Т. Н. Матыцина ДИСКРЕТНАЯ МАТЕМАТИКА РЕШЕНИЕ РЕКУРРЕНТНЫХ СООТНОШЕНИЙ. Практикум

Save this PDF as:
 WORD  PNG  TXT  JPG

Размер: px
Начинать показ со страницы:

Download "Т. Н. Матыцина ДИСКРЕТНАЯ МАТЕМАТИКА РЕШЕНИЕ РЕКУРРЕНТНЫХ СООТНОШЕНИЙ. Практикум"

Транскрипт

1 МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Костромской государственный университет имени Н. А. Некрасова Т. Н. Матыцина ДИСКРЕТНАЯ МАТЕМАТИКА РЕШЕНИЕ РЕКУРРЕНТНЫХ СООТНОШЕНИЙ Практикум Кострома 2010

2 ББК я73-5 М348 Печатается по решению редакционно-издательского совета КГУ им. Н. А. Некрасова Рецензент А. В. Чередникова, кандидат физико-математических наук, доцент М348 Матыцина Т. Н. Дискретная математика. Решение рекуррентных соотношений : практикум [Текст] / Т. Н. Матыцина. Кострома : КГУ им. Н. А. Некрасова, с. Практикум содержит индивидуальные задания для студентов и предназначен для обеспечения самостоятельной работы по освоению первой части курса «Дискретная математика». Для студентов 2 3 курсов физико-математического факультета, обучающихся по специальностям «Математика» с дополнительной специальностью «Информатика», «Информатика» с дополнительной специальностью «Математика». ББК я73-5 Т. Н. Матыцина, 2010 КГУ им. Н. А. Некрасова,

3 ОГЛАВЛЕНИЕ Введение Методические рекомендации по решению линейных рекуррентных соотношений Основные понятия и определения рекуррентных (возвратных) последовательностей Алгоритмы решения ЛОРС и ЛРС Примеры решения ЛОРС и ЛРС Задачи для самостоятельного решения Задачи для решения ЛОРС и ЛРС Ответы Заключение Библиографический список

4 ВВЕДЕНИЕ Первая часть курса «Дискретная математика», изучаемая студентами 2 3 курсов физико-математического факультета, обучающихся по специальностям «Информатика» с дополнительной специальностью «Математика» (IV семестр) и «Математика» с дополнительной специальностью «Информатика» (V семестр), предполагает решение рекуррентных соотношений. В настоящее издание включены задачи на вычисление однородных и неоднородных линейных рекуррентных соотношений. Поводом для написания практикума послужило то обстоятельство, что у студентов практически нет навыков решения задач по данному курсу. Одной из причин является отсутствие доступного учебника или сборника задач. Задачи из предлагаемого практикума помогут каждому из студентов (индивидуально) разобраться с основными методами и приемами решения задач. С целью более легкого освоения материала в начале пособия рассмотрены все типы задач, предлагаемых для самостоятельного решения. В конце помещен список рекомендуемой литературы, которая поможет глубже изучить данный предмет. Тема «Рекуррентные соотношения» близка к школьному курсу (арифметические и геометрические прогрессии, последовательность квадратов и кубов натуральных чисел, и т. п.), поэтому не требует от студентов предварительного изучения каких-либо других дисциплин. Основы теории рекуррентных соотношений (возвратных последовательностей) были разработаны и опубликованы в 20-х гг. XVIII в. французским математиком А. Муавром и одним из первых по времени членов Петербургской Академии наук швейцарским математиком Д. Бернулли. Развёрнутую теорию дал крупнейший математик XVIII в. 4

