Теория вероятностей и математическая статистика Конспект лекций

Save this PDF as:
 WORD  PNG  TXT  JPG

Размер: px
Начинать показ со страницы:

Download "Теория вероятностей и математическая статистика Конспект лекций"

Транскрипт

1 Министерство образования и науки РФ ФБОУ ВПО Уральский государственный лесотехнический университет ИНСТИТУТ ЭКОНОМИКИ И УПРАВЛЕНИЯ Кафедра высшей математики Теория вероятностей и математическая статистика Конспект лекций для направления Экономика В.М. Мухина, С.С. Рублева 04

2 Содержание. Теория вероятностей Математическая статистика... 0

3 . Теория вероятностей (лекции 8 ч., практические занятия 6 ч.) Содержание раздела рабочей программы Элементы комбинаторики. Соединения, перестановки, сочетания. Основные понятия теории вероятностей. Теоремы сложения и умножения вероятностей. Полная вероятность. Формула Байеса. Случайные величины, их числовые характеристики, важнейшие законы распределения. Основные понятия теории вероятногстей Классификация событий в условиях данного испытания Достоверное Невозможное Случайное A, B, C Совместные Несовместные Равновозможные Противоположное A Полная группа событий H, H,... H,... H обязательно произойдет не может произойти может произойти, а может не произойти появление одного из них не исключает появление остальных появление одного из них исключает появление остальных ни одно из событий не является объективно более возможным, чем другое обязательно произойдет, если не произойдет A несовместные, исчерпывают все возможные исходы испытания Классическое определение вероятности Пусть все исходы испытания равновозможны и образуют полную группу событий, тогда m PA ( ), где m число исходов, благоприятных для A, число всех возможных исходов испытания. 3

4 W A Статистическое определение вероятности M относительная частота события A, N где M число опытов, в которых наступает событие A, N число всех опытов. P( A) W ( A) при достаточно большом N. еометрическое определение вероятности Событие A попадание точки в область D D PA ( ), где D площадь области D, площадь области. Свойства вероятностей 0 P ( A ), P ( ) 0, P ( ), P A P ( A ). Алгебра событий Сумма событий ( A B) A событие, состоящее в появлении хотя бы одного из событий A или B событие, состоящее в появлении хотя бы одного из событий A, Произведение событий ( AB ) A событие, состоящее в появлении события A и события B событие, состоящее в совместном появлении всех событий A, Условная вероятность P( A B ) P( A B ) вероятность события A, вычисленная при условии, что событие B уже произошло. 4

5 Зависимые и независимые события Два случайных события A и B называются независимыми, если появление одного не влияет на вероятность появления другого, т.е. P( A B) P( A), в противном случае события A и B зависимые. Сложение вероятностей P( A B) P( A) P( B) P( AB) Если A и B несовместные события, то P( A B) P( A) P( B). Если события H, образуют полную группу, то P H. Умножение вероятностей P( AB) P( A) P( B A) P( B) P A B Если A и B независимые, то P( AB) P( A) P( B) Вероятность наступления хотя бы одного из независимых событий P( A A... A ) P A P A... P A Формула полной вероятности. Формула Байеса Пусть событие A может наступить лишь при появлении одного из событий H, H,... H, образующих полную группу, тогда P A P H P A H P H P A H P H P A H ( ) ( ) ( )... PH P A H формула полной вероятности. P H A PHP A H формула Байеса, где P A PH P A H PA ( ). 5

6 Повторные независимые испытания (серия испытаний) число независимых испытаний; p P( A) вероятность появления события A в каждом испытании; q p вероятность не появления события A; P вероятность того, что в повторных испытаниях событие A наступает ровно раз; P вероятность того, что в повторных испытаниях событие A наступит не менее и не более раз. Формулы вычисления вероятностей Название Формула Условия применения Формула Бернулли P ( ) C p q 0 Формула Пуассона e P ( ), p! 0; p 0,; 0 Локальная теорема Лапласа где ( ) ( ), p P, pq pq ( ) e, ( ) ( ) 0; значения ( ) находятся по таблице, ( 4) 0 P( ) ( ) ( ) Интегральная теорема Лапласа p, p ; pq pq где ( ) e d функция Лапласа, 0 0; значения ( ) находятся по таблице, ( 5) 0,5; ( ) ( ). 6

7 Вероятность отклонения относительной частоты m от m P p pq вероятности p 0 наивероятнейшее число появлений события A в испытаниях p q 0 p p Случайные величины Случайная величина X действительная переменная, принимающая в результате испытания одно из возможных значений. Дискретная случайная величина принимает отдельные изолированные значения. Непрерывная случайная величина принимает значения, сплошь заполняющие некоторый интервал. Закон распределения случайной величины X всякое соотношение между возможными значениями случайной величины и соответствующими им вероятностями. Дискретные случайные величины Непрерывные случайные величины Функция распределения вероятностей F( ) P( X ). 0 F( ), ( ; ); lm F( ) 0; lm F( ) ; Свойства функций распределения: F( ) неубывающая функция; P( X ) F( ) F( ) F( ) непрерывные и дифференцируемые для непрерывной случайной величины 7

8 Закон распределения X p p p p p Плотность распределения вероятностей f ( ) F( ), f ( ) d 0, p, p p, 3 F( )... p p... p,, F( ) f ( t) dt 3 Многоугольник распределения P( ) f ( ) d. Числовые характеристики случайных величин Математическое ожидание M( X ) характеризует среднее значение случайной величины. Дисперсия DX ( ) мера рассеяния случайной величины относительно математического ожидания. ( X ) D( X ) среднее квадратичное отклонение 8

9 Дискретная случайная величина Непрерывная случайная величина M ( X ) p p... p p D( X) M( X M( X)) M( X ) ( M( X)) M ( X ) f ( ) d D( X ) ( M ( X )) f ( ) d f ( ) d ( M ( X )) Основные распределения случайных величин Название закона Формула M( X) DX ( ) Примечание Биномиальный P( ) C p q p pq 0, Пуассона Равномерный e P ( ), p! 0, a a b b a f ( ), a b b a 0, b ( ) 0; 0 0, a a F( ), a b b a, b Показательный 0, 0 f( ) e, 0 0 0, 0 F ( ) e, 0 Нормальный Na (, ) ( a) f ( ) e a a a P( ) P a a F ( ) 9

10 . Математическая статистика (лекции 8 ч., практические занятия ч., лабораторные работы 0 ч.) Содержание раздела рабочей программы Статистическое распределение выборки, вариационный ряд и его характеристики. Оценки параметров распределения. Проверка статистических гипотез. Элементы регрессионного и корреляционного анализа. Основные понятия енеральная совокупность (.С.) совокупность объектов, подлежащая изучению относительно некоторого признака X. Выборка часть объектов.с., отобранных случайным образом. X изучаемый признак; значения изучаемого признака (варианта); N частота варианты в.с.; частота варианты в выборке; N N объем генеральной совокупности; объем выборки; W относительная частота варианты в выборке. Числовые характеристики генеральной совокупности X K N N генеральная средняя. K ( ) X N N генеральная дисперсия. генеральное среднее квадратичное отклонение. 0

11 Статистические распределения выборки Дискретное распределение..., Интервальное распределение m, ma наименьшая и наибольшая варианты выборки, R ma m размах вариации, число интервалов, ma m h длина интервала, частота появления признака в интервале,,., интервал,, 3, частота Замечание: при переходе от интервального распределения к дискретному середина -го интервала, частота появления признака в этом интервале. Числовые характеристики выборки в выборочная средняя в D выборочная дисперсия в в Dв в в выборочное среднее квадратичное отклонение в Dв

