Тема 4. Операторный метод решения линейных дифференциальных уравнений и систем. + e pt f(t)dt. (4.1) f(t) = = lim. = lim p

Save this PDF as:
 WORD  PNG  TXT  JPG

Размер: px
Начинать показ со страницы:

Download "Тема 4. Операторный метод решения линейных дифференциальных уравнений и систем. + e pt f(t)dt. (4.1) f(t) = = lim. = lim p"

Транскрипт

1 1 Тема 4. Операторный метод решения линейных дифференциальных уравнений и систем 4.1 Преобразование Лапласа Оригиналом называется любая функция f(t) действительного переменного t, удовлетворяющая следующим условиям: 1) f(t) = при t < ; ) f(t) непрерывна при всех значениях t за возможным исключением конечного числа точек разрыва I рода; 3) существуют числа M > и s такие, что при любом t f(t) Me st (функция f(t) называется функцией ограниченного роста, а число s = inf s показателем роста функции f(t)). Изображением называется функция F () комплексного переменного, определяемая равенством + e t f(t)dt. (4.1) Переход от оригинала к изображению называется преобразованием Лапласа и обозначается f(t) F (). Пример 4.1. Найти изображение функции {, t < f(t) = 1, t. По формуле (4.1) имеем + Ответ: 1. e t dt = lim a + b e t dt = lim b + e t b = lim b + e b (4.) + 1 = 1, Re >. Функция (4.) называется функцией Хевисайда и обозначается χ(t). Если функция f(t) ограниченного роста имеет не более, чем конечное число точек разрыва I рода при t, но f(t) при t <, то такая функция не является оригиналом. Умножив ее на функцию Хевисайда, мы получим оригинал {, t < f(t)χ(t) = (4.3) f(t), t. В дальнейшем под оригиналом f(t) будем понимать функцию (4.3).

2 Пример 4.. Найти изображение функции f(t) = t. По формуле (4.1) имеем + Ответ: 1. b te t dt = lim te t dt a + udv = uv vdu = u = t, du = (t) dt = dt dv = e t dt, v = e t dt = e t te t b = lim b b e t te t dt = lim b + be b e b b + = lim Пример 4.3. Найти изображение функции f(t) = e at. По формуле (4.1) имеем + e t e at dt = lim = lim e t a b + b + e ( a)t Ответ: 1 a. b b e ( a)t dt = lim b + e b( a) b + 1 = 1, Re >. a + 1 a = 1, Re ( a) >. a Аналогичным образом находим изображения для других часто встречающихся оригиналов и составляем таблицу: Таблица оригиналов и изображений Оригинал f(t) Изображение 1 1 t t n n! n+1 4 e at 1 a

3 3 5 t n e at n! ( a) n+1 6 cos at 7 sin at 8 e at cos bt 9 e at sin bt 1 ch at 11 sh at + a a + a a ( a) + b b ( a) + b a a a 4. Свойства преобразования Лапласа 1) Линейность. { f1 (t) F 1 () f (t) F () ) Теорема подобия. 3) Теорема смещения. 4) Теорема запаздывания. c 1 f 1 (t) + c f (t) c 1 F 1 () + c F (). f(t) F () f(at) 1 ( ) a F, a. a f(t) F () e at f(t) F ( a) a. f(t) F () f(t a) e a F () a >. 5) Дифференцирование оригинала. Если функции f(t), f (t),..., f n (t) являются оригиналами, и то f(t) F (), f (t) F () f() f (t) (F () f()) f () = F () f() f () f (t) ( F () f() f ()) f () = 3 F () f() f () f () f (n) (t) n F () n 1 f() n f ()... f (n 1) ().

4 4 6) Интегрирование оригинала. f(t) F () 7) Дифференцирование изображения. 8) Интегрирование изображения. Если t f(t) F () f(z)dz F (). tf(t) F () t f(t) F () t n f(t) ( 1) n F (n) (). f(t) F () и + F (z)dz сходится, то f(t) t + F (z)dz. 9) Умножение изображений (теорема Бореля). { f1 (t) F 1 () f f (t) F () 1 (t) f (t) F 1 () F (), где f 1 (t) f (t) свертка оригиналов: f 1 (t) f (t) = t 1) Интеграл Дюамеля. { f1 (t) F 1 () f (t) F () где f 1 (z)f (t z)dz = t f 1 (t z)f (z)dz. (f 1 (t) f (t)) F 1 ()F (), (f 1 (t) f (t)) = f 1 ()f (t) + f 1 (t) f (t) = f ()f 1 (t) + f (t) f 1 (t). 4.3 Примеры Пример 4.4. Найти изображение функции f(t) = e t sin t + e t cos 3t. Пользуясь свойством линейности преобразования Лапласа и таблицей, имеем Ответ: ( 1) ( + ) + 9. ( 1) ( + ) + 9.

5 5 Пример 4.5. Найти изображение функции f(t) = e 3t + 5 cos 4t. Пользуясь свойством линейности преобразования Лапласа и таблицей, имеем Ответ: Пример 4.6. Найти изображение функции f(t) = sh t sin 3t. Преобразуем оригинал, пользуясь определением функции sh t: f(t) = sh t sin 3t = et e t sin 3t = 1 et sin 3t 1 e t sin 3t. Ответ: 3/ ( 1) + 9 3/ ( + 1) / ( 1) + 9 3/ ( + 1) + 9. Пример 4.7. Найти изображение функции f(t) = ch t cos t. Так же, как в предыдущем примере, преобразуем оригинал: f(t) = ch t cos t = et + e t cos t = 1 et cos t 1 e t cos t. Ответ: 3 ( 1) ( + 1) + 9. (( ) + 1) + (( + ) + 1). Пример 4.8. Найти изображение функции f(t) = te t sh t. Преобразуем оригинал: f(t) = te t sh t = te t et e t = 1 t 1 te 4t.

6 6 Ответ: 1 1 ( + 4). 1 1 ( + 4). Пример 4.9. Найти изображение функции f(t) = t e 3t ch 3t. Преобразуем оригинал: f(t) = t e 3t ch 3t = t e 3t e3t + e 3t = 1 t e 6t + 1 t. Ответ: 1 ( 6) + 1.! ( 6) +! = 1 ( 6) + 1. Пример 4.1. Найти изображение функции f(t) = sin 3t. Пользуясь тригонометрическими формулами, понизим степень: f(t) = sin 1 cos 6t 3t = = 1 1 cos 6t. Ответ: 1 ( + 36). 1 ( + 36). Пример Найти изображение функции f(t) = cos 3 t. Пользуясь тригонометрическими формулами, понизим степень: f(t) = cos 3 t = 1 4 cos 3t cos 3t. Ответ: 1 ( + 36). 1 ( + 36).

7 7 Пример 4.1. Найти изображение функции f(t) = t sin 3t. Воспользуемся свойством дифференцирования изображения: Ответ: 6 ( + 9). sin 3t ( ) 3 6 t sin 3t = + 9 ( + 9). Пример Найти изображение функции f(t) = t cos t. Воспользуемся свойством дифференцирования изображения: cos t + 4 ( ) 4 t cos t = ( + 4) ( + 4) 3 Ответ: ( + 4) 3 Пример Найти изображение функции f(t) = te 3t sin t. Воспользуемся свойством дифференцирования изображения: Ответ: e 3t 1 sin t ( + 3) + 1 ( ) te 3t 1 ( + 3) sin t = ( + 3) + 1 (( + 3) + 1). ( + 3) (( + 3) + 1). Пример Найти изображение функции f(t) = sin t. t Воспользуемся свойством интегрирования изображения: sin t t + Ответ: π arctg. sin t dz = arctg z z + = π + 1 arctg.

