Лекция 14. Равенство Парсеваля. Минимальное свойство коэффициентов разложения. Комплексная форма ряда Фурье.

Размер: px
Начинать показ со страницы:

Download "Лекция 14. Равенство Парсеваля. Минимальное свойство коэффициентов разложения. Комплексная форма ряда Фурье."

Транскрипт

1 Лекция 4. Равенство Парсеваля. Минимальное свойство коэффициентов разложения. Комплексная форма ряда..4. Равенство Парсеваля Пусть система вещественных функций g( ), g( ),..., g ( ),... ортогональна и полна на отрезке [,] ( ). Тогда справедливо ( ) g (). Возведя обе части равенства в квадрат и интегрируя от а до, в предположении, что ( ) d конечен, получим ( ) ( ) d g ( ) d. В правой части равенства подынтегральное выражение будет состоять из gi g j и g ( ). На основании условия ортогональности функций g g,..., g интегралы от произведения первого вида будут равны нулю, а произведений вида ( ) ( ) ( ) ( ) ( ),..., вторые останутся, т.е. ( ) d [ g ( ) ]d или ( ) d g ( ) d (.4) Это равенство получило наименование равенства Парсеваля. В частности для ряда Фурье + ( ) ( cos + si ). Имеем ( ) d ( ) d + cos d + si d + ( + ) два последних интеграла равны. Для ряда ( ) + ( cos + si ). Имеем интеграл ( ) d + ( + ). Из этих равенств, в частности, следует, что при ( ) d, т.к. будет и, т.к. конечен, то должен быть конечным и ряд ( ), т.е. он + должен сходится, а для сходящегося ряда -й член должен стремиться к нулю при. Минимальное свойство коэффициентов разложения. Поставим следующую задачу: с периодом. Среди всех пусть дана периодическая функция ( ) тригонометрических многочленов -го порядка + ( α cos + β ) α требуется si найти путем выбора коэффициентов α и β тот многочлен, для которого среднее квадратичное уклонение от (), определяемое равенством σ ( ) α ( α cos + β si ) d имеет наименьшее значение. 3

2 Лекция 4. Равенство Парсеваля. Минимальное свойство коэффициентов разложения. Комплексная форма ряда В более общем случае задача сводится к отысканию коэффициентов α разложения функции () в ряд по ортогональным функциям g( ), g( ),..., g ( ),... таких, что среднеквадратичное уклонение было минимальным. σ от Пусть ( ) α g ( ). Тогда ()d α ( ) αg ( ) d ( ) d ( ) αg ( ) d + [ αg ( ) ] ( ) g ( ) d + α g ( ) d, учитывая, что ( ) g ( ),..., g ( ),... до, d g ортогональные функции получим что интеграл от слагаемых вида g ( ) g () α Но ( ) g ( ) d g ( ) d. i j равен нулю. Тогда: σ ) d α g ( ) d + α g ( ) g ( ) d : ( d. Добавим и вычтем σ ()d + ( α + α ()d g Для рядов Фурье g ( ) d. ) g ( ) d + ( α ) g ( ) ( ) d g ( ) d d Тогда, учитывая, что последнее слагаемое положительное, σ будет иметь наименьшее значение при α (аналогично β ). Таким образом доказали теорему: среди всех тригонометрических многочленов наименьшее среднее квадратичное уклонение от функции () имеет тот многочлен, коэффициент которого являеются коэффициентами Фурье функции (). Комплексная форма ряда Фурье На основании формул Эйлера it ti + cost, it ti + sit, i можно преобразовать ряд Фурье через показательные функции в комплексной форме: 4

3 Лекция 4. Равенство Парсеваля. Минимальное свойство коэффициентов разложения. Комплексная форма ряда i i i i L + L L + L () + + i i i i i i i L i + L i L i L i L i i i i i i i i i i i L i L i + L c L c L (). i i i + L Для того, чтобы найти c умножим обе части последнего равенства на при произвольном фиксированном и проинтегрируем результат от до Для членов ряда, номер которых m не равен выбранному, имеем c m c m im L i L si (m ). (m ) d L c m i (m) i (m ) c m (m ) i (m) i i i (m) Когда m, т.е. m λ, где λ - целое число, т.к. целые m и, то si ( m ) si λ и следовательно интеграл равен нулю. si ( m ) Когда m, то интеграл равен c, т.к.. m ( m ) Отсюда Поскольку - фиксировано, то () d C d c. i i c () d. Итак, ряд Фурье в комплексной форме имеет вид: где C i i i ( ) C, (.5) ( ) i d. (.6)..5. Преобразование Фурье Будем исходить из формулы: ( ) + ( cos + si ), (.7) записанной в комплексном виде i c (), (.8), 5

4 Лекция 4. Равенство Парсеваля. Минимальное свойство коэффициентов разложения. Комплексная форма ряда которая дает представление любой конечной функции () на интервале < <. Для каждого, как видно из (.7), (.8), существует своя гармоника, т.е. функции i вида с волновыми числами, равными:, при...,,,,, K Рис..8. Набор этих значений, показанный на (рис..8), называется спектром волновых чисел, который дискретен, т.е. состоит из отдельных точек. Каждой точке в разложении i () c i отвечает гармоника с комплексной амплитудой c, определяемой по формуле: i c () d. Предположим, простоты что функция () вне некоторого конечного отрезка тождественно равна нулю, и обозначим: ˆ () () d. Фактически этот интеграл берется от до, т.к. () вне этого интервала равен нулю. Тогда при достаточно больших, формулу для определения c коэффициентов Фурье, можно переписать в виде i i c () d () d ˆ( ), где - расстояние между соседними волновыми числами в спектре (рис..8). При весьма большом, спектр становится очень густым, т.е. - очень мало. В пределе, последняя сумма, являясь интегральной суммой, переходит в интеграл, т.е. получаем i ( ) ˆ( ) d, < <. В этом представлении волновое число принимает все значения от до, т.е. в пределе при дискретный спектр волновых чисел переходит в непрерывный спектр. Из равенства C ˆ ( ) видно, что при ( ) амплитуды c стремятся к нулю, т.е. в пределе каждая взятая отдельная гармоника присутствует с нулевой амплитудой. В пределе амплитуда оказывается размазанной по всему непрерывному спектру волновых чисел так, что на каждый интервал от до + d приходится бесконечно малая амплитуда: dc ˆ( ) d. Положение здесь напоминает несколько то, которое получается при переходе от дискретной модели материального тела к его непрерывной модели. При этом масса непрерывного, тела при переходе к непрерывной модели, размазывается по всем точкам 6