12 Оценки параметров генеральной совокупности точечная оценка параметра ; по выборке Точечные оценки ; несмещенная оценка параметра, если M( ) в несмещенная оценка математического ожидания; D в несмещенная оценка дисперсии (исправленная дисперсия); исправленное среднее квадратичное отклонение. Интервальные оценки Доверительным называют интервал,, который покрывает неизвестный параметр с заданной надежностью (вероятностью). уровень значимости,, P точность оценки, принимает значения: 0,9; 0,95; 0,99; 0,999. Таблица доверительных интервалов для параметров нормально распределенной генеральной совокупности Оцениваемый параметр.с. ( X распределена по нормальному закону) Условие Доверительный интервал Примечание m мат. ожидание известно m в t в m в t ( t) () t - функция Лапласа (t - находится по таблице)

13 t -значение m неизвестно t в m в t статистики Стьюдента при, - число степеней свободы, t - находится по таблице дисперсия 30 ( ) ( ) -значение статистики, -число степеней свободы 30 q q ( ) ( ) q(, ) -находятся по таблице Статистические гипотезы Статистической гипотезой H называют предположение относительно параметров или вида распределения случайной величины X. H 0 нулевая (основная) гипотеза; H альтернативная (конкурирующая) гипотеза; Критерием для проверки статистических гипотез называется правило, определяющее выбор между гипотезами H 0 и H. Критерий задается в виде функции выборки Z,,..., и является случайной величиной. Функцию выборки Z называют статистикой. Критическая область совокупность всех значений критерия Z, при которых нулевую гипотезу отвергают. Область принятия гипотезы совокупность всех значений критерия Z, при которых гипотезу H 0 принимают. Критические точки точки, отделяющие критическую область от области принятия гипотезы. 3

14 Для определения критической точки используется уровень значимости и вид альтернативной гипотезы H. Пусть H 0 : 0. Тогда H может иметь вид: H : б) H: 0 в) H: 0 а) 0 левосторонняя правосторонняя двусторонняя критическая критическая критическая область область область План проверки статистической гипотезы Сформулировать основную гипотезу H 0 и альтернативную H. Выбрать статистику Z и найти значение статистики Z набл по выборочным данным. 3 Задать уровень значимости, найти Z (, ) по таблице, где число степеней свободы критерия, и определить критическую область. 4 Сравнить значения Z набл и Z кр кр, и принять решение: а) если значение Z набл не входит в критическую область, то принимается гипотеза H 0 ; б) если значение Z набл входит в критическую область, то принимается H и отвергается H 0. 4

15 Проверка гипотезы о законе распределения по критерию согласия (Пирсона) H 0 предполагаемый закон распределения генеральной совокупности, H альтернативная гипотеза; l ( ) Z набл критерий (Пирсона);, p, l l p l l где p P X теоретическая вероятность; p теоретическая частота; интервал, l количество интервалов после объединения малочисленных ( 5) с соседними.. Замечание: ; ; p 3 p p p кр (, ) находится по таблице распределения ; где l r число степеней свободы, r число параметров теоретического распределения; уровень значимости. Если теоретическое распределение нормальное или равномерное, то r. Если теоретическое распределение показательное или Пуассона, то r. 4 Если, то нет оснований отвергнуть гипотезу 0 набл кр H. Если, то гипотеза 0 набл кр H отвергается. 5

16 Корреляционный анализ. Основные понятия Корреляция (correlato) это вероятностная (статистическая) зависимость между случайными величинами, не имеющая строго функционального характера. Корреляционный анализ предполагает: Построение корреляционной таблицы \ y y y y m m m m m y y y y Вычисление выборочного коэффициента корреляции r в r в j y j j в в y где, y выборочные средние признаков X и Y ; в в, исправленные средние квадратичные отклонения; y частота пары значений (, y ), j y j j 0 r в, если rв 0, то X и Y не связаны линейной корреляционной зависимостью если rв, то между X и Y существует функциональная линейная зависимость 6

17 3 Проверка значимости корреляционной связи Регрессионный анализ Регрессия зависимость среднего значения какой-либо величины от одной или нескольких других величин. Регрессионный анализ предполагает: Определение общего вида уравнения регрессии (математическая модель) Вычисление статистических оценок неизвестных параметров, входящих в уравнение регрессии. y Линейная регрессия y y уравнение теоретической линии регрессии,, параметры. y y a b a by выборочная (эмпирическая) регрессия Y на X ( X на Y ), является оценкой теоретической линейной регрессии и находится по результатам наблюдений (выборочным данным). ab, несмещенные оценки параметров и. Уравнения линейной регрессии по выборочным данным Y X y yв rв ( в ); y в rв ( y yв); X выборочные коэффициенты регрессии: Y b Y rв X b X rв Y 7


8. ПРИМЕРНЫЕ ВОПРОСЫ ДЛЯ ПОДГОТОВКИ К ЭКЗАМЕНУ (ЗАЧЕТУ) ПО ДИСЦИПЛИНЕ

8. ПРИМЕРНЫЕ ВОПРОСЫ ДЛЯ ПОДГОТОВКИ К ЭКЗАМЕНУ (ЗАЧЕТУ) ПО ДИСЦИПЛИНЕ 8. ПРИМЕРНЫЕ ВОПРОСЫ ДЛЯ ПОДГОТОВКИ К ЭКЗАМЕНУ (ЗАЧЕТУ) ПО ДИСЦИПЛИНЕ 1. Основные понятия и определения теории вероятностей. Виды случайных событий. Классическое и статистическое определение вероятности

Подробнее

Экзаменационный билет 3

Экзаменационный билет 3 Экзаменационный билет 1 1. Принцип умножения. 2. Построение функции распределения для дискретной случайной величины. 3. Генеральная и выборочная совокупности, свойство репрезентативности. Экзаменационный

Подробнее

1. (10;20) 2. (15;25) 3. (10;15) 4. (5;25) 5. (0;20) Тогда статистическая оценка математического ожидания равна

1. (10;20) 2. (15;25) 3. (10;15) 4. (5;25) 5. (0;20) Тогда статистическая оценка математического ожидания равна Тема: Математическая статистика Дисциплина: Математика Авторы: Нефедова Г.А.. Точечная оценка параметра равна 5. Укажите, какой вид может иметь интервальная оценка:. (0;0). (5;5) 3. (0;5) 4. (5;5) 5. (0;0).

Подробнее

КОС включают контрольные материалы для проведения промежуточной аттестации в форме дифференцированного зачета

КОС включают контрольные материалы для проведения промежуточной аттестации в форме дифференцированного зачета 1. Общие положения Контрольно-оценочные средства (КОС) предназначены для контроля и оценки образовательных достижений обучающихся, освоивших программу учебной дисциплины «Теория вероятностей и математическая

Подробнее

Расчетно-графическая работа

Расчетно-графическая работа Расчетно-графическая работа РГР на тему «Статистический анализ экспериментальных данных» Дана выборка объем генеральной совокупности. 1) Построить статистический ряд распределения и многоугольник распределения.