5 петербургский академик Л. Эйлер. Из более поздних работ следует выделить изложение теории возвратных последовательностей в курсах исчисления конечных разностей, читанных знаменитыми русскими математиками академиками П. Л. Чебышевым и А. А. Марковым. Рекуррентные соотношения (от латинского слова recurrere возвращаться) играют большую роль в дискретной математике, являясь по существу в некотором смысле дискретным аналогом дифференциальных уравнений. Кроме того, они позволяют сводить данную задачу от параметров к задаче от 1 параметров, потом к задаче от 2 параметров и т. д. Последовательно уменьшая число параметров, можно дойти до задачи, которую уже легко решить. Понятие рекуррентного соотношения (возвратной последовательности) является широким обобщением понятия арифметической или геометрической прогрессии. Как частные случаи оно охватывает также последовательности квадратов или кубов натуральных чисел, последовательности цифр десятичного разложения рационального числа (и вообще любые периодические последовательности), последовательности коэффициентов частного от деления двух многочленов, расположенных по возрастающим степеням х, и т. д. 5

6 1. МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ПО РЕШЕНИЮ ЛИНЕЙНЫХ РЕКУРРЕНТНЫХ СООТНОШЕНИЙ 1.1. Основные понятия и определения рекуррентных (возвратных) последовательностей Будем записывать последовательности в виде a 1, a 2, a 3,, a, (1) или, коротко, {a }. Если существует натуральное число k и числа α 1, α 2,, α k (действительные или мнимые), такие, что, начиная с некоторого номера и для всех следующих номеров, a +k = α 1 a +k 1 + α 2 a +k α k a, ( k 1), (2) то последовательность (1) называется рекуррентной (возвратной) последовательностью порядка k, а соотношение (2) рекуррентным (возвратным) уравнением порядка k. Таким образом, рекуррентная последовательность характеризуется тем, что каждый её член (начиная с некоторого из них) выражается через одно и то же количество k непосредственно предшествующих ему членов по формуле (2). Само название «рекуррентная» (а также возвратная) употребляется именно потому, что здесь для вычисления последующего члена возвращаются к предшествующим членам. Приведём несколько примеров рекуррентных последовательностей. Пример 1. Геометрическая прогрессия. Пусть имеем геометрическую прогрессию: a 1 = α, a 2 = α q, a 3 = α q 2,, a = α q 1, ; (3) для неё уравнение (2) принимает вид: a +1 = q a. (4) 6

7 Здесь k = 1 и α 1 = q. Таким образом, геометрическая прогрессия является рекуррентной последовательностью первого порядка. Пример 2. Арифметическая прогрессия. В случае арифметической прогрессии a 1 = α, a 2 = α + d, a 3 = α + 2d,, a = α + ( 1)d, имеем a +1 = a + d соотношение, не имеющее вида уравнения (2). Однако если мы рассмотрим два соотношения, написанные для двух соседних значений : a +2 = a +1 + d и a +1 = a + d, то получим из них путём почленного вычитания a +2 a +1 = a +1 a, или a +2 = 2a +1 a уравнение вида (2). Здесь k = 2, α 1 = 2, α 2 = 1. Следовательно, арифметическая прогрессия является рекуррентной последовательностью второго порядка. Пример 3. Рассмотрим старинную задачу Фибоначчи 1 о числе кроликов. В ней требуется определить число пар зрелых кроликов, образовавшихся от одной пары в течение года, если известно, что каждая зрелая пара кроликов ежемесячно рождает новую пару, причём новорождённые достигают полной зрелости в течение месяца. В этой задаче интересен отнюдь не результат, получить который совсем нетрудно, но последовательность, члены которой выражают общее число зрелых пар кроликов в начальный момент (a 1 ) через месяц (a 2 ), через два месяца (a 3 ) и, вообще, через месяцев (a +1 ). Очевидно, что a 1 = 1. Через месяц прибавится пара новорождённых, но число зрелых пар будет прежнее: a 2 = 1. Через два месяца крольчата достигнут зрелости и общее число зрелых пар будет равно двум: a 3 = 2. Пусть мы вычислили уже количество 1 Фибоначчи, или Леонардо Пизанский, итальянский средневековый математик (около 1200 г.) оставил после себя книгу «Об абаке», содержащую обширные арифметические и алгебраические сведения, заимствованные у народов Средней Азии и византийцев и творчески им переработанные и развитые. 7