5 Лекция 4. Равенство Парсеваля. Минимальное свойство коэффициентов разложения. Комплексная форма ряда с определенной точностью. Подобно этому dc ˆ( ) d означает, что ˆ( ) - это плотность амплитуды гармоник на бесконечно-малом интервале волновых чисел, причем плотность берется в расчете на единицу длины этого интервала. Поэтому функция ˆ( ) называется спектральной плотностью функции (). Формулы ˆ( ) ( ) d ) ˆ( ) d, (.9) (, (.) называются, соответственно прямым и обратным преобразованиями При выводе преобразований Фурье мы предполагали, что функция () равна нулю вне конечного интервала. Такие функции называются финитными. Эти функции справедливы и в том случае, если интеграл, стоящий в формуле для ˆ( ) понимается как несобственный ( () не равна нулю и за конечным интегралом) и для его сходимости потребовать, чтобы ( ) d. Итак, каждой функции (), удовлетворяющей выше указанному условию, отвечает ее фурье-образ ˆ( ) (т.е. результат преобразования Фурье), который определяется формулой ˆ () () d ; (.) обратно, функция () выражается через свой фурье-образ по формуле () ˆ() d. (.) Фурье образ можно представить в виде: i + ˆ() ()[ i ()[ + i i i i + i ]d ]d i ( )cosd ( ) si d. Пусть () - четная функция. Тогда ( ) cos - тоже четная функция, а ( ) si - нечетная. На основании формул: имеем для четной (): ( ) d ( ) d - для четной (); ( ) d - для нечетной (), 7

6 Лекция 4. Равенство Парсеваля. Минимальное свойство коэффициентов разложения. Комплексная форма ряда ˆ ( ) ( )cosd ( )cosd, т.е. ˆ( ) как функция от, которое входит только в cos, также четная. Для нечетной () получим: ˆ i ( ) ( )si d ( )si d. i Т.е. ˆ( ) также нечетная функция. Итак, для четной функции () нечетную (). имеем и четную функцию () Тогда, на основании ( ) ( ) а) для четной () б) для нечетной () Итак, для четной ():, для нечетной ()- i d () cos d + i ()si d, получим:, т.е. четной (), т.е. нечетной () ( ) ()cos d ; ; ( ) ()cos d ( ) ; ( ) i )si d i ()cos d; ( ( )si d. () cos d; (.3) Получили формулы называемые, косинус-преобразования Если функция () нечетная, то подобным образом получаем формулы синусреобразования Фурье: i ( ) ( ) ( )si d; i ( )si d; (.4) 8

7 Лекция 4. Равенство Парсеваля. Минимальное свойство коэффициентов разложения. Комплексная форма ряда Пример. Пусть () четная функция равная на интервале < < и нулю за этим интервалом. () - Рис.(.9) Тогда, по(.3) получим: si ( ) cos d + cos d. Отсюда si () cos d, которое справедливо для всех х в точках непрерывности (). При х, где () также непрерывна, имеем si si si () cos d d. Отсюда ( ). d Свойства преобразования Фурье (оператор Фурье) Преобразование Фурье является оператором, преобразующим функцию (), в функцию (). В этом случае говорят, что для данного оператора функции () является прообразом, () - образом.. Оператор Фурье является линейным, т.е. выполняются равенства: ( + ) + ; ( cost). Последнее следует из формулы (.9) для преобразования Фурье: + [ ( ) + ( )] ( ) + ( ) d d d + ( ) ( ). d d Пусть функция зависит не только от х, но и от некоторого параметра t, т.е. зависит от этого параметра и. Тогда, на основании линейности оператора Фурье, имеем t +Λt t t + t t или в пределе при t, т.е. производная t t t t по параметру от прообраза равна производной по тому же параметру от образа. Доказательство показывает, что это справедливо для любого линейного оператора. ; 9

8 Лекция 4. Равенство Парсеваля. Минимальное свойство коэффициентов разложения. Комплексная форма ряда. Если функцию () продифференцировать по х, то ее образ умножится на i. Действительно, образом () является ( ) ( ) ( ). d d d Для финитных функций ( ± ). Тоже самое и для других функций, поскольку ( ) d < -сходится. Тогда, ( ) d [ i ( ) ] d i ( ) d i ( ). Преобразуя аналогичным способом обратную формулу ( ) () d, получим: если образ продифференцировать по к, то прообраз () умножится на i. 3. Если функция () преобразуется в (), то функция ( α )( α cost > ) преобразуется в ( ) Действительно: α α i s α ( α) d α s ( s) ds ( ). α т.е. при растяжении α α прообраза вдоль оси независимой переменной в несколько раз, образ сжимается во столько же раз. 4. Если функцию прообраз () β β cost, то ее образ умножится на Действительно, ( β ) i β. i ( s+ β ) d β s сдвинуть на ( ) ( s) ds iβ ( s) is ds i Аналогично, если образ сдвинуть на β, то ее прообраз умножится на β. i iβ ( ). 3


1. РЯДЫ ФУРЬЕ РЕШЕНИЕ ТИПОВЫХ ЗАДАЧ СПИСОК ЛИТЕРАТУРЫ ОГЛАВЛЕНИЕ

1. РЯДЫ ФУРЬЕ РЕШЕНИЕ ТИПОВЫХ ЗАДАЧ СПИСОК ЛИТЕРАТУРЫ ОГЛАВЛЕНИЕ ОГЛАВЛЕНИЕ РЯДЫ ФУРЬЕ 4 Понятие о периодической функции 4 Тригонометрический полином 6 3 Ортогональные системы функций 4 Тригонометрический ряд Фурье 3 5 Ряд Фурье для четных и нечетных функций 6 6 Разложение

Подробнее

6. Ряды Фурье Ортогональные системы функций. Ряд Фурье по ортогональной системе функций. Функции ϕ (x)

6. Ряды Фурье Ортогональные системы функций. Ряд Фурье по ортогональной системе функций. Функции ϕ (x) 6 Ряды Фурье 6 Ортогональные системы функций Ряд Фурье по ортогональной системе функций Функции ϕ () и ψ (), определенные и интегрируемые на отрезке [, ], называются ортогональными на этом отрезке, если

Подробнее

... Числа, a,... называются членами ряда (его слагаемыми), выражение a - общий член

... Числа, a,... называются членами ряда (его слагаемыми), выражение a - общий член Лекция Числовые ряды Признаки сходимости Числовые ряды Признаки сходимости Бесконечное выражение числовой последовательности + + + +, составленное из членов бесконечной, называется числовым рядом Числа,,

Подробнее

s(t+t)=s(t) для любого t. Ряд Фурье в комплексной форме Коэффициенты ряда Фурье Гармонические составляющие колебания s(t) имеют частоты, , где

s(t+t)=s(t) для любого t. Ряд Фурье в комплексной форме Коэффициенты ряда Фурье Гармонические составляющие колебания s(t) имеют частоты, , где 4. Анализ цепей при негармонических воздействиях. Практически любое реальное колебание может быть разложено в совокупность гармонических колебаний. По принципу суперпозиции действие каждой гармонической

Подробнее

Тема 2 Ряды Фурье , ; Практическое занятие 1 Ряды Фурье по ортогональным системам функций ,, R ;

Тема 2 Ряды Фурье , ; Практическое занятие 1 Ряды Фурье по ортогональным системам функций ,, R ; Тема Ряды Фурье Практическое занятие Ряды Фурье по ортогональным системам функций Пространство кусочно-непрерывных функций Обобщенный ряд Фурье 3 Неравенство Бесселя и сходимость ряда Фурье Пространство

Подробнее

Лекция. Преобразование Фурье

Лекция. Преобразование Фурье С А Лавренченко wwwwrckoru Лекция Преобразование Фурье Понятие интегрального преобразования Метод интегральных преобразований один из мощных методов математической физики является мощным средством решения

Подробнее

РЯДЫ ФУРЬЕ. Автор-составитель: доцент каф. ВМ Цапаева С.А.