Подробнее

Глоссарий. Вариационный ряд группированный статистический ряд

Глоссарий. Вариационный ряд группированный статистический ряд Глоссарий Вариационный ряд группированный статистический ряд Вариация - колеблемость, многообразие, изменчивость значения признака у единиц совокупности. Вероятность численная мера объективной возможности

Подробнее

Формулы по теории вероятностей

Формулы по теории вероятностей Формулы по теории вероятностей I. Случайные события. Основные формулы комбинаторики а) перестановки P =! = 3...( ). б) размещения A m = ( )...( m + ). A! в) сочетания C = =. P ( )!!. Классическое определение

Подробнее

Методические указания к практическим (семинарским) занятиям

Методические указания к практическим (семинарским) занятиям Методические указания к практическим (семинарским) занятиям Практические занятия (семинары) 3-й семестр п/п С1 С2 С3 С4 С5 С6 раздела дисциплины Наименование практических занятий (семинаров) Комбинаторика:

Подробнее

ОПОРНЫЕ СХЕМЫ ПО ТЕОРИИ ВЕРОЯТНОСТЕЙ И МАТЕМАТИЧЕСКОЙ СТАТИСТИКЕ

ОПОРНЫЕ СХЕМЫ ПО ТЕОРИИ ВЕРОЯТНОСТЕЙ И МАТЕМАТИЧЕСКОЙ СТАТИСТИКЕ МИНИСТЕРСТВО ТРАНСПОРТА РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ УЛЬЯНОВСКОЕ ВЫСШЕЕ АВИАЦИОННОЕ УЧИЛИЩЕ ГРАЖДАНСКОЙ АВИАЦИИ (ИНСТИТУТ)

Подробнее

ОГЛАВЛЕНИЕ Введение ЧАСТЬ ПЕРВАЯ СЛУЧАЙНЫЕ СОБЫТИЯ

ОГЛАВЛЕНИЕ Введение ЧАСТЬ ПЕРВАЯ СЛУЧАЙНЫЕ СОБЫТИЯ ОГЛАВЛЕНИЕ Введение...... 14 ЧАСТЬ ПЕРВАЯ СЛУЧАЙНЫЕ СОБЫТИЯ Глава первая. Основные понятия теории вероятностей... 17 1. Испытания и события... 17 2. Виды случайных событий... 17 3. Классическое определение

Подробнее

Зав. кафедрой математики, физики и медицинской информатики, доцент. /Авачева Т.Г./ «22» сентября 2017г.

Зав. кафедрой математики, физики и медицинской информатики, доцент. /Авачева Т.Г./ «22» сентября 2017г. Перечень Основных контрольных вопросов для зачета (экзамена) по дисциплине Физика, математика, модуль М атематика, для студентов 1 курса медикопрофилактического факультета 1. Понятие функции. Способы задания

Подробнее

Вопросы к зачету по математике. IV семестр

Вопросы к зачету по математике. IV семестр Вопросы к зачету по математике для студентов заочной формы обучения специальностей: 900. ААХ, 00. МОЛК, 900. СТТМО IV семестр Теория вероятностей и математическая статистика.. Элементы комбинаторики..

Подробнее

Федеральное агентство по образованию. Государственное образовательное учреждение высшего профессионального образования

Федеральное агентство по образованию. Государственное образовательное учреждение высшего профессионального образования Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования «МАТИ» Российский государственный технологический университет им. К.Э. Циолковского

Подробнее

Теория вероятностей и математическая статистика

Теория вероятностей и математическая статистика Частное образовательное учреждение высшего образования «Ростовский институт защиты предпринимателя» (РИЗП) РАССМОТРЕНО И СОГЛАСОВАНО на заседании кафедры «Бухгалтерский учет и экономика» 11 от 30.06.2017

Подробнее

ОГЛАВЛЕНИЕ ЧАСТЬ I. ЛЕКЦИИ... 8 ВВЕДЕНИЕ... 9 ЛЕКЦИЯ

ОГЛАВЛЕНИЕ ЧАСТЬ I. ЛЕКЦИИ... 8 ВВЕДЕНИЕ... 9 ЛЕКЦИЯ ОГЛАВЛЕНИЕ ЧАСТЬ I. ЛЕКЦИИ... 8 ВВЕДЕНИЕ... 9 ЛЕКЦИЯ 1... 13 ВВЕДЕНИЕ В ТЕОРИЮ ВЕРОЯТНОСТЕЙ... 13 1. Определение теории вероятностей... 13 2. Некоторые примеры... 14 3. Устойчивость частот в массовых статистических

Подробнее

ТЕОРИЯ ВЕРОЯТНОСТЕЙ И МАТЕМАТИЧЕСКАЯ СТАТИСТИКА

ТЕОРИЯ ВЕРОЯТНОСТЕЙ И МАТЕМАТИЧЕСКАЯ СТАТИСТИКА ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ БЮДЖЕТНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ ФИНАНСОВЫЙ УНИВЕРСИТЕТ ПРИ ПРАВИТЕЛЬСТВЕ РОССИЙСКОЙ ФЕДЕРАЦИИ (Пензенский филиал) Кафедра «Менеджмент, информатика и

Подробнее

Б1.Б.9 Теория вероятностей и математическая статистика наименование дисциплин/практики

Б1.Б.9 Теория вероятностей и математическая статистика наименование дисциплин/практики АННОТАЦИЯ РАБОЧЕЙ ПРОГРАММЫ ДИСЦИПЛИНЫ/ПРАКТИКИ Б1.Б.9 Теория вероятностей и математическая статистика наименование дисциплин/практики Автор: канд. физ.-мат. наук, доцент кафедры информационных систем

Подробнее

Методические указания к решению контрольной работы 4 по дисциплине «Математика» для студентов второго курса строительных специальностей

Методические указания к решению контрольной работы 4 по дисциплине «Математика» для студентов второго курса строительных специальностей Методические указания к решению контрольной работы 4 по дисциплине «Математика» для студентов второго курса строительных специальностей Кафедра высшей математики 3 А.В. Капусто Минск 018 018 Кафедра высшей

Подробнее

Вопросы к экзамену по дисциплине «ТЕОРИЯ ВЕРОЯТНОСТЕЙ и МАТЕМАТИЧЕСКАЯ СТАТИСТИКА»

Вопросы к экзамену по дисциплине «ТЕОРИЯ ВЕРОЯТНОСТЕЙ и МАТЕМАТИЧЕСКАЯ СТАТИСТИКА» Дисциплина: «ТЕОРИЯ ВЕРОЯТНОСТЕЙ И МАТЕМАТИЧЕСКАЯ СТАТИСТИКА» Специальность: Факультет: «МЕДИКО-БИОЛОГИЧЕСКИЙ» Учебный год: 016-017 Вопросы к экзамену по дисциплине «ТЕОРИЯ ВЕРОЯТНОСТЕЙ и МАТЕМАТИЧЕСКАЯ

Подробнее

МГАПИ. Типовой расчет по высшей математике. Раздел: «Теория вероятностей» Вариант 31

МГАПИ. Типовой расчет по высшей математике. Раздел: «Теория вероятностей» Вариант 31 МГАПИ Типовой расчет по высшей математике Раздел: «Теория вероятностей» Вариант 31 Задача 1. Наладчик обслуживает одновременно 3 автоматических станках. Вероятность того, что в течение часа станки будут

Подробнее

«ТЮМЕНСКИЙ ГОСУДАРСТВЕННЫЙ НЕФТЕГАЗОВЫЙ УНИВЕРСИТЕТ» ИНСТИТУТ КИБЕРНЕТИКИ, ИНФОРМАТИКИ И СВЯЗИ

«ТЮМЕНСКИЙ ГОСУДАРСТВЕННЫЙ НЕФТЕГАЗОВЫЙ УНИВЕРСИТЕТ» ИНСТИТУТ КИБЕРНЕТИКИ, ИНФОРМАТИКИ И СВЯЗИ ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «ТЮМЕНСКИЙ ГОСУДАРСТВЕННЫЙ НЕФТЕГАЗОВЫЙ УНИВЕРСИТЕТ» ИНСТИТУТ КИБЕРНЕТИКИ, ИНФОРМАТИКИ

Подробнее

3. УЧЕБНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ ТЕОРИЯ ВЕРОЯТНОСТЕЙ. Раздел 1. Случайные события

3. УЧЕБНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ ТЕОРИЯ ВЕРОЯТНОСТЕЙ. Раздел 1. Случайные события 3. УЧЕБНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ Конспект лекций (сокращенный) по теории вероятностей и математической статистике ТЕОРИЯ ВЕРОЯТНОСТЕЙ Раздел 1. Случайные события Лекция 1 1. Основные понятия

Подробнее

Контрольная работа 4

Контрольная работа 4 Контрольная работа 4 Тема: Теория вероятностей З а д а ч и 1-10 Задачи 1-10 посвящены вычислениям вероятности событий с использованием основных теорем теории вероятности и комбинаторики. Конкретный пример

Подробнее

Задачи по математической статистике

Задачи по математической статистике Задачи по математической статистике Задача. По данным распределения возрастного состава участников революционного движения в России 70-х годов 9-го века была построена следующая таблица Возраст 7-3 3-9

Подробнее

Для удобства вычислений генеральной средней и среднего квадратического отклонения составляем таблицу. σ = 874,02 874,020 29,200 = 21,380

Для удобства вычислений генеральной средней и среднего квадратического отклонения составляем таблицу. σ = 874,02 874,020 29,200 = 21,380 Задание. По выборочным данным оценить генеральную среднюю, генеральную дисперсию и среднее квадратическое отклонение. Построить полигон относительных частот. Эти же данные разбить на 5 интервалов. По интервальному

Подробнее

Полное исследование выборки

Полное исследование выборки Полное исследование выборки ЗАДАНИЕ. Требуется для решения: - Построить интервальный ряд распределения, для каждого интервала подсчитать локальные, а также накопленные частоты, построить вариационный ряд.

Подробнее

Общие сведения 1. Кафедра Математики, физики и информационных технологий 2. Направление подготовки

Общие сведения 1. Кафедра Математики, физики и информационных технологий 2. Направление подготовки Этап формирования компетенции (разделы, темы дисциплины) Формируемая компетенция Формы контроля сформированност и компетенций Фонд оценочных средств для проведения промежуточной аттестации обучающихся

Подробнее

. Таким образом, вероятность того, что на каждом этаже выйдет по одному пассажиру. m n. которая носит название формулы полной вероятности.

. Таким образом, вероятность того, что на каждом этаже выйдет по одному пассажиру. m n. которая носит название формулы полной вероятности. МВДубатовская Теория вероятностей и математическая статистика Методические рекомендации к решению задач из экзаменационного задания Семь человек вошли в лифт на первом этаже восьмиэтажного дома Считая,

Подробнее

Интернет-экзамен в сфере профессионального образования

Интернет-экзамен в сфере профессионального образования Интернет-экзамен в сфере профессионального образования Специальность: 230201.65 Информационные системы и технологии Дисциплина: Математика (ТВ и МС) Время выполнения теста: 20 минут Количество заданий:

Подробнее

Требования к результатам освоения дисциплины:

Требования к результатам освоения дисциплины: 1. Цели и задачи дисциплины: получение базовых знаний и формирование основных навыков по теории вероятностей и математической статистике, необходимых для решения задач, возникающих в практической экономической

Подробнее

«Теория вероятностей и математическая статистика»

«Теория вероятностей и математическая статистика» «КАЗАНСКИЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ» ИНСТИТУТ ЭКОНОМИКИ И ФИНАНСОВ Кафедра математики и экономической информатики Методическая разработка по дисциплине «Теория вероятностей и математическая статистика»

Подробнее

Контрольное задание

Контрольное задание http://wwwzachetru/ Контрольное задание Задача Построить полигон относительных частот по данным вариационного ряда ( 0): 3 6 7 0 m 8 0 3 3 Решение 3 6 7 0 m 8 0 3 3 m Полигон относительных частот: 0073

Подробнее

Теоретические вопросы.

Теоретические вопросы. МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ГРАЖДАНСКОЙ АВИАЦИИ Кафедра высшей математики. Дисциплина Математика Специальность 160505. Курс 2. Осенний семестр 2012 года Теоретические вопросы. РАЗДЕЛ

Подробнее

Критерии и показатели оценивания компетенций на различных этапах их формирования

Критерии и показатели оценивания компетенций на различных этапах их формирования Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине (модулю) Общие сведения 1. Кафедра. Направление подготовки. Дисциплина (модуль) Математики, физики и информационных

Подробнее

1 ПАСПОРТ ПРОГРАММЫ УЧЕБНОЙ

1 ПАСПОРТ ПРОГРАММЫ УЧЕБНОЙ СОДЕРЖАНИЕ 1 ПАСПОРТ ПРОГРАММЫ УЧЕБНОЙ ДИСЦИПЛИНЫ СТРУКТУРА И СОДЕРЖАНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ 3 УСЛОВИЯ РЕАЛИЗАЦИИ ПРОГРАММЫ УЧЕБНОЙ ДИСЦИПЛИНЫ КОНТРОЛЬ И ОЦЕНКА РЕЗУЛЬТАТОВ ОСВОЕНИЯ УЧЕБНОЙ ДИСЦИПЛИНЫ 3

Подробнее

ОГЛАВЛЕНИЕ. ЧАСТЬ 1. Случайные события и их вероятности XCQ ПРЕДИСЛОВИЕ 3 ВВЕДЕНИЕ 5

ОГЛАВЛЕНИЕ. ЧАСТЬ 1. Случайные события и их вероятности XCQ ПРЕДИСЛОВИЕ 3 ВВЕДЕНИЕ 5 ОГЛАВЛЕНИЕ ПРЕДИСЛОВИЕ 3 ВВЕДЕНИЕ 5 ЧАСТЬ 1. Случайные события и их вероятности Глава 1. Понятие вероятности 1.1. Виды случайных событий. Дискретное множество элементарных событий. Множество исходов опыта

Подробнее

Учебно-методический комплекс по курсу «ОСНОВЫ ТЕОРИИ ВЕРОЯТНОСТЕЙ И МАТЕМАТИЧЕСКОЙ СТАТИСТИКИ» Пояснительная записка

Учебно-методический комплекс по курсу «ОСНОВЫ ТЕОРИИ ВЕРОЯТНОСТЕЙ И МАТЕМАТИЧЕСКОЙ СТАТИСТИКИ» Пояснительная записка Учебно-методический комплекс по курсу «ОСНОВЫ ТЕОРИИ ВЕРОЯТНОСТЕЙ И МАТЕМАТИЧЕСКОЙ СТАТИСТИКИ» Пояснительная записка Курс Основы теории вероятностей и математической статистики относится к циклу естественнонаучных

Подробнее

УЧЕБНАЯ ПРОГРАММА ПО ДИСЦИПЛИНЕ

УЧЕБНАЯ ПРОГРАММА ПО ДИСЦИПЛИНЕ Учреждение образования «Белорусский государственный педагогический университет имени Максима Танка» Институт повышения квалификации и переподготовки Факультет переподготовки специалистов образования Кафедра

Подробнее

200 взятая деталь изготовлена первым, вторым и третьим цехами соответственно. Из условия следуют:

200 взятая деталь изготовлена первым, вторым и третьим цехами соответственно. Из условия следуют: . На складе 00 деталей, из которых 00 изготовлено цехом, 60 цехом и 40 цехом. Вероятность брака для цеха %, для цеха % и для цеха %. Наудачу взятая со слада деталь оказалась бракованной. Найти вероятность

Подробнее

Учебник рассчитан на читателей, знакомых с курсом высшей математики в объеме дифференциального и интегрального исчисления функций одной переменной.