8 зрелых пар через 1 месяцев a и через месяцев a +1. Так как к этому времени a ранее имевшихся зрелых пар дадут ещё a пар приплода, то через + 1 месяцев общее число зрелых пар будет: a +2 = a +1 + a. (6) Отсюда a 4 = a 3 + a 2 = 3, a 5 = a 4 + a 3 = 5, a 6 = a 5 + a 4 = 8, a 7 = a 6 + a 5 = 13,. Мы получили, таким образом, последовательность a 1 = 1, a 2 = 1, a 3 = 2, a 4 = 3, a 5 = 5, a 6 = 8, a 7 = 13,, a 13 = 233,, (7) в которой каждый последующий член равен сумме двух предыдущих. Последовательность эта называется последовательностью Фибоначчи, а члены её числами Фибоначчи. Уравнение (6) показывает, что последовательность Фибоначчи есть рекуррентная последовательность второго порядка. Пример 4. В качестве следующего примера рассмотрим последовательность квадратов натуральных чисел: a 1 = 1 2, a 2 = 2 2, a 3 = 3 2,, a = 2,. (8) Здесь a +1 = ( + 1) 2 = и, следовательно, a +1 = a (9) Увеличивая на единицу, получим: a +2 = a (10) И, следовательно (вычитая почленно (9) из (10)), a +2 a +1 = a +1 a + 2, или a +2 = 2a +1 a + 2. (11) Увеличивая в равенстве (11) на единицу, будем иметь: a +3 = 2a +2 a ; (12) откуда (вычитая почленно (11) из (12)) a +3 a +2 = 2a +2 3a +1 + a, 8

9 или a +3 = 3a +2 3a +1 + a. (13) Мы получили рекуррентное уравнение третьего порядка. Следовательно, последовательность (8) есть рекуррентная последовательность третьего порядка. Пример 5. Рассмотрим последовательность кубов натуральных чисел: a 1 = 1 3, a 2 = 2 3, a 3 = 3 3,, a = 3,. (14) Подобным же образом, как в примере 4, можно убедиться в том, что последовательность кубов натуральных чисел есть рекуррентная последовательность четвёртого порядка. Члены её удовлетворяют уравнению a +4 = 4a +3 6a a +1 a. (15) В случае простейших рекуррентных последовательностей, например арифметической и геометрической прогрессий, последовательности квадратов или кубов натуральных чисел, мы можем находить любой член последовательности, не прибегая к вычислению предшествующих членов. В случае же последовательности чисел Фибоначчи мы, на первый взгляд, не имеем возможности для этого и, чтобы вычислить тринадцатое число Фибоначчи a 13, находим предварительно, один за другим, все предшествующие члены (пользуясь уравнением a +2 = a +1 + a (6)): a 1 = 1, a 2 = 1, a 3 = 2, a 4 = 3, a 5 = 5, a 6 = 8, a 7 = 13, a 8 = 21, a 9 = 34, a 10 = 55, a 11 = 89, a 12 = 144, a 13 = 233. В ходе детального исследования структуры членов рекуррентной последовательности можно получить формулы, позволяющие вычислить в самом общем случае любой член рекуррентной последовательности, не прибегая к вычислению предшествующих членов. Другими словами, следующая задача состоит в том, чтобы отыскать формулу -го члена последовательности, зависящую только от номера. 9