РЯДЫ ФУРЬЕ. Автор-составитель: доцент каф. ВМ Цапаева С.А. РЯДЫ ФУРЬЕ Автор-составитель: доцент каф ВМ Цапаева СА Великий Новгород ПОНЯТИЕ И СВОЙСТВА ГАРМОНИК Определение Гармониками называются комплекснозначные функции вида iω ( ) e, где действительная переменная,

Подробнее

ω n =, а коэффициенты a n и

ω n =, а коэффициенты a n и Интеграл Фурье Действительная и комплексная формы записи интеграла Фурье Пусть f () непериодическая функция, определенная на всей числовой оси и удовлетворяющая условиям Дирихле на любом конечном промежутке

Подробнее

7 Тригонометрические ряды Фурье

7 Тригонометрические ряды Фурье 35 7 Тригонометрические ряды Фурье Ряды Фурье для периодических функций с периодом T. Пусть f(x) - кусочно - непрерывная периодическая функция с периодом T. Рассмотрим основную тригонометрическую систему

Подробнее

Лекция 4. Гармонический анализ. Ряды Фурье

Лекция 4. Гармонический анализ. Ряды Фурье Лекция 4. Гармонический анализ. Ряды Фурье Периодические функции. Гармонический анализ В науке и технике часто приходится иметь дело с периодическими явлениями, т. е. такими, которые повторяются через

Подробнее

Математический анализ Ряды

Математический анализ Ряды Тема 6. Пределы последовательностей и функций, их свойства и приложения Математический анализ Ряды Краткий конспект лекций Составитель В.А.Чуриков Кандидат физ.-мат. наук, доцент кафедры Высшей математики

Подробнее

ϕ называется ортогональной на [ a, b]

ϕ называется ортогональной на [ a, b] ТЕМА V РЯД ФУРЬЕ ЛЕКЦИЯ 6 Разложение периодической функции в ряд Фурье Многие процессы происходящие в природе и технике обладают свойствами повторяться через определенные промежутки времени Такие процессы

Подробнее

f ( x) g( x) dx 0. Конечная или бесконечная

f ( x) g( x) dx 0. Конечная или бесконечная Вопрос. Тригонометрические ряды Фурье. Теорема о сходимости(без док-ва).. Тригонометрическая система функций Определение.. Две интегрируемые функции b f x и gx называются ортогональными на отрезке b,,

Подробнее

Тема: Тригонометрические ряды Фурье

Тема: Тригонометрические ряды Фурье Математический анализ Раздел: Числовые и функциональные ряды Тема: Тригонометрические ряды Фурье Лектор Рожкова С.В. 013 г. 38. Тригонометрические ряды Фурье 1. Разложение функции в тригонометрический

Подробнее

Операционное исчисление. Преобразование Лапласа

Операционное исчисление. Преобразование Лапласа Лекция 6 Операционное исчисление Преобразование Лапласа Образы простых функций Основные свойства преобразования Лапласа Изображение производной оригинала Операционное исчисление Преобразование Лапласа

Подробнее

Тема13. «Ряды» Министерство образования Республики Беларусь. УО «Витебский государственный технологический университет»

Тема13. «Ряды» Министерство образования Республики Беларусь. УО «Витебский государственный технологический университет» Министерство образования Республики Беларусь УО «Витебский государственный технологический университет» Тема. «Ряды» Кафедра теоретической и прикладной математики. разработана доц. Е.Б. Дуниной . Основные

Подробнее

1.10. Гармонический анализ; ряды и преобразование Фурье

1.10. Гармонический анализ; ряды и преобразование Фурье Лекция 3. Ряды Фурье. Достаточное условие представления функции f( рядом Фурье. Разложение периодической.. Гармонический анализ; ряды и преобразование Фурье... Свойство ортогональности функций Две вещественные

Подробнее

1. Интерполяционные тригонометрические полиномы и квадратурные формулы с равноотстоящими узлами.

1. Интерполяционные тригонометрические полиномы и квадратурные формулы с равноотстоящими узлами. Интерполяционные тригонометрические полиномы и квадратурные формулы с равноотстоящими узлами Тригонометрический полином конечная тригонометрическая сумма функция которую можно представить в виде с коэффициентами

Подробнее

называется обобщенным рядом Фурье по ортогональной системе функций

называется обобщенным рядом Фурье по ортогональной системе функций 345 4 Ряды Фурье по ортогональным системам функций Пусть ( ( x - ортогональная система функций в L [ ; ] Выражение c ( x + c1 ( x + 1 c ( x + + ( c ( x = c ( x (41 = называется обобщенным рядом Фурье по

Подробнее

Спектральный анализ непериодических сигналов. f(t) t 2. Ранее нами для периодического сигнала был получен ряд Фурье в комплексной форме: 1 2 T

Спектральный анализ непериодических сигналов. f(t) t 2. Ранее нами для периодического сигнала был получен ряд Фурье в комплексной форме: 1 2 T Ястребов НИ Каф ТОР, РТФ, КПИ Спектральный анализ непериодических сигналов () Т Ранее нами для периодического сигнала был получен ряд Фурье в комплексной форме: () jω C& e, где C & jω () e Поскольку интеграл

Подробнее

Тригонометрические ряды Фурье. nx l

Тригонометрические ряды Фурье. nx l Тема 10 Тригонометрические ряды Фурье Ряд Фурье для функции с периодом T 1 0 si cos ~ ) ( d d d )si ( 1, )cos ( 1, ) ( 1 0 Сходимость тригонометрических рядов Фурье Какими свойствами должна обладать функция

Подробнее

I. О С Н О В Н Ы Е П О Н Я Т И Я И Т Е О Р Е М Ы

I. О С Н О В Н Ы Е П О Н Я Т И Я И Т Е О Р Е М Ы ЛАБОРАТОРНАЯ РАБОТА 7 ОБОБЩЕННЫЕ ФУНКЦИИ I. О С Н О В Н Ы Е П О Н Я Т И Я И Т Е О Р Е М Ы Обозначим через D множество всех бесконечно дифференцируемых финитных функций действительного переменного. Это

Подробнее

1.8. Общие функциональные ряды

1.8. Общие функциональные ряды Лекция. Степенные ряды. Гармонический анализ; ряды и преобразование Фурье. Свойство ортогональности.8. Общие функциональные ряды.8.. Уклонение функций Ряд U + U + U называется функциональным, если его

Подробнее

{тригонометрический ряд тригонометрическая система примеры - разложение на интервале [ -l; l ] для функций произвольного периода - неполные ряды

{тригонометрический ряд тригонометрическая система примеры - разложение на интервале [ -l; l ] для функций произвольного периода - неполные ряды {тригонометрический ряд тригонометрическая система примеры - разложение на интервале [ -l; l ] для функций произвольного периода - неполные ряды разложение по синусам и косинусам четные и нечетные продолжения}