Учебник рассчитан на читателей, знакомых с курсом высшей математики в объеме дифференциального и интегрального исчисления функций одной переменной. Учебник рассчитан на читателей, знакомых с курсом высшей математики в объеме дифференциального и интегрального исчисления функций одной переменной. Представленный материал охватывает элементарные вопросы

Подробнее

ЧАСТЬ I. ТЕОРИЯ ВЕРОЯТНОСТЕЙ

ЧАСТЬ I. ТЕОРИЯ ВЕРОЯТНОСТЕЙ Предисловие о ЧАСТЬ I. ТЕОРИЯ ВЕРОЯТНОСТЕЙ Глава 1. События и вероятности 13 1.1. Элементы комбинаторики 13 1.2. События 16 1.3. Понятие вероятности 17 1.4. Действия над событиями 21 1.5. Теорема сложения

Подробнее

Кисловодский гуманитарно-технический институт РАБОЧАЯ ПРОГРАММА. по дисциплине «ТЕОРИЯ ВЕРОЯТНОСТЕЙ И МАТЕМАТИЧЕСКАЯ СТАТИСТИКА»

Кисловодский гуманитарно-технический институт РАБОЧАЯ ПРОГРАММА. по дисциплине «ТЕОРИЯ ВЕРОЯТНОСТЕЙ И МАТЕМАТИЧЕСКАЯ СТАТИСТИКА» Кисловодский гуманитарно-технический институт РАБОЧАЯ ПРОГРАММА по дисциплине «ТЕОРИЯ ВЕРОЯТНОСТЕЙ И МАТЕМАТИЧЕСКАЯ СТАТИСТИКА» для бакалавров направления 27.03.04 «Управление в технических системах» Кисловодск,2016

Подробнее

ОБРАБОТКА СТАТИСТИЧЕСКИХ ДАННЫХ Методические указания

ОБРАБОТКА СТАТИСТИЧЕСКИХ ДАННЫХ Методические указания ОБРАБОТКА СТАТИСТИЧЕСКИХ ДАННЫХ Методические указания Министерство образования и науки Российской Федерации Уральский федеральный университет имени первого Президента России Б. Н. Ельцина ОБРАБОТКА СТАТИСТИЧЕСКИХ

Подробнее

X и значения k и c, а также вероятность попадания случайной величины в интервал (a/2, b/2). Построить график функции распределения.

X и значения k и c, а также вероятность попадания случайной величины в интервал (a/2, b/2). Построить график функции распределения. Оценочные средства для текущего контроля успеваемости, промежуточной аттестации по итогам освоения дисциплины и учебно-методическое обеспечение самостоятельной работы студентов 1 Варианты контрольной работы

Подробнее

ТЕМА 11. Статистическая проверка гипотез Основные определения и идеи

ТЕМА 11. Статистическая проверка гипотез Основные определения и идеи ТЕМА 11. Статистическая проверка гипотез Цель контента темы 11 изложить основные критерии проверки статистических гипотез. Задачи контента темы 11: Сформулировать задачу проверки статистических гипотез.

Подробнее

Контрольная работа из учебно-методического пособия «Теория вероятностей и математическая статистика» под ред. проф. Н.Ш. Кремера. М.:ВЗФЭИ, 2008.

Контрольная работа из учебно-методического пособия «Теория вероятностей и математическая статистика» под ред. проф. Н.Ш. Кремера. М.:ВЗФЭИ, 2008. Контрольная работа из учебно-методического пособия «Теория вероятностей и математическая статистика» под ред. проф. Н.Ш. Кремера. М.:ВЗФЭИ, 008. ВАРИАНТ (для студентов, номера личных дел которых оканчиваются

Подробнее

Таким образом, искомый закон распределения: Проверка: 0, , , ,504 = 1

Таким образом, искомый закон распределения: Проверка: 0, , , ,504 = 1 Другие ИДЗ Рябушко можно найти на странице http://mathpro.ru/dz_ryabushko_besplatno.html ИДЗ-8. Найти закон распределения указанной случайной величины X и ее функцию распределения F (X ). Вычислить математическое

Подробнее

РУКОВОДСТВО К РЕШЕНИЮ ЗАДАЧ ПО ТЕОРИИ ВЕРОЯТНОСТЕЙ И МАТЕМАТИЧЕСКОЙ СТАТИСТИКЕ

РУКОВОДСТВО К РЕШЕНИЮ ЗАДАЧ ПО ТЕОРИИ ВЕРОЯТНОСТЕЙ И МАТЕМАТИЧЕСКОЙ СТАТИСТИКЕ В.Е.Гмурман РУКОВОДСТВО К РЕШЕНИЮ ЗАДАЧ ПО ТЕОРИИ ВЕРОЯТНОСТЕЙ И МАТЕМАТИЧЕСКОЙ СТАТИСТИКЕ М.: Высш. школа, 1979, 400 стр. В пособии приведены необходимые теоретические сведения и формулы, даны решения

Подробнее

1. Цели и задачи дисциплины

1. Цели и задачи дисциплины 2 1. Цели и задачи дисциплины Цель изучения дисциплины «Теория вероятностей и математическая статистика» формирование у студентов современных теоретических знаний о вероятностных и статистических закономерностях,

Подробнее

ПРОВЕРКА СТАТИСТИЧЕСКИХ ГИПОТЕЗ

ПРОВЕРКА СТАТИСТИЧЕСКИХ ГИПОТЕЗ МИНОБРНАУКИ РОССИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «ВОЛГОГРАДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ» КАМЫШИНСКИЙ ТЕХНОЛОГИЧЕСКИЙ ИНСТИТУТ (ФИЛИАЛ)

Подробнее

Критерии и показатели оценивания компетенций на различных этапах их формирования

Критерии и показатели оценивания компетенций на различных этапах их формирования Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине (модулю) Общие сведения 1. Кафедра Математики, физики и информационных технологий 2. Направление подготовки 02.03.01

Подробнее

Программа дисциплины

Программа дисциплины МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное автономное учреждение высшего профессионального образования "Казанский (Приволжский) федеральный университет" Отделение

Подробнее

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ДЛЯ ПРОВЕДЕНИЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ (МОДУЛЮ).

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ДЛЯ ПРОВЕДЕНИЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ (МОДУЛЮ). ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ДЛЯ ПРОВЕДЕНИЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ (МОДУЛЮ). 1. Кафедра Общие сведения 2. Направление подготовки 3. Дисциплина (модуль) 4. Количество этапов формирования

Подробнее

МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ. Учреждение образования «Гомельский государственный университет имени Франциска Скорины»

МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ. Учреждение образования «Гомельский государственный университет имени Франциска Скорины» МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ Учреждение образования «Гомельский государственный университет имени Франциска Скорины» Кафедра высшей математики В.В. БУРАКОВСКИЙ, Н.М.КУРНОСЕНКО ТЕОРИЯ ВЕРОЯТНОСТЕЙ

Подробнее

ОГЛАВЛЕНИЕ ЧАСТЬ ПЕРВАЯ СЛУЧАЙНЫЕ СОБЫТИЯ

ОГЛАВЛЕНИЕ ЧАСТЬ ПЕРВАЯ СЛУЧАЙНЫЕ СОБЫТИЯ ОГЛАВЛЕНИЕ ЧАСТЬ ПЕРВАЯ СЛУЧАЙНЫЕ СОБЫТИЯ Глава первая. Определение вероятности.. 8 1. Классическое и статистическое определения вероятности.. 8 2. Геометрические вероятности... 12 Глава вторая. Основные

Подробнее

ТЕОРИЯ ВЕРОЯТНОСТЕЙ. Комбинаторика, правила произведения и суммы. Виды соединений

ТЕОРИЯ ВЕРОЯТНОСТЕЙ. Комбинаторика, правила произведения и суммы. Виды соединений ТЕОРИЯ ВЕРОЯТНОСТЕЙ Комбинаторика, правила произведения и суммы Комбинаторика как наука Комбинаторика это раздел математики, в котором изучаются соединения подмножества элементов, извлекаемые из конечных

Подробнее

Решение: а) Используем локальную теорему Лапласа.