8 8 Пример Дано изображение Найти оригинал. Функция F () это правильная рациональная дробь. Разложим ее в сумму простейших дробей: = ( + 3)( 1) = A B A( 1) + B( + 3) =, 1 ( + 3)( 1) = A( 1) + B( + 3). Полученное равенство является тождественным, то есть оно выполняется при любом значении. Пусть = 1. Подставляя, получаем Пусть = 3. Подставляя, получаем Таким образом, 8 = A(1 1) + B(1 + 3) B =. 1 = A( 3 1) + B( 3 + 3) A = Ответ: f(t) = 3e 3t + e t. Пример Дано изображение Найти оригинал. f(t) = 3e 3t + e t Снова разложим F () в сумму простейших дробей: = 1 ( + 5) = A B A( + 5) + B =, ( + 5) ( + 5) 1 = A( + 5) + B. Пусть = 5. Подставляя, получаем 11 = A( 5 + 5) + B B = 11.

9 9 Пусть =. Подставляя, получаем Таким образом, 1 = A( + 5) + B A = ( + 5). Ответ: f(t) = e 5t 11te 5t. Пример Дано изображение Найти оригинал. f(t) = e 5t 11te 5t. 13 ( + 3)( + 4). Снова разложим F () в сумму простейших дробей: 13 ( + 3)( + 4) = A B + C + 4 = A( + 4) + (B + C)( + 3), ( + 3)( + 4) 13 = A( + 4) + (B + C)( + 3). Пусть = 3. Подставляя, получаем Пусть = i. Подставляя, получаем Таким образом, 13 = A(9 + 4) + ( 3B + C)( 3 + 3) A = = A( 4 + 4) + (ib + C)(i + 3) 13 = ( 4B + 3C) + i(6b + C) { { 4B + 3C = 13 B = 1 6B + C = C = = Ответ: f(t) = e 3t cos t + f(t) = e 3t 3 sin t cos t +. 3 sin t.

10 1 Пример Дано изображение Найти оригинал Поскольку квадратный трехчлен имеет комплексные корни, поступим иначе, чем в предыдущих примерах. Выделим в знаменателе дроби полный квадрат, а затем преобразуем числитель: = ( + 3) 8 = ( + 3) + 16 ( + 3) = ( + 3) ( + 3) Ответ: f(t) = e 3t cos 4t e 3t sin 4t. Пример 4.. Дано изображение Найти оригинал. f(t) = e 3t cos 4t e 3t sin 4t. 6 ( + 1)( + 4). I способ. Pазложим F () в сумму простейших дробей: 6 ( + 1)( + 4) = A + B C + D + 4 = (A + B)( + 4) + (C + D)( + 1), ( + 1)( + 4) 6 = (A + B)( + 4) + (C + D)( + 1). Пусть = i. Подставляя, получаем 6i = (Ai + B)( 1 + 4) + (Ci + D)( 1 + 1) { { 3A = 6 A = 6i = 3Ai + 3B 3B = B =. Пусть = i. Подставляя, получаем 1i = (Ai + B)( 4 + 4) + (Ci + D)( 4 + 1) { { 6C = 1 C = 1i = 6Ci 3D 3D = D =.

11 11 Таким образом, f(t) = cos t cos t. II способ. Представим изображение F () в виде Так как sin t, + 1 cos t, + 4 то по свойству умножения изображений (теореме Бореля) имеем: Найдем свертку оригиналов: = 3 t sin t cos t. + 4 t 6 sin t cos t = 6 sin z cos (t z)dz = sin(α β) sin(α + β) sin α cos β = + (sin(3z t) + sin(t z))dz = cos(3z t) + 3 cos(t z) = ( cos t + 3 cos t) ( cos t + 3 cos t) = cos t cos t. Ответ: f(t) = cos t cos t. 4.4 Задачи для самостоятельного решения 1) Найти изображение f(t) = t 4 + 9t 3 3t + t f(t) = 4t + 3e t + 6e 7t f(t) = 5t e 4t f(t) = cos t + 5 sin 6t f(t) = e t cos t et sin 3t 3 t

12 f(t) = 3 sh 4t ch 5t f(t) = ch t cos t f(t) = sh t sin 4t f(t) = (e t + sh 3t) cos t f(t) = te t ch 5t f(t) = t e 4t sh 4t f(t) = sin 3 t f(t) = cos 3t f(t) = cos 4 t f(t) = t cos t f(t) = t sin 3t f(t) = t cos 4t f(t) = te t cos 3t f(t) = te 3t sin t f(t) = f(t) = sh t t (1 cos t) t ) Найти оригинал ( 1)( 6 + 1)

13 ( + 1)( + + 1) ( + 1)( + 4) Ответы к задачам для самостоятельного решения ( 4) ( + 1) ( + 1) ( ) (( 1) + 4) (( + 1) + 4) ( ) + 16 ( + ) ( 1) (( 3) + 4) + 3 (( + 3) + 4) 1 ( ) + 1 ( + 6) 1 ( 8) ( + 4) 3 ( + 36) ( + 36) ( + 4) + 8( + 16) ( + 4)

14 ( 3) ( + 9) ( 48) ( + 16) ( + ) 9 (( + ) + 9) 4( 3) (( 3) + 4) ln + ( ) ln f(t) = 1 6 e 5t et 4... f(t) = 3 4 e3t e t f(t) = 3e 3t + 8te 3t f(t) = e t cos t + e t sin t f(t) = 4e 5t cos 3t 9e 5t sin 3t f(t) = 1 5 et 1 5 e3t cos t e3t sin t f(t) = 1 3 sin t + sin t 3

Неопределенный и определенный интегралы

Неопределенный и определенный интегралы ~ ~ Неопределенный и определенный интегралы Понятие первообразной и неопределѐнного интеграла. Определение: Функция F называется первообразной по отношению к функции f, если эти функции связаны следующим

Подробнее

САМОУЧИТЕЛЬ РЕШЕНИЯ ЗАДАЧ НЕОПРЕДЕЛЁННЫЙ ИНТЕГРАЛ

САМОУЧИТЕЛЬ РЕШЕНИЯ ЗАДАЧ НЕОПРЕДЕЛЁННЫЙ ИНТЕГРАЛ ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ Государственное образовательное учреждение высшего профессионального образования «ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ» Т.В. Тарбокова Высшая математика IV САМОУЧИТЕЛЬ

Подробнее

Неопределенный и определенный интегралы

Неопределенный и определенный интегралы Международный консорциум «Электронный университет» Московский государственный университет экономики, статистики и информатики Евразийский открытый институт КАФЕДРА ВЫСШЕЙ МАТЕМАТИКИ АН Малахов Неопределенный

Подробнее

( ) ( ) ( ) ( ) ( ) ( ) () ( ) ( ) x [ ; ]

( ) ( ) ( ) ( ) ( ) ( ) () ( ) ( ) x [ ; ] 8 Барроу Исаак (Brrow Is) -77 английский математик, филолог, богослов. Профессор Кембриджского университета. Автор труда лекции по оптике и геометрии (9-7). Из теоремы следует, что определенный интеграл

Подробнее

4 Определенный интеграл Римана. Определение,

4 Определенный интеграл Римана. Определение, 4 Определенный интеграл Римана. Определение, обобщенная теорема о среднем значении, интеграл с переменным верхним пределом, формула замены переменной, интегрирование по частям, некоторые неравенства. 4.1

Подробнее

Chair of Math. Analysis, SPb. State University. A.V.Potepun, 2011

Chair of Math. Analysis, SPb. State University. A.V.Potepun, 2011 Chir of Mth. Anlysis, SPb. Stte University. A.V.Poteun, Исследование сходимости несобственных интегралов Методические указания для решения задач А. В. Потепун Как известно (см. [], глава III, 7), если