Подробнее

РЯДЫ. Методические указания

РЯДЫ. Методические указания Металлургический факультет Кафедра высшей математики РЯДЫ Методические указания Новокузнецк 5 Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования

Подробнее

5. Степенные ряды Степенные ряды: определение, область сходимости. Функциональный

5. Степенные ряды Степенные ряды: определение, область сходимости. Функциональный 5 Степенные ряды 5 Степенные ряды: определение, область сходимости Функциональный ряд вида ( a + a ) + a ( ) + K + a ( ) + K a ) (, (5) где, a, a, K, a,k некоторые числа, называют степенным рядом Числа

Подробнее

Числовые и функциональные ряды

Числовые и функциональные ряды Числовые и функциональные ряды Основные понятия Знакочередующиеся ряды Функциональные ряды Степенные ряды и разложение функций в степенной ряд Применение степенных рядов Ряды Фурье Основные понятия Пусть

Подробнее

- функция, заданная для всех действительных x и кусочно-гладкая на. может быть разложена в ряд Фурье. a n 1. nx l. a 2

- функция, заданная для всех действительных x и кусочно-гладкая на. может быть разложена в ряд Фурье. a n 1. nx l. a 2 ЛЕКЦИЯ Интеграл Фурье как предельный случай ряда Фурье Пусть ( - функция, заданная для всех действительных x и кусочно-гладкая на каждом конечном интервале, Тогда на каждом таком отрезке ( может быть разложена

Подробнее

( x) С учетом того, что коэффициенты при косинусах принято обозначать буквой a, при синусах буквой b, а начальный коэффициент

( x) С учетом того, что коэффициенты при косинусах принято обозначать буквой a, при синусах буквой b, а начальный коэффициент Лекция 4 РЯДЫ ФУРЬЕ ПО ТРИГОНОМЕТРИЧЕСКОЙ СИСТЕМЕ Ряд Фурье для периодической функции с периодом T Признаки сходимости тригонометрических рядов Фурье 3 Тригонометрические ряды Фурье для четных и нечетных

Подробнее

Дельта-функция. Определение дельта-функции

Дельта-функция. Определение дельта-функции Дельта-функция Определение дельта-функции Пусть финитная бесконечно дифференцируемая функция (т. е. основная функция),. Будем писать:. О. Дельта-функцией Дирака называется линейный непрерывный функционал

Подробнее

2 модуль Тема 13 Функциональные последовательности и ряды. Свойства равномерной сходимости последовательностей и рядов. Степенные ряды Лекция 11

2 модуль Тема 13 Функциональные последовательности и ряды. Свойства равномерной сходимости последовательностей и рядов. Степенные ряды Лекция 11 модуль Тема Функциональные последовательности и ряды Свойства равномерной сходимости последовательностей и рядов Степенные ряды Лекция Определения функциональных последовательностей и рядов Равномерно

Подробнее

2. ЛИНЕЙНАЯ ЗАВИСИМОСТЬ ФУНКЦИЙ

2. ЛИНЕЙНАЯ ЗАВИСИМОСТЬ ФУНКЦИЙ ЛИНЕЙНАЯ ЗАВИСИМОСТЬ ФУНКЦИЙ Рассмотрим систему функций y y K y определенных и непрерывных на интервале a оси O Эта система функций называется линейно зависимой на a если существует постоянных величин

Подробнее

Ряды и преобразования Фурье.

Ряды и преобразования Фурье. Ряды и преобразования Фурье. Тригонометрические ряды. Определение. Тригонометрическим рядом T( называется ряд вида где -я частичная сумма ряда T( A ( + A (, A( a, A( a cosx+ b six. T( имеет вид s ( A (

Подробнее

ИНТЕГРАЛЬНЫЕ УРАВНЕНИЯ. ТЕОРЕМЫ ФРЕДГОЛЬМА

ИНТЕГРАЛЬНЫЕ УРАВНЕНИЯ. ТЕОРЕМЫ ФРЕДГОЛЬМА ЛАБОРАТОРНАЯ РАБОТА 5 ИНТЕГРАЛЬНЫЕ УРАВНЕНИЯ. ТЕОРЕМЫ ФРЕДГОЛЬМА. О С Н О В Н Ы Е П О Н Я Т И Я И Т Е О Р Е М Ы Определение. Интегральным уравнением Фредгольма рода называется уравнение x ( s, ds f (.

Подробнее

Методические указания к выполнению задания для самостоятельной работы

Методические указания к выполнению задания для самостоятельной работы Федеральное агентство по образованию Архангельский государственный технический университет строительный факультет РЯДЫ Методические указания к выполнению задания для самостоятельной работы Архангельск

Подробнее

Список задач с решениями по функциональному анализу.

Список задач с решениями по функциональному анализу. Список задач с решениями по функциональному анализу Пусть линейное нормированное пространство Доказать, что для любых элементов выполняется неравенство из аксиом нормы:, тогда: Можно ли в пространстве

Подробнее

Лекция 15. ПРЕОБРАЗОВАНИЕ ФУРЬЕ И СПЕКТРАЛЬНЫЙ МЕТОД АНАЛИЗА ЭЛЕКТРИЧЕ- СКИХ ЦЕПЕЙ

Лекция 15. ПРЕОБРАЗОВАНИЕ ФУРЬЕ И СПЕКТРАЛЬНЫЙ МЕТОД АНАЛИЗА ЭЛЕКТРИЧЕ- СКИХ ЦЕПЕЙ 54 Лекция 5 ПРЕОБРАЗОВАНИЕ ФУРЬЕ И СПЕКТРАЛЬНЫЙ МЕТОД АНАЛИЗА ЭЛЕКТРИЧЕ- СКИХ ЦЕПЕЙ План Спектры апериодических функций и преобразование Фурье Некоторые свойства преобразования Фурье 3 Спектральный метод

Подробнее

FOURIER SERIES. å. à. Çàòàä M. I. VISHIK

FOURIER SERIES. å. à. Çàòàä M. I. VISHIK FOURIER SERIES M I VISHIK Represetatio of ay periodic fuctio as a sum of correspodig trigoometric series, kow as its Fourier series expasio, is discussed Parseval equatio is preseted: itegral of a squared

Подробнее

ТЕМА 3. Собственные значения и собственные векторы вполне непрерывного самосопряженного оператора.

ТЕМА 3. Собственные значения и собственные векторы вполне непрерывного самосопряженного оператора. ТЕМА 3 Собственные значения и собственные векторы вполне непрерывного самосопряженного оператора Основные определения и теоремы Оператор A : E E, действующий в евклидовом пространстве, называется сопряженным

Подробнее

~ 1 ~ Ряды. Числовой ряд и его сумма. Определение: Числовым рядом называется сумма членов бесконечной числовой последовательности.

~ 1 ~ Ряды. Числовой ряд и его сумма. Определение: Числовым рядом называется сумма членов бесконечной числовой последовательности. ~ ~ Ряды Числовой ряд и его сумма. Определение: Числовым рядом называется сумма членов бесконечной числовой последовательности. Определение: Общим членом ряда называется такое его слагаемое, для которого

Подробнее

Лекция 2. Последовательности

Лекция 2. Последовательности Лекция 2 Последовательности Определение. Если каждому натуральному числу ставится в соответствие по определенному закону некоторое вещественное число x, то множество занумерованных чисел x, x2,..., x,...