10 Рекуррентное соотношение в общем случае может быть записано в виде a +k = F(, a +k 1, a +k 2,, a ), где F функция от k + 1 переменной, а число k называют порядком соотношения. Решением рекуррентного соотношения называется числовая последовательность b 1, b 2, b 3,, b,, для которой выполняется равенство: b +k = F(, b +k 1, b +k 2,, b ) при любом = 0, 1, 2,. Вообще говоря, произвольное рекуррентное соотношение имеет бесконечно много решений. Например, если рассмотреть рекуррентное соотношение второго порядка a +2 = a +1 + a, то ему, кроме последовательности Фибоначчи: 1, 1, 2, 3, 5, 8, 13, 21, 34,..., характеризующейся тем, что здесь a 1 = a 2 = 1, удовлетворяет ещё бесконечное множество других последовательностей, получающихся при различном выборе значений a 1 и a 2. Так, например, при a 1 = 3 и a 2 = 1 получаем последовательность: 3, 1, 2, 1, 3, 4, 7, 11, 18, 29,. Чтобы однозначно определить решение рекуррентного соотношения, необходимо задать начальные условия (начальных условий должно быть ровно столько, каков порядок рекуррентного соотношения). Решить рекуррентное соотношение значит найти формулу -го члена последовательности. К сожалению, не существует общего метода решения произвольных рекуррентных соотношений. Исключением является класс так называемых линейных рекуррентных соотношений с постоянными коэффициентами. Рекуррентное соотношение вида a +k = α 1 a +k 1 + α 2 a +k α k a, где a i некоторые числа, i = 1, 2,, k, называется линейным однородным рекуррентным соотношением (ЛОРС) с постоянными коэффициентами порядка k. 10

11 Рекуррентное соотношение вида a +k = α 1 a +k 1 + α 2 a +k α k a + f(), где a i некоторые числа, i = 1, 2,, k, f() 0 функция от, называется линейным рекуррентным соотношением (ЛРС) с постоянными коэффициентами порядка k Алгоритмы решения ЛОРС и ЛРС Алгоритм решения ЛОРС. Имеем ЛОРС: a +k = α 1 a +k 1 + α 2 a +k α k a. 1 шаг. Каждому ЛОРС порядка k соответствует алгебраическое уравнение степени k с теми же коэффициентами, и оно называется характеристическим уравнением ЛОРС. Составляем характеристическое уравнение x k = α 1 x k 1 + α 2 x k α k x 0 и находим его корни x i, где i = 1,, k. 2 шаг. Если x i корни кратности 1 (т. е. все различны между собой), то общее решение ЛОРС имеет вид: a = c 1 (x 1 ) + c 2 (x 2 ) + c 3 (x 3 ) + + c k (x k ) = c i x i Если x i корни кратности r i, то общее решение ЛОРС имеет вид k a = i= 1 ( c 1 2 ri 1 i1 + ci2 + ci cir ) (например, если корень x кратности 2, то a = (c 1 + c 2 ) x ). i x i k i= 1 3 шаг. Коэффициенты c i находятся с помощью начальных условий. 11

12 Алгоритм решения ЛРС. Имеем ЛРС: a +k = α 1 a +k 1 + α 2 a +k α k a + f(). Функцию f() можно представить в виде R m () λ, где R m () многочлен степени m от переменной. В самом деле, например: f() = 10 3= (10 3)1 = R 1 () 1, или f() = = ( 2 + 3) 3 = R 2 () 3. Перепишем ЛРС в виде a +k α 1 a +k 1 α 2 a +k 2 α k a = R m () λ. 1 шаг. Выписываем соответствующий ЛОРС: a +k α 1 a +k 1 α 2 a +k 2 α k a = 0 и находим его общее решение. Для этого составляем характеристическое уравнение x k α 1 x k 1 α 2 x k 2 α k x 0 = 0 и находим его корни x i, где i = 1,, k. Пусть, например, x i различные корни, тогда общее решение соответствующего ЛОРС имеет вид: a = c 1 (x 1 ) + c 2 (x 2 ) + c 3 (x 3 ) + + c k (x k ). 2 шаг. Находим a частное решение ЛРС: а) если λ не корень характеристического уравнения x k α 1 x k 1 α 2 x k 2 α k = 0, то a = Q m () λ, где Q m () многочлен степени m от переменной ; б) если λ корень характеристического уравнения x k α 1 x k 1 α 2 x k 2 α k = 0 кратности r, то a = r Q m () λ, где Q m () многочлен степени m от переменной. Далее, подставляем a в исходное ЛРС и находим коэффициенты в многочлене Q m (). 12