Решение: а) Используем локальную теорему Лапласа. Найди свою задачу на http://mathprof.com! ) Человек, проходящий мимо киоска, покупает газету с вероятностью 0,. Найти вероятность того, что из 00 человек, прошедших мимо киоска в течение часа: а) купят

Подробнее

1. Пояснительная записка

1. Пояснительная записка ОГЛАВЛЕНИЕ 1. Пояснительная записка 3 2. Тематический план дисциплины 5 3. Содержание обязательного и самостоятельного изучения 6 (теоретического курса, семинарских и практических занятий) 4. Вопросы для

Подробнее

ЕН.03. ТЕОРИЯ ВЕРОЯТНОСТЕЙ И МАТЕМАТИЧЕСКАЯ СТАТИСТИКА

ЕН.03. ТЕОРИЯ ВЕРОЯТНОСТЕЙ И МАТЕМАТИЧЕСКАЯ СТАТИСТИКА Правительство Санкт-Петербурга Комитет по науке и высшей школе Санкт-Петербургское государственное бюджетное профессиональное образовательное учреждение «Санкт-Петербургский политехнический колледж» УТВЕРЖДАЮ

Подробнее

со стороной 3 см, находящийся внутри ABCD.

со стороной 3 см, находящийся внутри ABCD. Примерные задания для подготовки к зачету по математике по теме «Теория вероятностей и математическая статистика» для студентов специальности 270100 4 семестр 1 часть. Теория вероятностей. 1.Комбинаторика.

Подробнее

АННОТАЦИЯ Дисциплины Б2.Б3 Теория вероятностей и математическая статистика. 1. Цель и задачи изучения дисциплины (учебного курса)

АННОТАЦИЯ Дисциплины Б2.Б3 Теория вероятностей и математическая статистика. 1. Цель и задачи изучения дисциплины (учебного курса) 2 АННОТАЦИЯ Дисциплины Б2.Б3 Теория вероятностей и математическая статистика 1. Цель и задачи изучения дисциплины (учебного курса) Цель приобретение теоретических знаний по основным разделам курса, формирование

Подробнее

Математика Статистика

Математика Статистика Лукьянова Е.А. Математика Статистика «Сестринское дело» Основные понятия статистики Генеральная совокупность и выборка Типы данных и их представление Точечное оценивание Интервальное оценивание 2015

Подробнее

ВЕРОЯТНОСТНО-СТАТИСТИЧЕСКИЙ АНАЛИЗ МАТЕРИАЛОВ НАБЛЮДЕНИЙ (ПРОВЕРКА СОГЛАСИЯ ЭМПИРИЧЕСКОГО РАСПРЕДЕЛЕНИЯ С НОРМАЛЬНЫМ) Исходные данныe :

ВЕРОЯТНОСТНО-СТАТИСТИЧЕСКИЙ АНАЛИЗ МАТЕРИАЛОВ НАБЛЮДЕНИЙ (ПРОВЕРКА СОГЛАСИЯ ЭМПИРИЧЕСКОГО РАСПРЕДЕЛЕНИЯ С НОРМАЛЬНЫМ) Исходные данныe : 1 ЗАДАНИЕ ВЕРОЯТНОСТНО-СТАТИСТИЧЕСКИЙ АНАЛИЗ МАТЕРИАЛОВ НАБЛЮДЕНИЙ (ПРОВЕРКА СОГЛАСИЯ ЭМПИРИЧЕСКОГО РАСПРЕДЕЛЕНИЯ С НОРМАЛЬНЫМ) Исходные данныe : 0.30-1.4 0.59-1.79 0.4 0.7 1.73 0.45 0.34-0.09 1.09 -.04

Подробнее

Лекционные Практические Зачет Общая трудоемкость

Лекционные Практические Зачет Общая трудоемкость 1. Цель и задачи учебной дисциплины: Целями освоения дисциплины «Теория вероятностей, математическая статистика и случайные процессы» являются: формирование математической культуры студентов, фундаментальная

Подробнее

Найдем вероятность события А - интересующие студента данные не содержатся только в двух пособиях.

Найдем вероятность события А - интересующие студента данные не содержатся только в двух пособиях. Задача. Студент выполняет работу по статистике, пользуясь пятью пособиями. Вероятность того, что интересующие его данные находятся в первом, втором, третьем, четвертом и пятом пособиях, соответственно

Подробнее

«ТЕОРИЯ ВЕРОЯТНОСТЕЙ И МАТЕМАТИЧЕСКАЯ СТАТИСТИКА»

«ТЕОРИЯ ВЕРОЯТНОСТЕЙ И МАТЕМАТИЧЕСКАЯ СТАТИСТИКА» Негосударственное образовательное учреждение высшего профессионального образования «Институт управления» Экономический факультет Кафедра информационных технологий и прикладной математики ПРОГРАММА ДИСЦИПЛИНЫ

Подробнее

4 Проверка параметрических гипотез

4 Проверка параметрических гипотез 4 Проверка параметрических гипотез Статистическая гипотеза Параметрическая гипотеза 3 Критерии проверки статистических гипотез Статистической называют гипотезу о виде неизвестного распределения или о параметрах

Подробнее

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ. Институт управления и предпринимательства. Статистические методы анализа рынков Экзаменационные материалы

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ. Институт управления и предпринимательства. Статистические методы анализа рынков Экзаменационные материалы ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ Государственное образовательное учреждение высшего профессионального образования «Уральский государственный университет им. А.М. Горького» ИОНЦ «Бизнес информатика»

Подробнее

МАТЕМАТИЧЕСКАЯ СТАТИСТИКА БАЗА ТЕСТОВЫХ ЗАДАНИЙ

МАТЕМАТИЧЕСКАЯ СТАТИСТИКА БАЗА ТЕСТОВЫХ ЗАДАНИЙ Е. В. Морозова 0 МИНОБРНАУКИ РОССИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «ВОЛГОГРАДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ» КАМЫШИНСКИЙ

Подробнее

Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине (модулю): Общие сведения 1. Кафедра

Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине (модулю): Общие сведения 1. Кафедра Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине (модулю): Общие сведения 1. Кафедра Математики и математических методов в экономике 2. Направление подготовки 01.03.02

Подробнее

ТЕОРИЯ ВЕРОЯТНОСТЕЙ И МАТЕМАТИЧЕСКАЯ СТАТИСТИКА

ТЕОРИЯ ВЕРОЯТНОСТЕЙ И МАТЕМАТИЧЕСКАЯ СТАТИСТИКА Кафедра математики и информатики ТЕОРИЯ ВЕРОЯТНОСТЕЙ И МАТЕМАТИЧЕСКАЯ СТАТИСТИКА Учебно-методический комплекс для студентов ВПО, обучающихся с применением дистанционных технологий Модуль 3 МАТЕМАТИЧЕСКАЯ

Подробнее

ДОМАШНЕЕ ЗАДАНИЕ по МАТЕМАТИЧЕСКОЙ СТАТИСТИКЕ. Исходные данные

ДОМАШНЕЕ ЗАДАНИЕ по МАТЕМАТИЧЕСКОЙ СТАТИСТИКЕ. Исходные данные ДОМАШНЕЕ ЗАДАНИЕ по МАТЕМАТИЧЕСКОЙ СТАТИСТИКЕ Исходные данные Задана большая выборка, объем которой п 00..49 3.548 4.409 5.08 0.39.096 5.4 4.586 4.49.678 4.08 3.993 4.3 6.9 -.48 5.8 5.07 3.889.3 5.59 9.377.644

Подробнее

Химия (направление); Фундаментальная и прикладная химия (специальность).