Подробнее

8. Комплексные числовые ряды Рассмотрим числовой ряд с комплексными числами вида.. При этом предел S последовательности ( S n ) называется

8. Комплексные числовые ряды Рассмотрим числовой ряд с комплексными числами вида.. При этом предел S последовательности ( S n ) называется 8 Комплексные числовые ряды Рассмотрим числовой ряд с комплексными числами вида k a, (46) где ( a k ) - заданная числовая последовательность с комплексными членами k Ряд (46) называется сходящимся, если

Подробнее

ВАРИАЦИОННОЕ ИСЧИСЛЕНИЕ

ВАРИАЦИОННОЕ ИСЧИСЛЕНИЕ Глава ВАРИАЦИОННОЕ ИСЧИСЛЕНИЕ Лекция 9 Введение В этой главе мы будем рассматривать задачи отыскания экстремумов (максимумов или минимумов) функционалов Сразу отметим, что такие задачи относятся к числу

Подробнее

7. Теорема Гильберта-Шмидта.

7. Теорема Гильберта-Шмидта. Лекция 5 7 Теорема Гильберта-Шмидта Будем рассматривать интегральный оператор A, ядро которого K( удовлетворяет следующим условиям: K( s ) симметрическое, непрерывное по совокупности переменных на [, ]

Подробнее

Лекция 12. Задачи классического вариационного исчисления

Лекция 12. Задачи классического вариационного исчисления Лекция Задачи классического вариационного исчисления Постановка задачи J u infsup G u G u & r u U R 3 Γ 4 Граничные условия 4 закрепленные когда значения траектории закреплены на обоих концах отрезка [

Подробнее

b lim b a f x dx, то он называется несобственным f x dx, при этом говорят, что интеграл f x dx.

b lim b a f x dx, то он называется несобственным f x dx, при этом говорят, что интеграл f x dx. Тема курса лекций: НЕСОБСТВЕННЫЕ ИНТЕГРАЛЫ. Лекция 5. Понятие несобственного интеграла -го рода, его вычисление. Критерий сходимости. Интегралы от положительных функций. Признаки сравнения, абсолютная

Подробнее

ПРЕДЕЛ ИНТЕРПОЛЯЦИОННЫХ ПЕРИОДИЧЕСКИХ СПЛАЙНОВ ВЕЩЕСТВЕННОЙ ПЕРЕМЕННОЙ

ПРЕДЕЛ ИНТЕРПОЛЯЦИОННЫХ ПЕРИОДИЧЕСКИХ СПЛАЙНОВ ВЕЩЕСТВЕННОЙ ПЕРЕМЕННОЙ ПРЕДЕЛ ИНТЕРПОЛЯЦИОННЫХ ПЕРИОДИЧЕСКИХ СПЛАЙНОВ ВЕЩЕСТВЕННОЙ ПЕРЕМЕННОЙ Н. В. Чашников nik239@list.ru 13 марта 21 г. Пусть натуральное число, отличное от единицы. Определим периодический B-сплайн первого

Подробнее

МЕТОДИЧЕСКИЕ УКАЗАНИЯ К РАСЧЕТНЫМ ЗАДАНИЯМ ПО КУРСУ ВЫСШЕЙ МАТЕМАТИКИ «ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ. РЯДЫ. ДВОЙНЫЕ ИНТЕГРАЛЫ» ЧАСТЬ Ш

МЕТОДИЧЕСКИЕ УКАЗАНИЯ К РАСЧЕТНЫМ ЗАДАНИЯМ ПО КУРСУ ВЫСШЕЙ МАТЕМАТИКИ «ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ. РЯДЫ. ДВОЙНЫЕ ИНТЕГРАЛЫ» ЧАСТЬ Ш МЕТОДИЧЕСКИЕ УКАЗАНИЯ К РАСЧЕТНЫМ ЗАДАНИЯМ ПО КУРСУ ВЫСШЕЙ МАТЕМАТИКИ «ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ РЯДЫ ДВОЙНЫЕ ИНТЕГРАЛЫ» ЧАСТЬ Ш ТЕМА РЯДЫ Оглавление Ряды Числовые ряды Сходимость и расходимость

Подробнее

I курс, задача 1. Докажите, что функция Римана. 1, если x 0, 1 R( x), если x, m, n, m 0, и дробь несократима, 0, если x иррационально,

I курс, задача 1. Докажите, что функция Римана. 1, если x 0, 1 R( x), если x, m, n, m 0, и дробь несократима, 0, если x иррационально, I курс, задача. Докажите, что функция Римана, если 0, m m R( ), если, m,, m 0, и дробь несократима, 0, если иррационально, разрывна в каждой рациональной точке и непрерывна в каждой иррациональной. Решение.

Подробнее

Элементы гармонического анализа

Элементы гармонического анализа Федеральное агентство железнодорожного транспорта Уральский государственный университет путей сообщения Кафедра «Высшая и прикладная математика» Н. П. Чуев Элементы гармонического анализа Методические

Подробнее

Функциональные ряды. Лекции 7-8

Функциональные ряды. Лекции 7-8 Функциональные ряды Лекции 7-8 1 Область сходимости 1 Ряд вида u ( ) u ( ) u ( ) u ( ), 1 2 u ( ) где функции определены на некотором промежутке, называется функциональным рядом. Множество всех точек,

Подробнее

где - функции данного класса, а - коэффициенты из R или C,

где - функции данного класса, а - коэффициенты из R или C, Ряды Фурье Ортогональные системы функций С точки зрения алгебры равенство где - функции данного класса а - коэффициенты из R или C попросту означает что вектор является линейной комбинацией векторов В

Подробнее

Третий семестр. Лектор: Князева Людмила Павловна

Третий семестр. Лектор: Князева Людмила Павловна Третий семестр Лектор: Князева Людмила Павловна Темы: Наименование раздела, темы Всего аудиторных часов Лекции, часы Практические занятия, часы 2 3 4 Тема. Аналитическая геометрия и линейная алгебра 68

Подробнее

Тема 3. ГАРМОНИЧЕСКИЙ АНАЛИЗ НЕПЕРИОДИЧЕСКИХ СИГНАЛОВ

Тема 3. ГАРМОНИЧЕСКИЙ АНАЛИЗ НЕПЕРИОДИЧЕСКИХ СИГНАЛОВ осенний семестр учебного - года Тема 3 ГАРМОНИЧЕСКИЙ АНАЛИЗ НЕПЕРИОДИЧЕСКИХ СИГНАЛОВ Прямое и обратное преобразования Фурье Спектральная характеристика сигнала Амплитудно-частотный и фазо-частотный спектры

Подробнее

Федеральное агентство по образованию. Московский Государственный университет геодезии и картографии (МИИГАиК)

Федеральное агентство по образованию. Московский Государственный университет геодезии и картографии (МИИГАиК) Федеральное агентство по образованию Московский Государственный университет геодезии и картографии (МИИГАиК) МЕТОДИЧЕСКИЕ УКАЗАНИЯ И ЗАДАНИЯ ДЛЯ САМОСТОЯТЕЛЬНОЙ РАБОТЫ по курсу ВЫСШАЯ МАТЕМАТИКА Числовые

Подробнее

ЛЕКЦИЯ N 27. Степенные ряды и ряды Тейлора.