Подробнее

Основы функционального анализа и теории функций

Основы функционального анализа и теории функций Основы функционального анализа и теории функций Лектор Сергей Андреевич Тресков 3 семестр. Ряды Фурье. Постановка задачи о разложении периодической функции по простейшим гармоникам. Коэффициенты Фурье

Подробнее

Интегралы Определенные и Неопределенные

Интегралы Определенные и Неопределенные 1 Интегралы Определенные и Неопределенные Опр. Интеграл функции это естественный аналог суммы последовательности. Опр. Интегрирование процесс нахождения интеграла. Зам. Интегрирование это операция обратная

Подробнее

Определенный интеграл

Определенный интеграл Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Сибирский государственный индустриальный университет»

Подробнее

МЕТОДИЧЕСКОЕ ПОСОБИЕ 5 СЕМЕСТР

МЕТОДИЧЕСКОЕ ПОСОБИЕ 5 СЕМЕСТР МЕТОДИЧЕСКОЕ ПОСОБИЕ 5 СЕМЕСТР А. А. Пожарский Содержание Предисловие 2 занятие. Комплексные числа. 4 2. Регулярные функции комплексного переменного. 8 2 занятие 3. Восстановление регулярной функции по

Подробнее

ТРИГОНОМЕТРИЧЕСКИЕ РЯДЫ ФУРЬЕ

ТРИГОНОМЕТРИЧЕСКИЕ РЯДЫ ФУРЬЕ Московский физико-технический институт государственный университет) О.В. Бесов ТРИГОНОМЕТРИЧЕСКИЕ РЯДЫ ФУРЬЕ Учебно-методическое пособие Москва, 004 Составитель О.В.Бесов УДК 517. Тригонометрические ряды

Подробнее

П О В Ы С Ш Е Й М А Т Е М А Т И К Е

П О В Ы С Ш Е Й М А Т Е М А Т И К Е Санкт-Петербургский государственный университет А. В. О С И П О В К О Н С П Е К Т Л Е К Ц И Й П О В Ы С Ш Е Й М А Т Е М А Т И К Е Часть II (-й курс, -й семестр) Санкт-Петеpбуpг 0 0 Конспект лекций по высшей

Подробнее

МАТЕМАТИКА. Квадратные корни

МАТЕМАТИКА. Квадратные корни МАТЕМАТИКА Квадратные корни Задание для 8-х классов (006-00 учебный год) 4 Введение Дорогие ребята! Вы получили очередное задание по математике. В этом задании мы знакомим вас с важным математическим понятием

Подробнее

ГОСУДАРСТВЕННОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «БЕЛОРУССКО-РОССИЙСКИЙ УНИВЕРСИТЕТ» Кафедра «Высшая математика» ВЫСШАЯ МАТЕМАТИКА

ГОСУДАРСТВЕННОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «БЕЛОРУССКО-РОССИЙСКИЙ УНИВЕРСИТЕТ» Кафедра «Высшая математика» ВЫСШАЯ МАТЕМАТИКА ГОСУДАРСТВЕННОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «БЕЛОРУССКО-РОССИЙСКИЙ УНИВЕРСИТЕТ» Кафедра «Высшая математика» ВЫСШАЯ МАТЕМАТИКА Методические указания и варианты заданий к контрольной

Подробнее

24 4. Интегрирование некоторых тригонометрических функций Универсальная тригонометрическая подстановка

24 4. Интегрирование некоторых тригонометрических функций Универсальная тригонометрическая подстановка СОДЕРЖАНИЕ Глава Неопределенный интеграл Первообразная и неопределенный интеграл Понятие первообразной функции и неопределённого интеграла Свойства неопределённого интеграла Таблица основных неопределённых

Подробнее

Типовые задачи c решениями.

Типовые задачи c решениями. Типовые задачи c решениями. Формальное суммирование рядов. Формула рекурсии k a k a + a k k Формула умножения λ a k λa k Формула сложения k k k a k + b k a k + k b k k Пример Геометрическая прогрессия.

Подробнее

ОГЛАВЛЕНИЕ. Приложение 1. Некоторые «неберущиеся» интегралы... 331 Приложение 2. Примеры некоторых кривых... 332. Литература...

ОГЛАВЛЕНИЕ. Приложение 1. Некоторые «неберущиеся» интегралы... 331 Приложение 2. Примеры некоторых кривых... 332. Литература... ОГЛАВЛЕНИЕ Введение................................................ 3 Глава. Неопределенный интеграл.......................... 6.. Понятие первообразной функции и неопределенного интеграла........................

Подробнее

Лекция. Преобразование Фурье

Лекция. Преобразование Фурье С А Лавренченко wwwwrckoru Лекция Преобразование Фурье Понятие интегрального преобразования Метод интегральных преобразований один из мощных методов математической физики является мощным средством решения

Подробнее

ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ» Министерство образования Российской Федерации САРАПУЛЬСКИЙ ПОЛИТЕХНИЧЕСКИЙ ИНСТИТУТ филиал Государственного образовательного учреждения высшего профессионального образования «ИЖЕВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ

Подробнее

СБОРНИК ЗАДАЧ ДЛЯ САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ ПО ТЕМЕ ПРЕДЕЛ ФУНКЦИИ

СБОРНИК ЗАДАЧ ДЛЯ САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ ПО ТЕМЕ ПРЕДЕЛ ФУНКЦИИ Министерство образования и науки Российской Федерации Ярославский государственный университет им ПГ Демидова Кафедра дискретного анализа СБОРНИК ЗАДАЧ ДЛЯ САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ ПО ТЕМЕ ПРЕДЕЛ ФУНКЦИИ

Подробнее

Р. М. Гаврилова, Г. С. Костецкая, А. Н. Карапетянц. Методические указания

Р. М. Гаврилова, Г. С. Костецкая, А. Н. Карапетянц. Методические указания МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ РОСТОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ Р. М. Гаврилова, Г. С. Костецкая, А. Н. Карапетянц Методические указания для студентов 1 курса физического факультета

Подробнее

1. РЯДЫ ФУРЬЕ РЕШЕНИЕ ТИПОВЫХ ЗАДАЧ СПИСОК ЛИТЕРАТУРЫ ОГЛАВЛЕНИЕ

1. РЯДЫ ФУРЬЕ РЕШЕНИЕ ТИПОВЫХ ЗАДАЧ СПИСОК ЛИТЕРАТУРЫ ОГЛАВЛЕНИЕ ОГЛАВЛЕНИЕ РЯДЫ ФУРЬЕ 4 Понятие о периодической функции 4 Тригонометрический полином 6 3 Ортогональные системы функций 4 Тригонометрический ряд Фурье 3 5 Ряд Фурье для четных и нечетных функций 6 6 Разложение

Подробнее

Глава 7. Определенный интеграл

Глава 7. Определенный интеграл 68 Глава 7 Определенный интеграл 7 Определение и свойства К понятию определенного интеграла приводят разнообразные задачи вычисления площадей, объемов, работы, объема производства, денежных потоков и тп

Подробнее

МАТЕМАТИЧЕСКИЙ АНАЛИЗ Часть 1. Предел числовой последовательности. Предел функции. Непрерывность функции.

