРУССКО-РОССИЙСКИЙ УНИВЕРСИТЕТ» Кафедра «Высшая математика» ВЫСШАЯ МАТЕМАТИКА

ГОСУДАРСТВЕННОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «БЕЛОРУССКО-РОССИЙСКИЙ УНИВЕРСИТЕТ» Кафедра «Высшая математика» ВЫСШАЯ МАТЕМАТИКА ГОСУДАРСТВЕННОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «БЕЛОРУССКО-РОССИЙСКИЙ УНИВЕРСИТЕТ» Кафедра «Высшая математика» ВЫСШАЯ МАТЕМАТИКА Методические указания и варианты заданий к контрольной

Подробнее

Планируемые результаты освоения алгебры в 7 классе Алгебраические выражения. Уравнения

Планируемые результаты освоения алгебры в 7 классе Алгебраические выражения. Уравнения Программа по алгебре для 7 класса общеобразовательного учреждения. Пояснительная записка Структура программы Программа включает три раздела: 1.Планируемые результаты усвоения алгебры в 7 классе 2.Содержание

Подробнее

Лекция 5. Лекция 6. Лекция 7. Лекция 8.

Лекция 5. Лекция 6. Лекция 7. Лекция 8. Очная форма обучения. Бакалавры. I курс, I семестр. Направление 220700- «Автоматизация технологических процессов и производств» Дисциплина - «Математика». Лекции Лекция 1. Векторные и скалярные величины.

Подробнее

Практикум по дифференциальному исчислению

Практикум по дифференциальному исчислению Федеральное агентство по образованию Томский государственный университет систем управления и радиоэлектроники Л.И. Магазинников А.Л. Магазинников Практикум по дифференциальному исчислению Учебное пособие

Подробнее

Сазонов Д.О. Методические упражнения с решениями и теоремы с доказательством для курса средней школы «Функции и пределы»

Сазонов Д.О.   Методические упражнения с решениями и теоремы с доказательством для курса средней школы «Функции и пределы» Кафедра информатики и методики преподавания математики ВГПУ Сазонов Д.О. E-mail: imul@vspu.ac.ru Методические упражнения с решениями и теоремы с доказательством для курса средней школы «Функции и пределы»..

Подробнее

ОПРЕДЕЛЁННЫЙ ИНТЕГРАЛ И ЕГО ПРИЛОЖЕНИЯ

ОПРЕДЕЛЁННЫЙ ИНТЕГРАЛ И ЕГО ПРИЛОЖЕНИЯ Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Новгородский государственный университет имени

Подробнее

ТЕОРИЯ ВЕРОЯТНОСТЕЙ: СИСТЕМЫ СЛУЧАЙНЫХ ВЕЛИЧИН И ФУНКЦИИ СЛУЧАЙНЫХ ВЕЛИЧИН

ТЕОРИЯ ВЕРОЯТНОСТЕЙ: СИСТЕМЫ СЛУЧАЙНЫХ ВЕЛИЧИН И ФУНКЦИИ СЛУЧАЙНЫХ ВЕЛИЧИН Т А Матвеева В Б Светличная С А Зотова ТЕОРИЯ ВЕРОЯТНОСТЕЙ: СИСТЕМЫ СЛУЧАЙНЫХ ВЕЛИЧИН И ФУНКЦИИ СЛУЧАЙНЫХ ВЕЛИЧИН ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ ВОЛГОГРАДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

Подробнее

Методические рекомендации по решению задач на тему «пределы функции» для студентов специальности «Производство летательных аппаратов»

Методические рекомендации по решению задач на тему «пределы функции» для студентов специальности «Производство летательных аппаратов» Государственное бюджетное профессиональное учреждение Московской области «Авиационный техникум имени В.А. Казакова» Рассмотрено на заседании предметной цикловой комиссии «Общеобразовательных, математических

Подробнее

РАБОЧАЯ ПРОГРАММА ПО АЛГЕБРЕ И НАЧАЛАМ АНАЛИЗА 10 класс (профильный уровень)

РАБОЧАЯ ПРОГРАММА ПО АЛГЕБРЕ И НАЧАЛАМ АНАЛИЗА 10 класс (профильный уровень) РАБОЧАЯ ПРОГРАММА ПО АЛГЕБРЕ И НАЧАЛАМ АНАЛИЗА 0 класс (профильный уровень) п/п РАЗДЕЛ / ТЕМА Колво час. Планируемые результаты Примечание ПОВТОРЕНИЕ КУРСА 9 КЛАССА 4 Упрощение рациональных выражений Решение

Подробнее

САМОУЧИТЕЛЬ РЕШЕНИЯ ЗАДАЧ НЕОПРЕДЕЛЁННЫЙ ИНТЕГРАЛ

САМОУЧИТЕЛЬ РЕШЕНИЯ ЗАДАЧ НЕОПРЕДЕЛЁННЫЙ ИНТЕГРАЛ ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ Государственное образовательное учреждение высшего профессионального образования «ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ» Т.В. Тарбокова Высшая математика IV САМОУЧИТЕЛЬ

Подробнее

Рецензенты Канд. ф.-м. наук, доцент.