ЛЕКЦИЯ N 27. Степенные ряды и ряды Тейлора. ЛЕКЦИЯ N 7. Степенные ряды и ряды Тейлора..Степенные ряды..... Ряд Тейлора.... 4.Разложение некоторых элементарных функций в ряды Тейлора и Маклорена.... 5 4.Применение степенных рядов.... 7.Степенные

Подробнее

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ГРАЖДАНСКОЙ АВИАЦИИ. В.М. Любимов, Е.А. Жукова, В.А. Ухова, Ю.А. Шуринов М А Т Е М А Т И К А

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ГРАЖДАНСКОЙ АВИАЦИИ. В.М. Любимов, Е.А. Жукова, В.А. Ухова, Ю.А. Шуринов М А Т Е М А Т И К А МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ГРАЖДАНСКОЙ АВИАЦИИ В.М. Любимов, Е.А. Жукова, В.А. Ухова, Ю.А. Шуринов М А Т Е М А Т И К А Р Я Д Ы ПОСОБИЕ по изучению дисциплины и контрольные задания

Подробнее

Лекция 3. Ряды Тейлора и Маклорена. Применение степенных рядов. Разложение функций в степенные ряды. Ряды Тейлора и Маклорена ( ) ( ) ( ) 1! 2!

Лекция 3. Ряды Тейлора и Маклорена. Применение степенных рядов. Разложение функций в степенные ряды. Ряды Тейлора и Маклорена ( ) ( ) ( ) 1! 2! Лекция 3 Ряды Тейлора и Маклорена Применение степенных рядов Разложение функций в степенные ряды Ряды Тейлора и Маклорена Для приложений важно уметь данную функцию разлагать в степенной ряд, те функцию

Подробнее

4.1 Уравнения гиперболического типа. Колебания бесконечной и полубесконечной струны. Метод Фурье

4.1 Уравнения гиперболического типа. Колебания бесконечной и полубесконечной струны. Метод Фурье Уравнения гиперболического типа. Колебания бесконечной и полубесконечной струны. Метод Фурье Метод Фурье Стоячие волны 4 Лекция 4.1 Уравнения гиперболического типа. Колебания бесконечной и полубесконечной

Подробнее

О. В. Афонасенков, Т. А. Матвеева ФУНКЦИОНАЛЬНЫЕ РЯДЫ, РЯДЫ И ИНТЕГРАЛ ФУРЬЕ

О. В. Афонасенков, Т. А. Матвеева ФУНКЦИОНАЛЬНЫЕ РЯДЫ, РЯДЫ И ИНТЕГРАЛ ФУРЬЕ О В Афонасенков Т А Матвеева ФУНКЦИОНАЛЬНЫЕ РЯДЫ РЯДЫ И ИНТЕГРАЛ ФУРЬЕ ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ ВОЛГОГРАДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ВОЛЖСКИЙ ПОЛИТЕХНИЧЕСКИЙ ИНСТИТУТ (ФИЛИАЛ)

Подробнее

ВОПРОСЫ ПО МАТЕМАТИЧЕСКОМУ АНАЛИЗУ для подготовки к коллоквиуму Лектор: Пахомова Е.Г.

ВОПРОСЫ ПО МАТЕМАТИЧЕСКОМУ АНАЛИЗУ для подготовки к коллоквиуму Лектор: Пахомова Е.Г. ВОПРОСЫ ПО МАТЕМАТИЧЕСКОМУ АНАЛИЗУ для подготовки к коллоквиуму Лектор: Пахомова Е.Г. Замечание. 1) вопросы, не содержащие доказательства; ) вопросы, с серьезным доказательством; 3) вопросы с небольшим

Подробнее

Всего 66 вопросов. 1 год обучения. Модули 1 2.

Всего 66 вопросов. 1 год обучения. Модули 1 2. ВОПРОСЫ И ТИПОВЫЕ ЗАДАЧИ к итоговому экзамену по дисциплине «Математический анализ» Прикладная математика На устном экзамене студент получает два теоретических вопроса и две задачи Всего 66 вопросов год

Подробнее

Лекция 10. Алгоритм Шредингера определения термов и орбиталей стационарных состояний

Лекция 10. Алгоритм Шредингера определения термов и орбиталей стационарных состояний Лекция 10. Алгоритм Шредингера определения термов и орбиталей стационарных состояний 1 Стационарные состояния Если состояние системы не изменяется со временем и осуществляется при постоянном значении полной

Подробнее

Часть 5 МЕТОДЫ ОПРЕДЕЛЕНИЯ ФУНКЦИИ СПЕКТРАЛЬНОЙ ПЛОТНОСТИ

Часть 5 МЕТОДЫ ОПРЕДЕЛЕНИЯ ФУНКЦИИ СПЕКТРАЛЬНОЙ ПЛОТНОСТИ Часть 5 МЕТОДЫ ОПРЕДЕЛЕНИЯ ФУНКЦИИ СПЕКТРАЛЬНОЙ ПЛОТНОСТИ Функции спектральной плотности можно определять тремя различными эквивалентными способами которые будут рассмотрены в последующих разделах: с помощью

Подробнее

Тригонометрические ряды Фурье. Ряд Фурье для периодической функции с периодом

Тригонометрические ряды Фурье. Ряд Фурье для периодической функции с периодом Тема 0 Тригонометрические ряды Фурье Ряд Фурье для периодической функции с периодом T 0 ) s cos ) d N d d )s )cos ) 0 Тригонометрические ряды Фурье Ряд Фурье для функции с периодом T 0 s cos ) d d d )s,

Подробнее

4. Существование собственного значения вполне непрерывного самосопряженного оператора.

4. Существование собственного значения вполне непрерывного самосопряженного оператора. Лекция 4 Существование собственного значения вполне непрерывного самосопряженного оператора Пусть линейный оператор действует в линейном пространстве L Число называется собственным значением оператора,

Подробнее

Оглавление. Введение. Основные понятия Интегральные уравнения Вольтерры... 5 Варианты домашних заданий... 8

Оглавление. Введение. Основные понятия Интегральные уравнения Вольтерры... 5 Варианты домашних заданий... 8 Оглавление Введение. Основные понятия.... 4 1. Интегральные уравнения Вольтерры... 5 Варианты домашних заданий.... 8 2. Резольвента интегрального уравнения Вольтерры. 10 Варианты домашних заданий.... 11

Подробнее

ВАРИАЦИЯ И ЭКСТРЕМУМ ФУНКЦИОНАЛА

ВАРИАЦИЯ И ЭКСТРЕМУМ ФУНКЦИОНАЛА ВАРИАЦИЯ И ЭКСТРЕМУМ ФУНКЦИОНАЛА А. Н. Мягкий Интегральные уравнения и вариационное исчисление Лекция Пусть задан функционал V = V [y(x)], y(x) M E. Зафиксируем функцию y (x) M. Тогда любую другую функцию