МАТЕМАТИЧЕСКИЙ АНАЛИЗ Часть 1. Предел числовой последовательности. Предел функции. Непрерывность функции. МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «МАМИ» Кафедра «Высшая математика» Бодунов МА, Бородина СИ, Показеев ВВ, Теуш БЛ, Ткаченко ОИ МАТЕМАТИЧЕСКИЙ

Подробнее

РАЦИОНАЛЬНЫЕ МЕТОДЫ РЕШЕНИЯ ЗАДАЧ ПО МАТЕМАТИЧЕСКОМУ АНАЛИЗУ

РАЦИОНАЛЬНЫЕ МЕТОДЫ РЕШЕНИЯ ЗАДАЧ ПО МАТЕМАТИЧЕСКОМУ АНАЛИЗУ Министерство образования Российской Федерации Московский физико-технический институт Кафедра высшей математики РАЦИОНАЛЬНЫЕ МЕТОДЫ РЕШЕНИЯ ЗАДАЧ ПО МАТЕМАТИЧЕСКОМУ АНАЛИЗУ Методические указания и оптимальные

Подробнее

ИНТЕГРАЛЬНЫЕ УРАВНЕНИЯ. ТЕОРЕМЫ ФРЕДГОЛЬМА

ИНТЕГРАЛЬНЫЕ УРАВНЕНИЯ. ТЕОРЕМЫ ФРЕДГОЛЬМА ЛАБОРАТОРНАЯ РАБОТА 5 ИНТЕГРАЛЬНЫЕ УРАВНЕНИЯ. ТЕОРЕМЫ ФРЕДГОЛЬМА. О С Н О В Н Ы Е П О Н Я Т И Я И Т Е О Р Е М Ы Определение. Интегральным уравнением Фредгольма рода называется уравнение x ( s, ds f (.

Подробнее

КАЗАНСКИЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ ИНСТИТУТ ФИЗИКИ. Т. Ю. Альпин, А. И. Егоров, П. Е. Кашаргин, С. В. Сушков

КАЗАНСКИЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ ИНСТИТУТ ФИЗИКИ. Т. Ю. Альпин, А. И. Егоров, П. Е. Кашаргин, С. В. Сушков КАЗАНСКИЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ ИНСТИТУТ ФИЗИКИ Т Ю Альпин, А И Егоров, П Е Кашаргин, С В Сушков ПРАКТИЧЕСКИЕ ЗАНЯТИЯ ПО МАТЕМАТИЧЕСКОМУ АНАЛИЗУ Часть I: Комплексные числа Предел функции Казань 013 Печатается

Подробнее

3A = A = A = 1 7 A + B = A = c ij = a i1 b 1j + a i2 b 2j + + a ik b kj = a is b sj

3A = A = A = 1 7 A + B = A = c ij = a i1 b 1j + a i2 b 2j + + a ik b kj = a is b sj Высшая математика Лекции по курсу Список литературы [] Высшая математика для экономистов Под редакцией НШ Кремера [] СА Минюк, ЕА Ровба Высшая математика [] Сборник задач по высшей математике для экономистов

Подробнее

Если в качестве базисной переменной выбрать x, то общее решение: x = 4 8x + 5x, x, x R; базисное решение: x = 0, x = 0, x = 4. Ответ: 8.

Если в качестве базисной переменной выбрать x, то общее решение: x = 4 8x + 5x, x, x R; базисное решение: x = 0, x = 0, x = 4. Ответ: 8. 01 1. Найдите общее и базисное решения системы уравнений: 16x 10x + 2x = 8, 40x + 25x 5x = 20. Ответ: Если в качестве базисной переменной выбрать x, то общее решение: x = 1 2 + 5 8 x 1 8 x, x, x R; базисное

Подробнее

"ВВЕДЕНИЕ В АСИМПТОТИЧЕСКИЕ МЕТОДЫ"

ВВЕДЕНИЕ В АСИМПТОТИЧЕСКИЕ МЕТОДЫ МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ ТАВРИЧЕСКИЙ НАЦИОНАЛЬНЫЙ УНИВЕРСИТЕТ им. В.И. Вернадского Кафедра математического анализа Н.Д. КОПАЧЕВСКИЙ, В.П. СМОЛИЧ КОНСПЕКТ ЛЕКЦИЙ ПО СПЕЦИАЛЬНОМУ КУРСУ "ВВЕДЕНИЕ

Подробнее

7. Общие понятия. U n (x),n N, определены в области D. Выра-

7. Общие понятия. U n (x),n N, определены в области D. Выра- Глава Функциональные ряды 7 Общие понятия U (), N, определены в области D Выра- Определение 7 Пусть функции жение () U() U() U(), D U (5) называется функциональным рядом Каждому значению D соответствует

Подробнее

Кафедра высшей математики ВЫЧИСЛЕНИЕ ОПРЕДЕЛЕННОГО ИНТЕГРАЛА ПО ФОРМУЛЕ НЬЮТОНА-ЛЕЙБНИЦА. ПРИЛОЖЕНИЯ ОПРЕДЕЛЕННОГО ИНТЕГРАЛА

Кафедра высшей математики ВЫЧИСЛЕНИЕ ОПРЕДЕЛЕННОГО ИНТЕГРАЛА ПО ФОРМУЛЕ НЬЮТОНА-ЛЕЙБНИЦА. ПРИЛОЖЕНИЯ ОПРЕДЕЛЕННОГО ИНТЕГРАЛА Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Сибирский государственный индустриальный университет»

Подробнее

Методические указания

Методические указания Московский государственный технический университет имени Н. Э. Баумана Методические указания А.И. Лошкарев, Т.В. Облакова ИНТЕГРАЛЬНЫЕ ПРЕОБРАЗОВАНИЯ И ОПЕРАЦИОННОЕ ИСЧИСЛЕНИЕ Издательство МГТУ им. Н.

Подробнее

Пусть задана последовательность чисел a 1, a 2,..., a n,... Числовым рядом называется выражение

Пусть задана последовательность чисел a 1, a 2,..., a n,... Числовым рядом называется выражение џ. Понятие числового ряда. Пусть задана последовательность чисел a, a 2,..., a,.... Числовым рядом называется выражение a = a + a 2 +... + a +... (.) Числа a, a 2,..., a,... называются членами ряда, a

Подробнее

О. В. Афонасенков, Т. А. Матвеева ФУНКЦИОНАЛЬНЫЕ РЯДЫ, РЯДЫ И ИНТЕГРАЛ ФУРЬЕ

О. В. Афонасенков, Т. А. Матвеева ФУНКЦИОНАЛЬНЫЕ РЯДЫ, РЯДЫ И ИНТЕГРАЛ ФУРЬЕ О В Афонасенков Т А Матвеева ФУНКЦИОНАЛЬНЫЕ РЯДЫ РЯДЫ И ИНТЕГРАЛ ФУРЬЕ ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ ВОЛГОГРАДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ВОЛЖСКИЙ ПОЛИТЕХНИЧЕСКИЙ ИНСТИТУТ (ФИЛИАЛ)

Подробнее

Тригонометрические ряды Фурье

Тригонометрические ряды Фурье Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Сибирский государственный индустриальный университет»

Подробнее

«УТВЕРЖДАЮ» Директор АДИ ГВУЗ «ДонНТУ» М. Н. Чальцев 10.07.2012. Кафедра «Высшая математика»

«УТВЕРЖДАЮ» Директор АДИ ГВУЗ «ДонНТУ» М. Н. Чальцев 10.07.2012. Кафедра «Высшая математика» МИНИСТЕРТСВО ОБРАЗОВАНИЯ И НАУКИ, МОЛОДЕЖИ И СПОРТА УКРАИНЫ ГОСУДАРСТВЕННОЕ ВЫСШЕЕ УЧЕБНОЕ ЗАВЕДЕНИЕ «ДОНЕЦКИЙ НАЦИОНАЛЬНЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ» АВТОМОБИЛЬНО-ДОРОЖНЫЙ ИНСТИТУТ Кафедра «УТВЕРЖДАЮ» Директор

Подробнее

arxiv: v1 [math.ca] 29 Dec 2012

arxiv: v1 [math.ca] 29 Dec 2012 Оценка снизу скорости блуждания решения линейного дифференциального уравнения третьего порядка через частоту нулей Тихомирова А.В. arxiv:11.6657v1 [math.ca] 9 Dec 1 В работе сравниваются две характеристики