Рецензенты Канд. ф.-м. наук, доцент. Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования Новгородский государственный университет имени Ярослава Мудрого Институт электронных

Подробнее

ПРОГРАММА ВСТУПИТЕЛЬНЫХ ИСПЫТАНИЙ ПО МАТЕМАТИКЕ ДЛЯ ПОСТУПАЮЩИХ В УрФУ В 2012г. ОСНОВНЫЕ МАТЕМАТИЧЕСКИЕ ПОНЯТИЯ И ФАКТЫ

ПРОГРАММА ВСТУПИТЕЛЬНЫХ ИСПЫТАНИЙ ПО МАТЕМАТИКЕ ДЛЯ ПОСТУПАЮЩИХ В УрФУ В 2012г. ОСНОВНЫЕ МАТЕМАТИЧЕСКИЕ ПОНЯТИЯ И ФАКТЫ ПРОГРАММА ВСТУПИТЕЛЬНЫХ ИСПЫТАНИЙ ПО МАТЕМАТИКЕ ДЛЯ ПОСТУПАЮЩИХ В УрФУ В 2012г. ОСНОВНЫЕ МАТЕМАТИЧЕСКИЕ ПОНЯТИЯ И ФАКТЫ 1. Числовые множества. Арифметические действия над числами. Натуральные числа (N).

Подробнее

Московский государственный университет имени М. В. Ломоносова МОСКОВСКАЯ ШКОЛА ЭКОНОМИКИ РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ. «Математический анализ»

Московский государственный университет имени М. В. Ломоносова МОСКОВСКАЯ ШКОЛА ЭКОНОМИКИ РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ. «Математический анализ» Московский государственный университет имени М. В. Ломоносова МОСКОВСКАЯ ШКОЛА ЭКОНОМИКИ РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ «Математический анализ» Направление 080100 Экономика для подготовки студентов бакалавров

Подробнее

Теория пределов: упражнения и примеры

Теория пределов: упражнения и примеры Теория пределов: упражнения и примеры Методическое пособие для факультетов менеджмента, политологии и социологии П.А.Панов Государственный Университет Высшая школа экономики Январь 00 Что такое предел

Подробнее

РЯДЫ ФУРЬЕ. Автор-составитель: доцент каф. ВМ Цапаева С.А.

РЯДЫ ФУРЬЕ. Автор-составитель: доцент каф. ВМ Цапаева С.А. РЯДЫ ФУРЬЕ Автор-составитель: доцент каф ВМ Цапаева СА Великий Новгород ПОНЯТИЕ И СВОЙСТВА ГАРМОНИК Определение Гармониками называются комплекснозначные функции вида iω ( ) e, где действительная переменная,

Подробнее

ТЕСТЫ. Математика. Варианты, решения и ответы

ТЕСТЫ. Математика. Варианты, решения и ответы Министерство образования и науки Российской Федерации Федеральное агентство по образованию Алтайский государственный технический университет им. И. И. Ползунова Е. В. Мартынова, И. П. Мурзина, Т. М. Степанюк,

Подробнее

Неопределенный и определенный интегралы

Неопределенный и определенный интегралы Международный консорциум «Электронный университет» Московский государственный университет экономики, статистики и информатики Евразийский открытый институт КАФЕДРА ВЫСШЕЙ МАТЕМАТИКИ АН Малахов Неопределенный

Подробнее

Т. Н. Матыцина ДИСКРЕТНАЯ МАТЕМАТИКА РЕШЕНИЕ РЕКУРРЕНТНЫХ СООТНОШЕНИЙ. Практикум

Т. Н. Матыцина ДИСКРЕТНАЯ МАТЕМАТИКА РЕШЕНИЕ РЕКУРРЕНТНЫХ СООТНОШЕНИЙ. Практикум МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Костромской государственный университет имени Н. А. Некрасова Т. Н. Матыцина ДИСКРЕТНАЯ МАТЕМАТИКА РЕШЕНИЕ РЕКУРРЕНТНЫХ СООТНОШЕНИЙ Практикум Кострома

Подробнее

МАТЕМАТИКА. Алгебраические уравнения, неравенства, системы уравнений и неравенств