Подробнее

Часть 4 СПЕКТРАЛЬНЫЕ РАЗЛОЖЕНИЯ СЛУЧАЙНЫХ ПРОЦЕССОВ

Часть 4 СПЕКТРАЛЬНЫЕ РАЗЛОЖЕНИЯ СЛУЧАЙНЫХ ПРОЦЕССОВ Часть 4 СПЕКТРАЛЬНЫЕ РАЗЛОЖЕНИЯ СЛУЧАЙНЫХ ПРОЦЕССОВ 41 ИНТЕГРАЛЫ ФУРЬЕ СТИЛТЬЕСА Для спектральных разложений случайных функций пользуется интеграл Стилтьеса Поэтому приведем определение и некоторые свойства

Подробнее

Гл.1. Степенные ряды., постоянные, называемые коэффициентами ряда. Иногда рассматривают степенной ряд более

Гл.1. Степенные ряды., постоянные, называемые коэффициентами ряда. Иногда рассматривают степенной ряд более Гл Степенные ряды a a a Ряд вида a a a a a () называется степенным, где,,,, a, постоянные, называемые коэффициентами ряда Иногда рассматривают степенной ряд более общего вида: a a( a) a( a) a( a) (), где

Подробнее

Неопределенный и определенный интегралы

Неопределенный и определенный интегралы ~ ~ Неопределенный и определенный интегралы Понятие первообразной и неопределѐнного интеграла. Определение: Функция F называется первообразной по отношению к функции f, если эти функции связаны следующим

Подробнее

5.1 Уравнения гиперболического типа. Колебания круглой мембраны

5.1 Уравнения гиперболического типа. Колебания круглой мембраны Уравнения гиперболического типа. Колебания круглой мембраны Уравнение Бесселя Условие ортогональности функций Бесселя нулевого порядка Функции Бесселя первого порядка Круглая мембрана 5 Лекция 5.1 Уравнения

Подробнее

Лекция 3, 4. Будем считать, что область задания функции f (x) } значений аргумента функции f ( x n ) значений функции сходится к b.

Лекция 3, 4. Будем считать, что область задания функции f (x) } значений аргумента функции f ( x n ) значений функции сходится к b. Лекция 3, 4 Предельное значение функции при, + и Будем считать, что область задания функции f ( имеет хотя бы один элемент, лежащий вне отрезка [ A, A], для любого положительного числа A. Определение (по

Подробнее

ЧИСЛОВЫЕ И ФУНКЦИОНАЛЬНЫЕ РЯДЫ. РЯДЫ ФУРЬЕ.

ЧИСЛОВЫЕ И ФУНКЦИОНАЛЬНЫЕ РЯДЫ. РЯДЫ ФУРЬЕ. Министерство образования Российской Федерации Ульяновский государственный технический университет ЧИСЛОВЫЕ И ФУНКЦИОНАЛЬНЫЕ РЯДЫ РЯДЫ ФУРЬЕ Ульяновск УДК 57(76) ББК 9 я 7 Ч-67 Рецензент кандфиз-матнаук

Подробнее

Лекция 15. ПРЕОБРАЗОВАНИЕ ФУРЬЕ И СПЕКТРАЛЬНЫЙ МЕТОД АНАЛИЗА ЭЛЕКТРИЧЕСКИХ ЦЕПЕЙ

Лекция 15. ПРЕОБРАЗОВАНИЕ ФУРЬЕ И СПЕКТРАЛЬНЫЙ МЕТОД АНАЛИЗА ЭЛЕКТРИЧЕСКИХ ЦЕПЕЙ 54 Лекция 5 ПРЕОБРАЗОВАНИЕ ФУРЬЕ И СПЕКТРАЛЬНЫЙ МЕТОД АНАЛИЗА ЭЛЕКТРИЧЕСКИХ ЦЕПЕЙ План Спектры апериодических функций и преобразование Фурье 2 Некоторые свойства преобразования Фурье 3 Спектральный метод

Подробнее

, обращающая уравнение в тождество. Определение. Общим решением дифференциального уравнения первого порядка называется функция y ( x, c)

, обращающая уравнение в тождество. Определение. Общим решением дифференциального уравнения первого порядка называется функция y ( x, c) II ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ Дифференциальные уравнения первого порядка Определение Соотношения, в которых неизвестные переменные и их функции находятся под знаком производной или дифференциала, называются

Подробнее

Ряды Тейлора и Лорана

Ряды Тейлора и Лорана Лекция 7 Ряды Тейлора и Лорана 7. Ряд Тейлора В этой части мы увидим, что понятия степенного ряда и аналитической функции определяют один и тот же объект: любой степенной ряд с положительным радиусом сходимости

Подробнее

Тема курса лекций: ЧИСЛОВЫЕ РЯДЫ.

Тема курса лекций: ЧИСЛОВЫЕ РЯДЫ. Тема курса лекций: ЧИСЛОВЫЕ РЯДЫ. Лекция 2. Абсолютно сходящиеся ряды, признаки сходимости. Свойства абсолютно сходящихся рядов. Условная сходимость. Признаки сходимости Лейбница, Дирихле, Абеля. Далее

Подробнее

5. Квадратурные формулы интерполяционного типа с чебышевскими узлами 1-го рода для несобственных и сингулярных интегралов.

5. Квадратурные формулы интерполяционного типа с чебышевскими узлами 1-го рода для несобственных и сингулярных интегралов. 5 Квадратурные формулы интерполяционного типа с чебышевскими узлами -го рода для несобственных и сингулярных интегралов 5 Интерполяционный полином Лагранжа функции [ ] с чебышевскими узлами -го рода {

Подробнее

Лекция 18. Системы дифференциальных уравнений

Лекция 18. Системы дифференциальных уравнений Лекция 8 Системы дифференциальных уравнений Общие понятия Системой обыкновенных дифференциальных уравнений -порядка называется совокупность уравнений F y y y y ( F y y y y ( F y y y y ( Частным случаем

Подробнее

Лекция 9. Уравнение Шредингера. Операторы физических величин

Лекция 9. Уравнение Шредингера. Операторы физических величин Лекция 9. Уравнение Шредингера. Операторы физических величин Уравнение Шредингера Уравнение Шредингера в квантовой механике постулируется точно так же, как в классической механике постулируются уравнения

Подробнее

Модифицированные функции Бесселя. Ряды Фурье-Бесселя и Дини. Задача Штурма-Лиувилля для уравнения Бесселя.

Модифицированные функции Бесселя. Ряды Фурье-Бесселя и Дини. Задача Штурма-Лиувилля для уравнения Бесселя. Линейные и нелинейные уравнения физики Модифицированные функции Бесселя. Ряды Фурье-Бесселя и Дини. Задача Штурма-Лиувилля для уравнения Бесселя. Старший преподаватель кафедры ВММФ Левченко Евгений Анатольевич

Подробнее

ОПЕРАЦИОННОЕ ИСЧИСЛЕНИЕ 1. Преобразование Лапласа и формула обращения Интеграл Фурье. функция

ОПЕРАЦИОННОЕ ИСЧИСЛЕНИЕ 1. Преобразование Лапласа и формула обращения Интеграл Фурье. функция ОПЕРАЦИОННОЕ ИСЧИСЛЕНИЕ Преобразование Лапласа и формула обращения Пусть в промежутке Дирихле а именно: Интеграл Фурье ( l l) а) ограничена на этом отрезке; функция удовлетворяет условиям б) кусочно-непрерывна

Подробнее

ОСНОВЫ ТЕОРИИ РЯДОВ. О.В. Сорокина. ФГБОУ ВО «Саратовский национальный исследовательский государственный университет им. Н.Г.