Подробнее

ОПРЕДЕЛЁННЫЙ ИНТЕГРАЛ И ЕГО ПРИЛОЖЕНИЯ

ОПРЕДЕЛЁННЫЙ ИНТЕГРАЛ И ЕГО ПРИЛОЖЕНИЯ Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Новгородский государственный университет имени

Подробнее

ПРЕДЕЛЫ ПОСЛЕДОВАТЕЛЬНОСТЕЙ И ФУНКЦИЙ НЕПРЕРЫВНОГО АРГУМЕНТА

ПРЕДЕЛЫ ПОСЛЕДОВАТЕЛЬНОСТЕЙ И ФУНКЦИЙ НЕПРЕРЫВНОГО АРГУМЕНТА ГОУВПО КЫРГЫЗСКО-РОССИЙСКИЙ СЛАВЯНСКИЙ УНИВЕРСИТЕТ КАФЕДРА ВЫСШЕЙ МАТЕМАТИКИ Л.Г. Лелевкина, И.В. Гончарова, Н.М. Комарцов ПРЕДЕЛЫ ПОСЛЕДОВАТЕЛЬНОСТЕЙ И ФУНКЦИЙ НЕПРЕРЫВНОГО АРГУМЕНТА Учебно-методическое

Подробнее

b) lim a) lim (4x + 3) = 1; d) lim c) lim x 2 1 5(x 2 + 1) = 114 x 2 (x2 4x + 8) = 4; x 2 x 2 +1 = 3 5 ; x 1 2(x+1) = 1 4. x 3

b) lim a) lim (4x + 3) = 1; d) lim c) lim x 2 1 5(x 2 + 1) = 114 x 2 (x2 4x + 8) = 4; x 2 x 2 +1 = 3 5 ; x 1 2(x+1) = 1 4. x 3 Занятие Вычисление пределов - : определения, теоремы о пределах, некоторые частные приемы вычисления пределов. Определение предела. Пусть f() функция, определенная в проколотой окрестности точки 0. Число

Подробнее

Кафедра экономической теории и моделирования экономических процессов ПРЕДЕЛЫ

Кафедра экономической теории и моделирования экономических процессов ПРЕДЕЛЫ МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Курганский государственный университет» Кафедра

Подробнее

РЯДЫ ФУРЬЕ. Автор-составитель: доцент каф. ВМ Цапаева С.А.

РЯДЫ ФУРЬЕ. Автор-составитель: доцент каф. ВМ Цапаева С.А. РЯДЫ ФУРЬЕ Автор-составитель: доцент каф ВМ Цапаева СА Великий Новгород ПОНЯТИЕ И СВОЙСТВА ГАРМОНИК Определение Гармониками называются комплекснозначные функции вида iω ( ) e, где действительная переменная,

Подробнее

ТРЕБОВАНИЯ ГОСУДАРСТВЕННОГО ОБРАЗОВАТЕЛЬНОГО СТАНДАРТА К ОБЯЗАТЕЛЬНОМУ МИНИМУМУ СОДЕРЖАНИЯ ПРОГРАММЫ. Наименование дисциплины и ее основные разделы

ТРЕБОВАНИЯ ГОСУДАРСТВЕННОГО ОБРАЗОВАТЕЛЬНОГО СТАНДАРТА К ОБЯЗАТЕЛЬНОМУ МИНИМУМУ СОДЕРЖАНИЯ ПРОГРАММЫ. Наименование дисциплины и ее основные разделы Рабочая программа дисциплины «Теория функций комплексного переменного» предназначена для студентов 2 курса 4 семестр по специальности: 010801.65 Радиофизика и элктроника АВТОР: Даишев А.Ю. КРАТКАЯ АННОТАЦИЯ:

Подробнее

МИНИСТЕРСТВО НАУКИ И ОБРАЗОВАНИЯ РФ ГОУ ВПО «НОВОСИБИРСКИЙ ГОСУДАРСТВЕННЫЙ ПЕДАГОГИЧЕСКИЙ УНИВЕРСИТЕТ» О.В. Скворцова ВЫСШАЯ МАТЕМАТИКА

МИНИСТЕРСТВО НАУКИ И ОБРАЗОВАНИЯ РФ ГОУ ВПО «НОВОСИБИРСКИЙ ГОСУДАРСТВЕННЫЙ ПЕДАГОГИЧЕСКИЙ УНИВЕРСИТЕТ» О.В. Скворцова ВЫСШАЯ МАТЕМАТИКА МИНИСТЕРСТВО НАУКИ И ОБРАЗОВАНИЯ РФ ГОУ ВПО «НОВОСИБИРСКИЙ ГОСУДАРСТВЕННЫЙ ПЕДАГОГИЧЕСКИЙ УНИВЕРСИТЕТ» О.В. Скворцова ВЫСШАЯ МАТЕМАТИКА Предел. Непрерывность. Производная. Интеграл Утверждено Редакционно-издательским

Подробнее

ВВЕДЕНИЕ В МАТЕМАТИКУ

ВВЕДЕНИЕ В МАТЕМАТИКУ Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Тверской государственный университет» А А Г О Л У Б Е В, Т А С П А С С К А Я ВВЕДЕНИЕ В МАТЕМАТИКУ

Подробнее

I. О С Н О В Н Ы Е П О Н Я Т И Я И Т Е О Р Е М Ы.

I. О С Н О В Н Ы Е П О Н Я Т И Я И Т Е О Р Е М Ы. ЛАБОРАТОРНАЯ РАБОТА 6 ПРЕОБРАЗОВАНИЕ ФУРЬЕ I О С Н О В Н Ы Е П О Н Я Т И Я И Т Е О Р Е М Ы Определение Преобразованием Фурье функции из L называется функция определяемая равенством d Оператор F : называется

Подробнее

Московский Государственный Университет Геодезии и Картографии. Кафедра высшей математики

Московский Государственный Университет Геодезии и Картографии. Кафедра высшей математики Московский Государственный Университет Геодезии и Картографии Кафедра высшей математики Высшая математика ( семестр Разделы Функции. Пределы. Дифференцирование. Интегрирование. Основные формулы по темам

Подробнее

ВЫСШАЯ МАТЕМАТИКА Второй семестр. Курс лекций для студентов экономических специальностей вузов

ВЫСШАЯ МАТЕМАТИКА Второй семестр. Курс лекций для студентов экономических специальностей вузов МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ УО «Белорусский государственный экономический университет» М.П. Дымков ВЫСШАЯ МАТЕМАТИКА Второй семестр Курс лекций для студентов экономических специальностей

Подробнее

24-е занятие. Эйлеровы интегралы (функции Γ и B) Матем. анализ, прикл. матем., 3-й семестр

24-е занятие. Эйлеровы интегралы (функции Γ и B) Матем. анализ, прикл. матем., 3-й семестр 24-е занятие Эйлеровы интегралы (функции Γ и B) Матем анализ, прикл матем, 3-й семестр Определения гамма-функции и бета-функции: Γ(x) = t x 1 e t dt B(x, y) = t x 1 (1 t) y 1 dt Д 3841 Доказать, что функция

Подробнее

3 Операция деления комплексных чисел. Как связаны модуль и аргумент частного с модулями и аргументами делимого и делителя?

3 Операция деления комплексных чисел. Как связаны модуль и аргумент частного с модулями и аргументами делимого и делителя? Экзаменационные вопросы по ТФКП. Вопрос 1. Элементарные операции с комплексными числами. Элементарные функции комплексной переменной. 1 Операция сложения комплексных чисел. Ее геометрическая интерпретация.

Подробнее

Системы тригонометрических уравнений

Системы тригонометрических уравнений И. В. Яковлев Материалы по математике MathUs.ru Системы тригонометрических уравнений В данной статье мы рассматриваем тригонометрические системы двух уравнений с двумя неизвестными. Методы решения таких

Подробнее

Интегрирование. Неопределенный интеграл. Определенный интеграл и его применение.