МАТЕМАТИКА. Алгебраические уравнения, неравенства, системы уравнений и неравенств Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение дополнительного образования детей «Заочная физико-техническая школа Московского физико-технического

Подробнее

Тема 2-14: Евклидовы и унитарные пространства

Тема 2-14: Евклидовы и унитарные пространства Тема 2-14: Евклидовы и унитарные пространства А. Я. Овсянников Уральский федеральный университет Институт математики и компьютерных наук кафедра алгебры и дискретной математики алгебра и геометрия для

Подробнее

15. Гильбертовы пространства

15. Гильбертовы пространства 5 Гильбертовы пространства Гильбертово пространство линейное нормированное пространство, со скалярным произведением из или, полное относительно нормы, порожденным скалярным произведением Рассмотрим случай

Подробнее

Конспект лекций по высшей математике

Конспект лекций по высшей математике Министерство образования Республики Беларусь Учреждение образования «Брестский государственный технический университет» Кафедра высшей математики Конспект лекций по высшей математике для студентов экономических

Подробнее

Определенный интеграл

Определенный интеграл Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Сибирский государственный индустриальный университет»

Подробнее

УДК СОСТАВИТЕЛЬ кандидат технических наук, доцент Л. В. Березина. ОБСУЖДЕНО на заседании кафедры высшей математики

УДК СОСТАВИТЕЛЬ кандидат технических наук, доцент Л. В. Березина. ОБСУЖДЕНО на заседании кафедры высшей математики УДК 57. Теория вероятностей: программа учебной дисциплины и методические указания к выполнению контрольной работы / Сост. Л.В. Березина; РГАТУ имени П. А. Соловьева. Рыбинск, 0. 4 с. (Заочная форма обучения/

Подробнее

РЯДЫ ФУРЬЕ. К а ф е д р а Прикладной математики и информатики. Практикум по математическому анализу

РЯДЫ ФУРЬЕ. К а ф е д р а Прикладной математики и информатики. Практикум по математическому анализу МИНОБРНАУКИ РОССИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «САМАРСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ» К а ф е д р а Прикладной математики

Подробнее

ОГЛАВЛЕНИЕ. Приложение 1. Некоторые «неберущиеся» интегралы... 331 Приложение 2. Примеры некоторых кривых... 332. Литература...

ОГЛАВЛЕНИЕ. Приложение 1. Некоторые «неберущиеся» интегралы... 331 Приложение 2. Примеры некоторых кривых... 332. Литература... ОГЛАВЛЕНИЕ Введение................................................ 3 Глава. Неопределенный интеграл.......................... 6.. Понятие первообразной функции и неопределенного интеграла........................

Подробнее

Методические указания к решению задач на интегралы с параметром. Учебно-методическое пособие

Методические указания к решению задач на интегралы с параметром. Учебно-методическое пособие МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Нижегородский государственный университет им НИ Лобачевского Методические указания к решению задач на интегралы с параметром Учебно-методическое пособие

Подробнее

МАТЕМАТИКА ДЕМОНСТРАЦИОННЫЕ ТЕСТЫ К ВСТУПИТЕЛЬНЫМ ЭКЗАМЕНАМ В НГТУ 2005 ГОДА. Пособие для поступающих

МАТЕМАТИКА ДЕМОНСТРАЦИОННЫЕ ТЕСТЫ К ВСТУПИТЕЛЬНЫМ ЭКЗАМЕНАМ В НГТУ 2005 ГОДА. Пособие для поступающих МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ НОВОСИБИРСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ МАТЕМАТИКА ДЕМОНСТРАЦИОННЫЕ ТЕСТЫ К ВСТУПИТЕЛЬНЫМ ЭКЗАМЕНАМ В НГТУ 2005 ГОДА Пособие для поступающих

Подробнее

Вопросы к переводному экзамену по математике. 10-й класс, учебный год. Часть 1.

Вопросы к переводному экзамену по математике. 10-й класс, учебный год. Часть 1. 1 Московский государственный технический университет имени Н.Э.Баумана Специализированный учебно-научный центр ГОУ лицей 1580. Вопросы к переводному экзамену по математике. 10-й класс, 2014-2015 учебный

Подробнее

ЧАСТНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «ИНСТИТУТ ГОСУДАРСТВЕННОГО АДМИНИСТРИРОВАНИЯ»

ЧАСТНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «ИНСТИТУТ ГОСУДАРСТВЕННОГО АДМИНИСТРИРОВАНИЯ» ЧАСТНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «ИНСТИТУТ ГОСУДАРСТВЕННОГО АДМИНИСТРИРОВАНИЯ» Утверждаю Ректор ЧУ ВО «ИГА» А.В. Тараканов «12» 11 20_15_г. Программа подготовки к вступительным испытаниям по математике