13 3 шаг. Находим общее решение ЛРС, оно представляет собой сумму общего решения соответствующего ЛОРС a и частного решения ЛРС a, то есть a = a + a. Коэффициенты c i находятся с помощью начальных условий Примеры решения ЛОРС и ЛРС Пользуясь приведенным алгоритмом нахождения решения ЛОРС и ЛРС, разберём несколько задач. Задача 1. Найти решение линейного однородного рекуррентного соотношения второго порядка: a +2 = 6 a +1 8 a, a 0 = 3, a 1 = Составляем характеристическое уравнение x 2 = 6 x 8 x 0 и находим его корни. x 2 6x + 8 = 0; x 1 = 2, x 2 = 4 корни различные, следовательно, их кратность равна Находим общее решение ЛОРС: a = c 1 (x 1 ) + c 2 (x 2 ) = c c Так как заданы начальные условия, то коэффициенты c 1 и c 2 определяются однозначно. a 0 = c c = c 1 + c 2 = 3; a 1 = c c = 2c 1 + 4c 2 = 4. Получили систему: c1 + c2 = 3, 2c1 + 4c2 = 4. Решая её, найдём коэффициенты: c 1 = 8, c 2 = 5. Таким образом, решение ЛОРС имеет вид a = Задача 2. Найти решение линейного однородного рекуррентного соотношения: 13

14 a +2 = 6 a +1 9 a, a 0 = 5, a 1 = Составляем характеристическое уравнение x 2 = 6x 9 и находим его корни. x 2 6x + 9 = 0; (x 3) 2 = 0; x 1 = x 2 = 3 два корня, при этом x 1 и x 2 совпали, следовательно, кратность корня равна Находим общее решение ЛОРС: a = (c 1 + c 2 ) (x 1 ) = (c 1 + c 2 ) С помощью начальных условий определяем коэффициенты c 1 и c 2 : a 0 = (c 1 + c 2 0) 3 0 = c 1 = 5; a 1 = (c 1 + c 2 1) 3 1 = (c 1 + c 2 ) 3 = 6. Получили систему c1 = 5, c1 + c2 = 2. Решая её, найдём коэффициенты c 1 = 5, c 2 = 3. Таким образом, решение ЛОРС имеет вид: a = (5 3) 3. Замечание. Как известно, корнями квадратного уравнения могут служить рациональные, иррациональные, комплексные числа и т. п. Метод решения линейных рекуррентных соотношений с такими корнями решается аналогично. Задача 3. Найти решение линейного однородного рекуррентного соотношения третьего порядка: a +3 = 3 a a +1 8 a, a 0 = 9, a 1 = 9, a 2 = Составляем характеристическое уравнение x 3 = 3 x x 8 и находим его корни. x 3 3x 2 6x + 8 = 0; (x 1)(x + 2)(x 4) = 0; x 1 = 1, x 2 = 2, x 3 = 4 корни различные, следовательно, их кратность равна Находим общее решение ЛОРС: a = c 1 (x 1 ) + c 2 (x 2 ) + c 3 (x 3 ) = c c 2 ( 2) + c