ОСНОВЫ ТЕОРИИ РЯДОВ. О.В. Сорокина. ФГБОУ ВО «Саратовский национальный исследовательский государственный университет им. Н.Г. ФГБОУ ВО «Саратовский национальный исследовательский государственный университет им НГ Чернышевского» ОСНОВЫ ТЕОРИИ РЯДОВ ОВ Сорокина Учебное пособие для студентов нематематических направлений подготовки

Подробнее

Занятие 1. Числовые ряды. Сумма ряда. Признаки сходимости. суммам двух рядов для бесконечной геометрической прогрессии

Занятие 1. Числовые ряды. Сумма ряда. Признаки сходимости. суммам двух рядов для бесконечной геометрической прогрессии Числовые и степенные ряды Занятие. Числовые ряды. Сумма ряда. Признаки сходимости.. Вычислить сумму ряда. 6 Решение. Сумма членов бесконечной геометрической прогрессии q равна, где q - знаменатель прогрессии.

Подробнее

Тема: Степенные ряды.

Тема: Степенные ряды. Математический анализ Раздел: Числовые и функциональные ряды Тема: Степенные ряды. Разложение функции в степенной ряд Лектор Рожкова С.В. 3 г. 34. Степенные ряды Степенным рядом рядом по степеням называется

Подробнее

Л. Д. Кудрявцев. РЕКОМЕНДУЕМЫЕ ВОПРОСЫ по курсу МАТЕМАТИЧЕСКОГО АНАЛИЗА (II курс, II семестр)

Л. Д. Кудрявцев. РЕКОМЕНДУЕМЫЕ ВОПРОСЫ по курсу МАТЕМАТИЧЕСКОГО АНАЛИЗА (II курс, II семестр) Л. Д. Кудрявцев РЕКОМЕНДУЕМЫЕ ВОПРОСЫ по курсу МАТЕМАТИЧЕСКОГО АНАЛИЗА (II курс, II семестр) Составитель: Л.Д.Кудрявцев УДК 517 Рекомендуемые вопросы по курсу математического анализа (II курс, II семестр)

Подробнее

Лекция 4 Москва, 2015

Лекция 4 Москва, 2015 Спектральное представление сигналов к.ф.-м.н., доцент Московский государственный университет факультет ВМК кафедра Математических методов прогнозирования Спектральное представление сигналов Лекция 4 Москва,

Подробнее

Нижегородский государственный университет им. Н.И. Лобачевского Механико-математический факультет Кафедра теории функций

Нижегородский государственный университет им. Н.И. Лобачевского Механико-математический факультет Кафедра теории функций Нижегородский государственный университет им НИ Лобачевского Механико-математический факультет Кафедра теории функций Михаил Александрович Солдатов Светлана Серафимовна Круглова Евгений Валентинович Круглов

Подробнее

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ Общие понятия Дифференциальные уравнения имеют многочисленные и самые разнообразные приложения в механике физике астрономии технике и в других разделах высшей математики (например

Подробнее

9.1 Классические ортогональные полиномы Определение классических ортогональных полиномов. τ(x) = Ax + B, (9.3)

9.1 Классические ортогональные полиномы Определение классических ортогональных полиномов. τ(x) = Ax + B, (9.3) Классические ортогональные полиномы Определение классических ортогональных полиномов Основные свойства классических ортогональных полиномов 9 Лекция 9.1 Классические ортогональные полиномы 9.1.1 Определение

Подробнее

ОГЛАВЛЕНИЕ. 7. Ряд Фурье для функции, заданной на отрезке длины 2я... 28

ОГЛАВЛЕНИЕ. 7. Ряд Фурье для функции, заданной на отрезке длины 2я... 28 Предисловие к первому изданию... 8 Предисловие ко второму изданию... 10 Глава 1. Тригонометрические ряды Ф урье... 11 1. Периодические функции... 11 2. Гармоники... 13 3. Тригонометрические многочлены

Подробнее

Лекция Дифференцирование сложной функции

Лекция Дифференцирование сложной функции Лекция 8 Дифференцирование сложной функции Рассмотрим сложную функцию t t t f где ϕ t t t t t t t f t t t t t t t t t Теорема Пусть функции дифференцируемы в некоторой точке N t t t а функция f дифференцируема

Подробнее

Автор - проф. Филиппов А.Н.

Автор - проф. Филиппов А.Н. Пять лекций по неопределенному интегралу Лекция Первообразная и неопределенный интеграл Первообразная и ее свойства Действие, обратное дифференцированию, называется интегрированием f д и ф ф е р и н т

Подробнее

Дифференциальные уравнения

Дифференциальные уравнения Глава 1 Дифференциальные уравнения 1.1 Понятие о дифференциальном уравнении 1.1.1 Задачи, приводящие к дифференциальным уравнениям. В классической физике каждой физической величине ставится в соответствие

Подробнее

PDF created with FinePrint pdffactory trial version

PDF created with FinePrint pdffactory trial version Лекция 7 Комплексные числа их изображение на плоскости Алгебраические операции над комплексными числами Комплексное сопряжение Модуль и аргумент комплексного числа Алгебраическая и тригонометрическая формы

Подробнее

12. Уравнения Фредгольма 2-го рода с вырожденными ядрами.

12. Уравнения Фредгольма 2-го рода с вырожденными ядрами. Лекция 7 2 Уравнения Фредгольма 2го рода с вырожденными ядрами Этот случай отличается тем, что решение интегрального уравнения сводится к решению линейной алгебраической системы и может быть легко получено

Подробнее

6. Характеристические числа и собственные функции интегрального оператора Фредгольма с симметрическим непрерывным ядром.

6. Характеристические числа и собственные функции интегрального оператора Фредгольма с симметрическим непрерывным ядром. Лекция 4 6. Характеристические числа и собственные функции интегрального оператора Фредгольма с симметрическим непрерывным ядром. Подытожим результаты полученные в предыдущем параграфе в следующей теореме.

Подробнее

Тема 3. ГАРМОНИЧЕСКИЙ АНАЛИЗ НЕПЕРИОДИЧЕСКИХ СИГНАЛОВ

Тема 3. ГАРМОНИЧЕСКИЙ АНАЛИЗ НЕПЕРИОДИЧЕСКИХ СИГНАЛОВ Тема 3 ГАРМОНИЧЕСКИЙ АНАЛИЗ НЕПЕРИОДИЧЕСКИХ СИГНАЛОВ Прямое и обратное преобразования Фурье Спектральная характеристика сигнала Амплитудно-частотный и фазо-частотный спектры Спектральные характеристики

Подробнее

Несобственные интегралы

Несобственные интегралы Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования «НИЖЕГОРОДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ИМ Р Е

Подробнее