Интегрирование. Неопределенный интеграл. Определенный интеграл и его применение. МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «САМАРСКИЙ ГОСУДАРСТВЕННЫЙ АЭРОКОСМИЧЕСКИЙ УНИВЕРСИТЕТ

Подробнее

10. Определенный интеграл

10. Определенный интеграл 1. Определенный интеграл 1.1. Пусть f ограниченная функция, заданная на отрезке [, b] R. Разбиением отрезка [, b] называют такой набор точек τ = {x, x 1,..., x n 1, x n } [, b], что = x < x 1 < < x n 1

Подробнее

Пензенский государственный педагогический университет имени В.Г.Белинского. О.Г.Никитина РЯДЫ. Учебное пособие

Пензенский государственный педагогический университет имени В.Г.Белинского. О.Г.Никитина РЯДЫ. Учебное пособие Пензенский государственный педагогический университет имени ВГБелинского РЯДЫ ОГНикитина Учебное пособие Пенза Печатается по решению редакционно-издательского совета Пензенского государственного педагогического

Подробнее

ПРАКТИЧЕСКИЕ ЗАНЯТИЯ ПО МАТЕМАТИЧЕСКОМУ АНАЛИЗУ (1 СЕМЕСТР)

ПРАКТИЧЕСКИЕ ЗАНЯТИЯ ПО МАТЕМАТИЧЕСКОМУ АНАЛИЗУ (1 СЕМЕСТР) ПРАКТИЧЕСКИЕ ЗАНЯТИЯ ПО МАТЕМАТИЧЕСКОМУ АНАЛИЗУ ( СЕМЕСТР) А. А. Пожарский Занятие. Принцип математической индукции. Задачи по []: 0. Задачи по [2]: 27. Занятие 2. Основные понятия комбинаторики: факториал,

Подробнее

Контрольная работа 1.

Контрольная работа 1. Контрольная работа...4. Найти общее решение (общий интеграл) дифференциального уравнения. Сделать проверку. 4 y y y y y y 4 y y y 4 4 Это уравнение Бернулли. Сделаем замену: y y y 4 4 4 z y ; z y y Тогда

Подробнее

ОТДЕЛЬНЫЕ ГЛАВЫ ВЫСШЕЙ МАТЕМАТИКИ. МЕТОДИЧЕСКИЕ УКАЗАНИЯ к основам математических методов теории автоматического управления

ОТДЕЛЬНЫЕ ГЛАВЫ ВЫСШЕЙ МАТЕМАТИКИ. МЕТОДИЧЕСКИЕ УКАЗАНИЯ к основам математических методов теории автоматического управления Министерство образования и науки Украины Донбасская государственная машиностроительная академия ОТДЕЛЬНЫЕ ГЛАВЫ ВЫСШЕЙ МАТЕМАТИКИ МЕТОДИЧЕСКИЕ УКАЗАНИЯ к основам математических методов теории автоматического

Подробнее

ПРЕДЕЛ ИНТЕРПОЛЯЦИОННЫХ ПЕРИОДИЧЕСКИХ СПЛАЙНОВ ВЕЩЕСТВЕННОЙ ПЕРЕМЕННОЙ

ПРЕДЕЛ ИНТЕРПОЛЯЦИОННЫХ ПЕРИОДИЧЕСКИХ СПЛАЙНОВ ВЕЩЕСТВЕННОЙ ПЕРЕМЕННОЙ ПРЕДЕЛ ИНТЕРПОЛЯЦИОННЫХ ПЕРИОДИЧЕСКИХ СПЛАЙНОВ ВЕЩЕСТВЕННОЙ ПЕРЕМЕННОЙ Н. В. Чашников nik239@list.ru 13 марта 21 г. Пусть натуральное число, отличное от единицы. Определим периодический B-сплайн первого

Подробнее

Лекция 14. Равенство Парсеваля. Минимальное свойство коэффициентов разложения. Комплексная форма ряда Фурье.

Лекция 14. Равенство Парсеваля. Минимальное свойство коэффициентов разложения. Комплексная форма ряда Фурье. Лекция 4. Равенство Парсеваля. Минимальное свойство коэффициентов разложения. Комплексная форма ряда..4. Равенство Парсеваля Пусть система вещественных функций g( ), g( ),..., g ( ),... ортогональна и

Подробнее

4 Основные свойства определенного интеграла

4 Основные свойства определенного интеграла 178 4 Основные свойства определенного интеграла Рассмотрим основные свойства определенного интеграла. 1) Если нижний и верхний пределы интегрирования равны (=), то интеграл равен нулю f ( ) d = 0 Данное

Подробнее

Тема 4. Определенные интегралы, зависящие от параметра

Тема 4. Определенные интегралы, зависящие от параметра Тема 4. Определенные интегралы, зависящие от параметра На этом занятии рассматриваются различные примеры вычисления интегралов с помощью метода дифференцирования и интегрирования по параметру, от которого

Подробнее

Тема6. «Определенный интеграл»

Тема6. «Определенный интеграл» Министерство образования Республики Беларусь УО «Витебский государственный технологический университет» Тема6. «Определенный интеграл» Кафедра теоретической и прикладной математики. разработана доц. Е.Б.Дуниной

Подробнее

УДК (072)(075.8)

УДК (072)(075.8) БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ФАКУЛЬТЕТ ПРИКЛАДНОЙ МАТЕМАТИКИ И ИНФОРМАТИКИ КАФЕДРА ВЫСШЕЙ МАТЕМАТИКИ НЕСОБСТВЕННЫЕ ИНТЕГРАЛЫ Учебно-методическое пособие для студентов факультета прикладной математики

Подробнее

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ Московский государственный университет приборостроения и информатики кафедра высшей

Подробнее

ДЕПАРТАМЕНТ СМОЛЕНСКОЙ ОБЛАСТИ ПО ОБРАЗОВАНИЮ И НАУКЕ СОГБОУ СПО «ЕЛЬНИНСКИЙ СЕЛЬСКОХОЗЯЙСТВЕННЫЙ ТЕХНИКУМ» ПРОГРАММА

ДЕПАРТАМЕНТ СМОЛЕНСКОЙ ОБЛАСТИ ПО ОБРАЗОВАНИЮ И НАУКЕ СОГБОУ СПО «ЕЛЬНИНСКИЙ СЕЛЬСКОХОЗЯЙСТВЕННЫЙ ТЕХНИКУМ» ПРОГРАММА ДЕПАРТАМЕНТ СМОЛЕНСКОЙ ОБЛАСТИ ПО ОБРАЗОВАНИЮ И НАУКЕ СОГБОУ СПО «ЕЛЬНИНСКИЙ СЕЛЬСКОХОЗЯЙСТВЕННЫЙ ТЕХНИКУМ» ПРОГРАММА ВСТУПИТЕЛЬНЫХ ИСПЫТАНИЙ ДЛЯ ПОСТУПАЮЩИХ В ТЕХНИКУМ ПО ДИСЦИПЛИНЕ «МАТЕМАТИКА» (на базе

Подробнее

16. Криволинейные координаты. Замена переменных в дифференциальных выражениях

16. Криволинейные координаты. Замена переменных в дифференциальных выражениях 16. Криволинейные координаты. Замена переменных в дифференциальных выражениях 16.1. Математическое описание какого-либо процесса нередко сопровождается выделением набора числовых его характеристик и заданием

Подробнее

РЕШЕНИЕ РЕКУРРЕНТНЫХ УРАВНЕНИЙ

РЕШЕНИЕ РЕКУРРЕНТНЫХ УРАВНЕНИЙ РЕШЕНИЕ РЕКУРРЕНТНЫХ УРАВНЕНИЙ Обозначим через значение некоторого выражения при подстановке в него целого числа Тогда зависимость члена последовательности от членов последовательности F F со значениями

Подробнее

Методические рекомендации по выполнению контрольной работы по дисциплине «Элементы высшей математики».