15 3. С помощью начальных условий, находим коэффициенты c 1, c 2 и c 3. a 0 = c c 2 ( 2) 0 + c = c 1 + c 2 + c 3 = 9; a 1 = c c 2 ( 2) 1 + c = c 1 2c 2 + 4c 3 = 9; a 2 = c c 2 ( 2) 2 + c = c 1 + 4c c 3 = 9. c1 + c2 + ñ3 = 9, Решая систему c1 2c2 + 4c3 = 9, получим c 1 = 7, c 2 = 4, c 3 = 2. Таким c1 + 4c2 + 16c3 = 9, образом, решение ЛОРС имеет вид: a = ( 2) 2 4. Задача 4. Найти решение линейного однородного рекуррентного соотношения третьего порядка: a +3 = a a +1 3 a, a 0 = 6, a 1 = 15, a 2 = Составляем характеристическое уравнение x 3 = x 2 + 5x 3 и находим его корни. x 3 + x 2 5x + 3 = 0; (x 1) 2 (x + 3) = 0; x 1 = x 2 = 1 корень кратности 2; x 3 = 3 корень кратности Находим общее решение ЛОРС: a = (c 1 + c 2 ) (x 1 ) + c 3 (x 3 ) = (c 1 + c 2 ) 1 + c 3 ( 3). 3. С помощью начальных условий находим коэффициенты c 1, c 2 и c 3. a 0 = (c 1 + c 2 0) c 3 ( 3) 0 = c 1 + c 3 = 6; a 1 = (c 1 + c 2 1) c 3 ( 3) 1 = c 1 + c 2 3c 3 = 15; a 2 = (c 1 + c 2 2) c 3 ( 3) 2 = c 1 + 2c 2 + 9c 3 = 8. c1 + ñ3 = 6, Решая систему c1 + c2 3c3 = 15, получим c 1 = 8, c 2 = 1 и c 3 = 2. Таким c1 + 2c2 + 9c3 = 8, образом, решение ЛОРС имеет вид: a = (8 + ) 1 2 ( 3). 15

16 Задача 5. Найти решение линейного рекуррентного соотношения второго порядка: Перепишем ЛРС в виде a +2 = 18 a a + 128, a 0 = 5, a 1 = 2. a a a = () 1. Выписываем соответствующий ЛОРС: a a a = 0. Составляем характеристическое уравнение и находим его корни. x 2 18x + 81 = 0; (x 9) 2 = 0; x 1 = x 2 = 9 корни характеристического уравнения совпали, следовательно, их кратность равна 2. Тогда общее решение a = (c 1 + c 2 ) (x 1 ) = (c 1 + c 2 ) Находим a частное решение ЛРС. По условию f() = R m () λ = = = R 0 () λ, где R 0 () = 128 многочлен нулевой степени от переменной, а λ = 1 не корень характеристического уравнения соответствующего ЛОРС. Следовательно, a = Q m () λ = Q 0 () 1, где Q 0 () многочлен нулевой степени от переменной, в общем виде Q 0 () = с. Таким образом, a = с 1. Далее, подставляем a в исходное ЛРС () и находим коэффициент с в многочлене Q 0 (): с с с 1 = ; с 18с + 81с = 128; 64с = 128; с = 2. Следовательно, получили a = с 1 = 2 1 = 2. 16

17 3. Находим общее решение ЛРС, оно представляет собой сумму общего решения соответствующего ЛОРС a и частного решения ЛРС a, то есть a = a + a = (c 1 + c 2 ) Осталось с помощью начальных условий найти коэффициенты c 1, и c 2. a 0 = (c 1 + c 2 0) = c = 5; a 1 = (c 1 + c 2 1) = 9c 1 + 9c = 2; Решая систему c1 + 2 = 5, 9c1 + 9c2 + 2 = 2, получим c 1 = 3, c 2 = 3. Таким образом, решение ЛРС имеет вид: a = (3 3) Задача 6. Найти решение линейного рекуррентного соотношения: a +2 = 10 a a , a 0 = 7, a 1 = 50. Перепишем ЛРС в виде a a a = Выписываем соответствующий ЛОРС: a a a = 0; составляем характеристическое уравнение и находим его корни. x 2 10 x + 25 = 0; (x 5) 2 = 0; x 1 = x 2 = 5 корень кратности 2. Тогда общее решение ЛОРС имеет вид: a = (c 1 + c 2 ) (x 1 ) = (c 1 + c 2 ) Находим a частное решение ЛРС. По условию f() = R m () λ = 50 5 = R 0 () λ, где R 0 () = 50 многочлен нулевой степени от переменной, а λ = 5 совпадает с корнем x 1 кратности 2 характеристического уравнения соответствующего ЛОРС. Следовательно, a = r Q m () λ = = 2 Q 0 () 5, где Q 0 () = с многочлен нулевой степени от переменной. Таким образом, a = 2 с 5. Далее, подставляем a в исходное ЛРС и находим коэффициент с: 17