Подробнее

Методологические аспекты выделения главных частей бесконечно больших функций

Методологические аспекты выделения главных частей бесконечно больших функций Методологические аспекты выделения главных частей бесконечно больших функций # 04, апрель 2015 Ахметова Ф. Х. 1,*, Ласковая Т. А. 1, Пелевина И. Н. 1 УДК: 517 1 Россия, МГТУ им. Н.Э. Баумана Введение Классический

Подробнее

Пусть задана последовательность чисел a 1, a 2,..., a n,... Числовым рядом называется выражение

Пусть задана последовательность чисел a 1, a 2,..., a n,... Числовым рядом называется выражение џ. Понятие числового ряда. Пусть задана последовательность чисел a, a 2,..., a,.... Числовым рядом называется выражение a = a + a 2 +... + a +... (.) Числа a, a 2,..., a,... называются членами ряда, a

Подробнее

МАТЕМАТИЧЕСКИЙ АНАЛИЗ 1 семестр. 1. Числа 1.1. Числовые множества. Множество натуральных чисел

МАТЕМАТИЧЕСКИЙ АНАЛИЗ 1 семестр. 1. Числа 1.1. Числовые множества. Множество натуральных чисел МАТЕМАТИЧЕСКИЙ АНАЛИЗ 1 семестр 1. Числа 1.1. Числовые множества. Множество натуральных чисел множество целых чисел N = {0, 1, 2, 3,..., }, Z = {0, ±1, ±2, ±3,..., } множество рациональных чисел { m }

Подробнее

МБОШИ «Кадетская школа-интернат» 2010 г г.

МБОШИ «Кадетская школа-интернат» 2010 г г. МБОШИ «Кадетская школа-интернат» Согласовано Руководитель МО учителей математики /Булатова Ф.А. Утверждаю Директор МБОШИ КШИ /Таипова А.Р. 2010 г. 2010 г. Рабочая программа по алгебре и началам анализа

Подробнее

Лекция 1: Комплексные числа

Лекция 1: Комплексные числа Уральский федеральный университет, Институт математики и компьютерных наук, кафедра алгебры и дискретной математики Вступительные замечания В школьном курсе математики понятие числа постепенно расширяется.

Подробнее

ПРОГРАММА ВСТУПИТЕЛЬНЫХ ИСПЫТАНИЙ ПО ДИСЦИПЛИНЕ «МАТЕМАТИКА» В ГБОУ ВО НГИЭУ (МАГИСТРАТУРА)

ПРОГРАММА ВСТУПИТЕЛЬНЫХ ИСПЫТАНИЙ ПО ДИСЦИПЛИНЕ «МАТЕМАТИКА» В ГБОУ ВО НГИЭУ (МАГИСТРАТУРА) Министерство образования Нижегородской области Государственное бюджетное образовательное учреждение высшего образования «Нижегородский государственный инженерно-экономический университет» ПРОГРАММА ВСТУПИТЕЛЬНЫХ

Подробнее

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Филиал федерального государственного бюджетного образовательного учреждения высшего профессионального образования «Кемеровский государственный университет»

Подробнее

ЛЕКЦИИ ПО МАТЕМАТИЧЕСКОМУ АНАЛИЗУ

ЛЕКЦИИ ПО МАТЕМАТИЧЕСКОМУ АНАЛИЗУ Московский физико-технический институт (государственный университет) О.В. Бесов ЛЕКЦИИ ПО МАТЕМАТИЧЕСКОМУ АНАЛИЗУ Часть 1 Москва, 2004 Составитель О.В.Бесов УДК 517. Методические указания по математическому

Подробнее

ТЕМА 3. Собственные значения и собственные векторы вполне непрерывного самосопряженного оператора.

ТЕМА 3. Собственные значения и собственные векторы вполне непрерывного самосопряженного оператора. ТЕМА 3 Собственные значения и собственные векторы вполне непрерывного самосопряженного оператора Основные определения и теоремы Оператор A : E E, действующий в евклидовом пространстве, называется сопряженным

Подробнее

множества Z = X Y называют произведением полуколец S X и S Y и обозначают S X S Y. Для A S X, B S Y положим A B)= X(A) Y(B).

множества Z = X Y называют произведением полуколец S X и S Y и обозначают S X S Y. Для A S X, B S Y положим A B)= X(A) Y(B). ЛАБОРАТОРНАЯ РАБОТА ТЕОРЕМА ФУБИНИ. ПРОСТРАНСТВА Lp, I. О с н о в н ы е п о н я т и я и т е о р е м ы Определение. Пусть и Y множества, и Y меры, заданные на полукольцах S и S Y подмножеств множеств и

Подробнее