Химия (направление); Фундаментальная и прикладная химия (специальность). 0000.6-Химия (направление); http://kpfu.ru/pdf/portal/oop/4853.pdf 000.65 - Фундаментальная и прикладная химия (специальность). Дисциплина: «Математика» (бакалавриат, специалитет, курс, очное обучение).

Подробнее

Фонд оценочных средств по теории вероятностей и математической статистике

Фонд оценочных средств по теории вероятностей и математической статистике Вопросы к зачету Вопросы для проверки уровня обучаемости «ЗНАТЬ» 1. Комбинаторика. 2. Вычисление вероятности (классическая модель). 3. Геометрическая вероятность. 4.Основные теоремы теории вероятностей

Подробнее

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ Общие сведения 1. Кафедра Общих дисциплин 2. Направление подготовки «Экономика» 3. Дисциплина (модуль)

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ Общие сведения 1. Кафедра Общих дисциплин 2. Направление подготовки «Экономика» 3. Дисциплина (модуль) ФОНД ОЦЕНОЧНЫХ СРЕДСТВ Общие сведения 1. Кафедра Общих дисциплин 2. Направление подготовки 38.03.01 «Экономика» 3. Дисциплина (модуль) Б1.Б.9 Теория вероятностей и математическая статистика Перечень компетенций

Подробнее

А.И.Кибзун, Е.Р.Горяинова, А.В.Наумов, А.Н.Сиротин ТЕОРИЯ ВЕРОЯТНОСТЕЙ И МАТЕМАТИЧЕСКАЯ СТАТИСТИКА. БАЗОВЫЙ КУРС С ПРИМЕРАМИ И ЗАДАЧАМИ М.

А.И.Кибзун, Е.Р.Горяинова, А.В.Наумов, А.Н.Сиротин ТЕОРИЯ ВЕРОЯТНОСТЕЙ И МАТЕМАТИЧЕСКАЯ СТАТИСТИКА. БАЗОВЫЙ КУРС С ПРИМЕРАМИ И ЗАДАЧАМИ М. А.И.Кибзун, Е.Р.Горяинова, А.В.Наумов, А.Н.Сиротин ТЕОРИЯ ВЕРОЯТНОСТЕЙ И МАТЕМАТИЧЕСКАЯ СТАТИСТИКА. БАЗОВЫЙ КУРС С ПРИМЕРАМИ И ЗАДАЧАМИ М.: ФИЗМАТЛИТ, 2002. - 224 с. Книга предназначена для начального

Подробнее

Оглавление. Предисловие Введение. Теория вероятностей. комбинаторными методами. теории вероятностей. Глава 1. Основные понятия теории вероятностей

Оглавление. Предисловие Введение. Теория вероятностей. комбинаторными методами. теории вероятностей. Глава 1. Основные понятия теории вероятностей Оглавление Предисловие Введение Теория вероятностей Глава 1. Основные понятия теории вероятностей 1.1. Опыт и событие Операция умножения событий Операция сложения событий Операция вычитания событий Операция

Подробнее

МЕТОДИЧЕСКИЕ УКАЗАНИЯ. Программа, контрольная работа и демонстрационный вариант по курсу «Теория вероятностей и математическая статистика»

МЕТОДИЧЕСКИЕ УКАЗАНИЯ. Программа, контрольная работа и демонстрационный вариант по курсу «Теория вероятностей и математическая статистика» Министерство образования и науки РФ Федеральное государственное бюджетное образовательное учреждение высшего образования «Московский государственный университет геодезии и картографии» Факультет дистанционных

Подробнее

ТЕОРИЯ ВЕРОЯТНОСТИ И МАТЕМАТИЧЕСКАЯ СТАТИСТИКА

ТЕОРИЯ ВЕРОЯТНОСТИ И МАТЕМАТИЧЕСКАЯ СТАТИСТИКА МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ФИЛИАЛ ФЕДЕРАЛЬНОГО ГОСУДАРСТВЕННОГО БЮДЖЕТНОГО ОБРАЗОВАТЕЛЬНОГО УЧРЕЖДЕНИЯ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «ВЛАДИВОСТОКСКИЙ ГОСУДАРСТВЕННЫЙ

Подробнее

СОДЕРЖАНИЕ. стр ПАСПОРТ АДАПТИРОВАННОЙ РАБОЧЕЙ ПРОГРАММЫ УЧЕБНОЙ ДИСЦИПЛИНЫ 2. СТРУКТУРА И СОДЕРЖАНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

СОДЕРЖАНИЕ. стр ПАСПОРТ АДАПТИРОВАННОЙ РАБОЧЕЙ ПРОГРАММЫ УЧЕБНОЙ ДИСЦИПЛИНЫ 2. СТРУКТУРА И СОДЕРЖАНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ СОДЕРЖАНИЕ 1. ПАСПОРТ АДАПТИРОВАННОЙ РАБОЧЕЙ ПРОГРАММЫ УЧЕБНОЙ ДИСЦИПЛИНЫ. СТРУКТУРА И СОДЕРЖАНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ 3. УСЛОВИЯ РЕАЛИЗАЦИИ АДАПТИРОВАННОЙ РАБОЧЕЙ ПРОГРАММЫ УЧЕБНОЙ ДИСЦИПЛИНЫ 4. КОНТРОЛЬ

Подробнее

Число способов, которыми можно разбить 10 женщин на 5 групп по 3 1 женщине в каждой, равно числу неупорядоченных разбиений 2, 2, 2, 2, 2

Число способов, которыми можно разбить 10 женщин на 5 групп по 3 1 женщине в каждой, равно числу неупорядоченных разбиений 2, 2, 2, 2, 2 ВАРИАНТ.. Группа состоит из 5 мужчин и 0 женщин. Найти вероятность того, что при случайной группировке их на 5 групп по три человека в каждой группе будет мужчина. Решение: Для решения задачи будем использовать

Подробнее

Теория вероятностей и математическая статистика 4. Тип заданий Контрольные работы Количество этапов формирования компетенций

Теория вероятностей и математическая статистика 4. Тип заданий Контрольные работы Количество этапов формирования компетенций 8. Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине (модулю):. Кафедра Общие сведения. Направление подготовки Экономика Математики и математических методов в экономике

Подробнее

АННОТАЦИЯ РАБОЧЕЙ ПРОГРАММЫ

АННОТАЦИЯ РАБОЧЕЙ ПРОГРАММЫ МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «УФИМСКИЙ ГОСУДАРСТВЕННЫЙ АВИАЦИОННЫЙ ТЕХНИЧЕСКИЙ

Подробнее

по дисциплине «Математика» для студентов второго курса строительных специальностей

по дисциплине «Математика» для студентов второго курса строительных специальностей Методические указания к самостоятельной подготовке за четвертый семестр по дисциплине «Математика» для студентов второго курса строительных специальностей Кафедра высшей математики 3 А.В. Капусто Минск

Подробнее

Проверка статистической гипотезы о математическом ожидании нормального распределения при известной дисперсии.