Методические рекомендации по выполнению контрольной работы по дисциплине «Элементы высшей математики». МИНИСТЕРСТВО ОБЩЕГО И ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ РОСТОВСКОЙ ОБЛАСТИ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ПРОФЕССИОНАЛЬНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ РОСТОВСКОЙ ОБЛАСТИ «ДОНСКОЙ БАНКОВСКИЙ КОЛЛЕДЖ» Методические

Подробнее

Методические указания и контрольные задания по математике для обучающихся 2 курса СПО

Методические указания и контрольные задания по математике для обучающихся 2 курса СПО ГАОУ СПО ЛО Киришский политехнический техникум Методические указания и контрольные задания по математике для обучающихся курса СПО Методическая разработка по дисциплине «Математика» Разработала преподаватель

Подробнее

dx dt ОБЩИЙ ВИД РЕШЕНИЯ ЛИНЕЙНОЙ НЕСТАЦИОНАРНОЙ СИСТЕМЫ ФУНКЦИОНАЛЬНО-РАЗНОСТНЫХ УРАВНЕНИЙ Теория обыкновенных дифференциальных уравнений

dx dt ОБЩИЙ ВИД РЕШЕНИЯ ЛИНЕЙНОЙ НЕСТАЦИОНАРНОЙ СИСТЕМЫ ФУНКЦИОНАЛЬНО-РАЗНОСТНЫХ УРАВНЕНИЙ Теория обыкновенных дифференциальных уравнений dx d ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ И ПРОЦЕССЫ УПРАВЛЕНИЯ N 2, 2004 Электронный журнал, рег. N П23275 от 07.03.97 hp://www.neva.ru/journal e-mail: diff@osipenko.su.neva.ru Теория обыкновенных дифференциальных

Подробнее

Математический анализ

Математический анализ Кафедра математики и информатики Математический анализ Учебно-методический комплекс для студентов ВПО, обучающихся с применением дистанционных технологий Модуль 4 Приложения производной Составитель: доцент

Подробнее

НЕЛОКАЛЬНАЯ ОБРАТНАЯ ЗАДАЧА ДЛЯ УРАВНЕНИЯ ЭЛЛИПТИКО-ГИПЕРБОЛИЧЕСКОГО ТИПА

НЕЛОКАЛЬНАЯ ОБРАТНАЯ ЗАДАЧА ДЛЯ УРАВНЕНИЯ ЭЛЛИПТИКО-ГИПЕРБОЛИЧЕСКОГО ТИПА Современная математика и ее приложения. Том 68 (211). С. 4 5 УДК 517.95 НЕЛОКАЛЬНАЯ ОБРАТНАЯ ЗАДАЧА ДЛЯ УРАВНЕНИЯ ЭЛЛИПТИКО-ГИПЕРБОЛИЧЕСКОГО ТИПА c 211 г. К. Б. САБИТОВ, Н. В. МАРТЕМЬЯНОВА АННОТАЦИЯ. Доказывается

Подробнее

МАТЕМАТИЧЕСКИЙ АНАЛИЗ. РЯДЫ ФУРЬЕ

МАТЕМАТИЧЕСКИЙ АНАЛИЗ. РЯДЫ ФУРЬЕ Министерство образования Республики Беларусь Учреждение образования Гомельский государственный университет имени Франциска Скорины Д.П. ЮЩЕНКО, О.В. ЯКУБОВИЧ МАТЕМАТИЧЕСКИЙ АНАЛИЗ. РЯДЫ ФУРЬЕ ТЕКСТЫ ЛЕКЦИЙ

Подробнее

Министерство образования и науки Российской Федерации. РОССИЙСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ НЕФТИ И ГАЗА имени И.М.ГУБКИНА

Министерство образования и науки Российской Федерации. РОССИЙСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ НЕФТИ И ГАЗА имени И.М.ГУБКИНА Министерство образования и науки Российской Федерации РОССИЙСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ НЕФТИ И ГАЗА имени И.М.ГУБКИНА Г.Г. Литова, Д.Ю. Ханукаева ПРЕДЕЛЫ Пособие для студентов, обучающихся по специальности

Подробнее

РЕШЕНИЯ ОЛИМПИАДНЫХ ЗАДАЧ 2014 II курс. Задача 1 (5 баллов) Решение

РЕШЕНИЯ ОЛИМПИАДНЫХ ЗАДАЧ 2014 II курс. Задача 1 (5 баллов) Решение РЕШЕНИЯ ОЛИМПИАДНЫХ ЗАДАЧ II курс Задача ( баллов) Вычислить определитель -го порядка Сложим все строки определителя и запишем в первую строку, получим Вычтем из каждой строки первую строку: ( ) Ответ:

Подробнее

Планируемые результаты освоения алгебры в 7 классе Алгебраические выражения. Уравнения

Планируемые результаты освоения алгебры в 7 классе Алгебраические выражения. Уравнения Программа по алгебре для 7 класса общеобразовательного учреждения. Пояснительная записка Структура программы Программа включает три раздела: 1.Планируемые результаты усвоения алгебры в 7 классе 2.Содержание

Подробнее

ЧИСЛОВЫЕ И ФУНКЦИОНАЛЬНЫЕ РЯДЫ. РЯДЫ ФУРЬЕ.

ЧИСЛОВЫЕ И ФУНКЦИОНАЛЬНЫЕ РЯДЫ. РЯДЫ ФУРЬЕ. Министерство образования Российской Федерации Ульяновский государственный технический университет ЧИСЛОВЫЕ И ФУНКЦИОНАЛЬНЫЕ РЯДЫ РЯДЫ ФУРЬЕ Ульяновск УДК 57(76) ББК 9 я 7 Ч-67 Рецензент кандфиз-матнаук

Подробнее

ТЕМА 3. Собственные значения и собственные векторы вполне непрерывного самосопряженного оператора.

ТЕМА 3. Собственные значения и собственные векторы вполне непрерывного самосопряженного оператора. ТЕМА 3 Собственные значения и собственные векторы вполне непрерывного самосопряженного оператора Основные определения и теоремы Оператор A : E E, действующий в евклидовом пространстве, называется сопряженным

Подробнее

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ПУТЕЙ СООБЩЕНИЯ (МИИТ) МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ПУТЕЙ СООБЩЕНИЯ (МИИТ)

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ПУТЕЙ СООБЩЕНИЯ (МИИТ) МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ПУТЕЙ СООБЩЕНИЯ (МИИТ) МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ПУТЕЙ СООБЩЕНИЯ МИИТ) МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ПУТЕЙ СООБЩЕНИЯ МИИТ) Кафедра "Прикладная математика-1" Ю.С.Семёнов Кафедра "Прикладная математика-1"

Подробнее

28. Устойчивость решений систем обыкновенных дифференциальных уравнений. Прямой метод Ляпунова.

28. Устойчивость решений систем обыкновенных дифференциальных уравнений. Прямой метод Ляпунова. 8 Устойчивость решений систем обыкновенных дифференциальных уравнений Прямой метод Ляпунова ВДНогин 1 о Введение Для того чтобы можно было поставить задачу об устойчивости, необходимо располагать объектом,

Подробнее

Тема 9. Обыкновенные дифференциальные уравнения

Тема 9. Обыкновенные дифференциальные уравнения Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования «Санкт-Петербургский государственный морской технический университет» (СПбГМТУ) Кафедра

Подробнее

С помощью операторов символьного преобразования (используя палитру инструментов Символы).

С помощью операторов символьного преобразования (используя палитру инструментов Символы). Лабораторная работа. Символьные вычисления Системы компьютерной алгебры снабжаются специальным процессором для выполнения аналитических (символьных) вычислений. Его основой является ядро, хранящее всю

Подробнее

Методические указания к решению задач на интегралы с параметром. Учебно-методическое пособие

Методические указания к решению задач на интегралы с параметром. Учебно-методическое пособие МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Нижегородский государственный университет им НИ Лобачевского Методические указания к решению задач на интегралы с параметром Учебно-методическое пособие

Подробнее

1. Устойчивые решения ОДУ. Устойчивые многочлены

1. Устойчивые решения ОДУ. Устойчивые многочлены Глава III. Теория устойчивости 1. Устойчивые решения ОДУ. Устойчивые многочлены III.1.1. Устойчивые решения линейных ОДУ Существенную роль в исследовании различных процессов, поведение которых описывается

Подробнее

12. Определенный интеграл

12. Определенный интеграл 58 Определенный интеграл Пусть на промежутке [] задана функция () Будем считать функцию непрерывной, хотя это не обязательно Выберем на промежутке [] произвольные числа,, 3,, n-, удовлетворяющие условию:

Подробнее

Блинова И.В., Попов И.Ю. Простейшие уравнения математической физики Учебное пособие

Блинова И.В., Попов И.Ю. Простейшие уравнения математической физики Учебное пособие Министерство образования и науки Российской Федерации Федеральное агентство по образованию САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ, МЕХАНИКИ И ОПТИКИ Блинова И.В., Попов

Подробнее

Теоретический материал.

Теоретический материал. 0.5 Логарифмические уравнения и неравенства. Используемая литература:. Алгебра и начала анализа 0- под редакцией А.Н.Колмогорова. Самостоятельные и контрольные работы по алгебре 0- под редакцией Е.П.Ершова

Подробнее

ЛЕКЦИИ ПО МЕТОДАМ МАТЕМАТИЧЕСКОЙ ФИЗИКИ (6 СЕМЕСТР)

ЛЕКЦИИ ПО МЕТОДАМ МАТЕМАТИЧЕСКОЙ ФИЗИКИ (6 СЕМЕСТР) ЛЕКЦИИ ПО МЕТОДАМ МАТЕМАТИЧЕСКОЙ ФИЗИКИ 6 СЕМЕСТР А. А. Пожарский Содержание,, 3 лекции. Обобщенные функции одной переменной 4.. Пространство обобщенных функций 4.. Регулярные обобщенные функции 5.3. Сингулярные

Подробнее

Методические рекомендации по решению задач на тему «пределы функции» для студентов специальности «Производство летательных аппаратов»

Методические рекомендации по решению задач на тему «пределы функции» для студентов специальности «Производство летательных аппаратов» Государственное бюджетное профессиональное учреждение Московской области «Авиационный техникум имени В.А. Казакова» Рассмотрено на заседании предметной цикловой комиссии «Общеобразовательных, математических

Подробнее

Лекция 1.7. Расширение понятия числа. Комплексные числа, действия над ними

Лекция 1.7. Расширение понятия числа. Комплексные числа, действия над ними Лекция.7. Расширение понятия числа. Комплексные числа, действия над ними Аннотация: В лекции указывается на необходимость обобщения понятия числа от натурального до комплексного. Вводятся алгебраическая,

Подробнее

ОПРЕДЕЛЕННЫЙ ИНТЕГРАЛ МЕТОДИЧЕСКИЕ УКАЗАНИЯ И КОНТРОЛЬНЫЕ ЗАДАНИЯ

ОПРЕДЕЛЕННЫЙ ИНТЕГРАЛ МЕТОДИЧЕСКИЕ УКАЗАНИЯ И КОНТРОЛЬНЫЕ ЗАДАНИЯ Министерство образования и науки Украины Севастопольский национальный технический университет ОПРЕДЕЛЕННЫЙ ИНТЕГРАЛ МЕТОДИЧЕСКИЕ УКАЗАНИЯ И КОНТРОЛЬНЫЕ ЗАДАНИЯ для студентов всех специальностей очной формы

Подробнее

Конспект лекций по высшей математике

Конспект лекций по высшей математике Министерство образования Республики Беларусь Учреждение образования «Брестский государственный технический университет» Кафедра высшей математики Конспект лекций по высшей математике для студентов экономических

Подробнее

МЕТОДИЧЕСКОЕ ПОСОБИЕ. Методические рекомендации для выполнения практических работ по дисциплине «Математика»

МЕТОДИЧЕСКОЕ ПОСОБИЕ. Методические рекомендации для выполнения практических работ по дисциплине «Математика» МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ БРАТСКИЙ ЦЕЛЛЮЛОЗНО БУМАЖНЫЙ КОЛЛЕДЖ ФЕДЕРАЛЬНОГО ГОСУДАРСТВЕННОГО БЮДЖЕТНОГО ОБРАЗОВАТЕЛЬНОГО УЧРЕЖДЕНИЯ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «БРАТСКИЙ

Подробнее

Московский государственный технический университет. имени Н.Э.Баумана. Ф.Х. Ахметова, С.Н. Ефремова, Т.А. Ласковая ВВЕДЕНИЕ В АНАЛИЗ. ТЕОРИЯ ПРЕДЕЛОВ.

Московский государственный технический университет. имени Н.Э.Баумана. Ф.Х. Ахметова, С.Н. Ефремова, Т.А. Ласковая ВВЕДЕНИЕ В АНАЛИЗ. ТЕОРИЯ ПРЕДЕЛОВ. Московский государственный технический университет имени Н.Э.Баумана Ф.Х. Ахметова, С.Н. Ефремова, Т.А. Ласковая ВВЕДЕНИЕ В АНАЛИЗ. ТЕОРИЯ ПРЕДЕЛОВ. Часть Методические указания к выполнению домашнего задания

Подробнее

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование»

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ Московский государственный технический университет имени Н.Э. Баумана Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» À.Í. Êàíàòíèêîâ,

Подробнее

{тригонометрический ряд тригонометрическая система примеры - разложение на интервале [ -l; l ] для функций произвольного периода - неполные ряды

{тригонометрический ряд тригонометрическая система примеры - разложение на интервале [ -l; l ] для функций произвольного периода - неполные ряды {тригонометрический ряд тригонометрическая система примеры - разложение на интервале [ -l; l ] для функций произвольного периода - неполные ряды разложение по синусам и косинусам четные и нечетные продолжения}

Подробнее

Д. Г. Орловский. ОПРЕДЕЛЕННЫЙ ИНТЕГРАЛ. ПРАКТИКУМ Часть 1

Д. Г. Орловский. ОПРЕДЕЛЕННЫЙ ИНТЕГРАЛ. ПРАКТИКУМ Часть 1 Министерство образования и науки Российской Федерации Национальный исследовательский ядерный университет МИФИ Д. Г. Орловский ОПРЕДЕЛЕННЫЙ ИНТЕГРАЛ. ПРАКТИКУМ Часть Рекомендовано УМО Ядерные физика и технологии

Подробнее

Определенный интеграл. Несобственный интеграл.

Определенный интеграл. Несобственный интеграл. министерство образования и науки российской федерации Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Новосибирский национальный исследовательский

Подробнее

Список задач. для итогового контроля знаний по математическому анализу Группа НМ-101 Семестр 2. x x dx;

Список задач. для итогового контроля знаний по математическому анализу Группа НМ-101 Семестр 2. x x dx; Список задач для итогового контроля знаний по математическому анализу Группа НМ-101 Семестр 2 I. Неопределённый интеграл. Вычислить интеграл: 1. 1 sin 2x (0 x π); 2. 3. x 2 + 1 x 4 + 1 ; 3 sin 2 x 8 sin

Подробнее