Проверка статистической гипотезы о математическом ожидании нормального распределения при известной дисперсии. Проверка статистической гипотезы о математическом ожидании нормального распределения при известной дисперсии. Пусть имеется нормально распределенная случайная величина N,, определенная на множестве объектов

Подробнее

ВЗФЭИ. Контрольная работа 4 Вариант 9

ВЗФЭИ. Контрольная работа 4 Вариант 9 https://www.matburo.ru/sub_vuz.php?p=vzfetv ВЗФЭИ. Контрольная работа 4 Вариант 9 Задача. По схеме собственно-случайной бесповторной выборки из 00 участников соревнования было отобрано 00 человек. Их распределение

Подробнее

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ) Технологический институт филиал ФГБОУ ВПО «Ульяновская ГСХА им П.А.Столыпина» РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ) МАТЕМАТИЧЕСКАЯ СТАТИСТИКА (наименование дисциплины (модуля)) Направление подготовки 100800.62

Подробнее

Расчетно-графическая работа. Теория вероятностей

Расчетно-графическая работа. Теория вероятностей Расчетно-графическая работа Теория вероятностей Вариант n = 4 Задание 1. В урне 6 белых шаров и 6 черных шаров. Найти вероятность, что: А) вытащили белый шар; Б) вытащили белых шара; В) вытащили 3 черных

Подробнее

7. КОРРЕЛЯЦИОННО-РЕГРЕССИОННЫЙ АНАЛИЗ. Линейная регрессия. Метод наименьших квадратов

7. КОРРЕЛЯЦИОННО-РЕГРЕССИОННЫЙ АНАЛИЗ. Линейная регрессия. Метод наименьших квадратов 7. КОРРЕЛЯЦИОННО-РЕГРЕССИОННЫЙ АНАЛИЗ Линейная регрессия Метод наименьших квадратов ( ) Линейная корреляция ( ) ( ) 1 Практическое занятие 7 КОРРЕЛЯЦИОННО-РЕГРЕССИОННЫЙ АНАЛИЗ Для решения практических

Подробнее

Лабораторная работа 4 Применения MATHCAD для решения задач по проверке статистических гипотез

Лабораторная работа 4 Применения MATHCAD для решения задач по проверке статистических гипотез МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное автономное образовательное учреждение высшего образования «НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Подробнее

ЭЛЕМЕНТЫ МАТЕМАТИЧЕСКОЙ СТАТИСТИКИ

ЭЛЕМЕНТЫ МАТЕМАТИЧЕСКОЙ СТАТИСТИКИ ЭЛЕМЕНТЫ МАТЕМАТИЧЕСКОЙ СТАТИСТИКИ Основные понятия математической статистики Совокупность - это множество объектов (элементов совокупности), обладающих общим свойством. Объем совокупности - это число

Подробнее

Связь с предшествующими дисциплинами (модулями), практиками, ВКР: 1 Информатика 1 ОПК-1 2 Математика 1,2 ОК-3, ПК-4

Связь с предшествующими дисциплинами (модулями), практиками, ВКР: 1 Информатика 1 ОПК-1 2 Математика 1,2 ОК-3, ПК-4 2 3 Содержание 1. Место дисциплины (модуля) в структуре образовательной программы 4 2. Планируемые результаты обучения по дисциплине (модулю) 4 3. Объем дисциплины (модуля) с распределением по семестрам

Подробнее

ПРОГРАММА ДИСЦИПЛИНЫ. Для подготовки дипломированных специалистов по направлению Менеджмент в организации Квалификация «Менеджер»

ПРОГРАММА ДИСЦИПЛИНЫ. Для подготовки дипломированных специалистов по направлению Менеджмент в организации Квалификация «Менеджер» Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Сибирская Государственная Геодезическая Академия»

Подробнее

НАДЕЖНОСТЬ ТЕХНИЧЕСКИХ СИСТЕМ И ТЕХНОГЕННЫЙ РИСК МАТЕМАТИЧЕСКИЕ ЗАВИСИМОСТИ ДЛЯ ОЦЕНКИ НАДЕЖНОСТИ

НАДЕЖНОСТЬ ТЕХНИЧЕСКИХ СИСТЕМ И ТЕХНОГЕННЫЙ РИСК МАТЕМАТИЧЕСКИЕ ЗАВИСИМОСТИ ДЛЯ ОЦЕНКИ НАДЕЖНОСТИ НАДЕЖНОСТЬ ТЕХНИЧЕСКИХ СИСТЕМ И ТЕХНОГЕННЫЙ РИСК МАТЕМАТИЧЕСКИЕ ЗАВИСИМОСТИ ДЛЯ ОЦЕНКИ НАДЕЖНОСТИ Отказы, возникающие в процессе испытаний или эксплуатации, могут быть различными факторами: рассеянием

Подробнее

1. Цели и задачи дисциплины 2. Место дисциплины в структуре ООП

1. Цели и задачи дисциплины 2. Место дисциплины в структуре ООП 1. Цели и задачи дисциплины Целью дисциплины «Теория вероятностей и математическая статистика» является обучение студентов основным методам теории вероятностей и математической статистики и использованию

Подробнее

МАТЕМАТИКА МАТЕМАТИЧЕСКАЯ СТАТИСТИКА

МАТЕМАТИКА МАТЕМАТИЧЕСКАЯ СТАТИСТИКА ООО «Резольвента», www.resolventa.ru, resolventa@lst.ru, (495) 509-8-0 Учебный центр «Резольвента» Доктор физико-математических наук, профессор К. Л. САМАРОВ МАТЕМАТИКА Учебно-методическое пособие по разделу

Подробнее

ТЕОРИЯ ВЕРОЯТНОСТИ И МАТЕМАТИЧЕСКАЯ СТАТИСТИКА

ТЕОРИЯ ВЕРОЯТНОСТИ И МАТЕМАТИЧЕСКАЯ СТАТИСТИКА НЕГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «САМАРСКАЯ ГУМАНИТАРНАЯ АКАДЕМИЯ» Филиал в г. Тольятти ТЕОРИЯ ВЕРОЯТНОСТИ И МАТЕМАТИЧЕСКАЯ СТАТИСТИКА УЧЕБНО-МЕТОДИЧЕСКИЙ

Подробнее

Лекция 20. Проверка статистических гипотез

Лекция 20. Проверка статистических гипотез Лекция. Проверка статистических гипотез Понятие о статистических гипотезах и методах их проверки При решении многих задач возникает необходимость оценки того, подчиняется ли распределение генеральной совокупности

Подробнее

Тема: Статистические оценки параметров распределения

Тема: Статистические оценки параметров распределения Раздел: Теория вероятностей и математическая статистика Тема: Статистические оценки параметров распределения Лектор Пахомова Е.Г. 05 г. 5. Точечные статистические оценки параметров распределения Статистическое

Подробнее

1. ЭЛЕМЕНТЫ ТЕОРИИ ВЕРОЯТНОСТЕЙ. РАСПРЕДЕЛЕНИЕ СЛУЧАЙНЫХ ВЕЛИЧИН. ЧИСЛОВЫЕ ХАРАКТЕРИСТИКИ ДИСКРЕТНОЙ СЛУЧАЙНОЙ ВЕ- ЛИЧИНЫ.

1. ЭЛЕМЕНТЫ ТЕОРИИ ВЕРОЯТНОСТЕЙ. РАСПРЕДЕЛЕНИЕ СЛУЧАЙНЫХ ВЕЛИЧИН. ЧИСЛОВЫЕ ХАРАКТЕРИСТИКИ ДИСКРЕТНОЙ СЛУЧАЙНОЙ ВЕ- ЛИЧИНЫ. . ЭЛЕМЕНТЫ ТЕОРИИ ВЕРОЯТНОСТЕЙ. РАСПРЕДЕЛЕНИЕ СЛУЧАЙНЫХ ВЕЛИЧИН. ЧИСЛОВЫЕ ХАРАКТЕРИСТИКИ ДИСКРЕТНОЙ СЛУЧАЙНОЙ ВЕ- ЛИЧИНЫ.. Случайное событие. Вероятность случайного события. Случайным называется событие,

Подробнее