18 с ( + 2) с ( + 1) с 2 5 = 50 5 (разделим на 5 0); 25с ( + 2) 2 50с ( + 1) с 2 = 50; с ( ) 2с ( ) + с 2 = 2; с = 1. Следовательно, a = 2 с 5 = Выписываем общее решение ЛРС: a = a + a = (c 1 + c 2 ) С помощью начальных условий находим коэффициенты c 1, и c 2 : a 0 = (c 1 + c 2 0) = c 1 = 7; a 1 = (c 1 + c 2 1) = 5c 1 + 5c = 50; Решая систему c1 = 7, c1 + c2 + 1 = 10, получим c 1 = 7, c 2 = 2. Таким образом, решение ЛРС имеет вид: a = (7 + 2) = ( ) 5. Задача 7. Найти решение линейного рекуррентного соотношения: a +2 = 6 a +1 8 a , a 0 = 0, a 1 = 11. Перепишем ЛРС в виде a +2 6 a a = Выписываем соответствующий ЛОРС: a +2 6 a a = 0; составляем характеристическое уравнение и находим его корни. x 2 6x + 8 = 0; x 1 = 2, x 2 = 4 корни кратности равной 1. Тогда общее решение ЛОРС имеет вид a = c 1 (x 1 ) + c 2 (x 2 ) = c c Находим a частное решение ЛРС. По условию f() = R m () λ = = (3 + 2) 1 = R 1 () λ, где R 1 () = многочлен первой степени от переменной, а λ = 1 не корень характеристического уравнения соответствующего ЛОРС. Следовательно, a = Q m () λ = Q 1 () 1, где Q 1 () многочлен первой степени от переменной, в общем виде Q 1 () = = a + b. Таким образом, a = (a + b) 1. 18

19 a и b: Далее, подставляем a в исходное ЛРС и находим коэффициенты (a ( + 2) + b) (a ( + 1) + b) (a + b) 1 = 3 + 2; 25с ( + 2) 2 50с ( + 1) с 2 = 3 + 2; 3a + (3b 4a) = Таким образом, получили, что два многочлена равны, а тогда равны соответствующие коэффициенты: 3a = 3, a = 1, 3b 4a = 2 b = 2. Следовательно, a = (a + b) 1 = Выписываем общее решение ЛРС: a = a + a = c c ( + 2). С помощью начальных условий находим коэффициенты c 1, и c 2 : a 0 = c c (0 + 2) = 0; a 1 = c c (1 + 2) = 11; Решая систему c1 + c2 = 2, 2c1 + 4c2 = 14, получим c 1 = 3, c 2 = 5. Таким образом, решение ЛРС имеет вид: a = Задача 8. Найти решение линейного рекуррентного соотношения: a +2 = 5 a +1 6 a + (10 4) 2, a 0 = 5, a 1 = 12. Перепишем ЛРС в виде a +2 5 a a = (10 4) Выписываем соответствующий ЛОРС: a +2 5 a a = 0; составляем характеристическое уравнение и находим его корни. x 2 5x + 6 = 0; x 1 = 3, x 2 = 2 корни различные кратности 1. Тогда общее решение ЛОРС имеет вид: a = c 1 (x 1 ) + c 2 (x 2 ) = c c

20 2. Находим a частное решение ЛРС. По условию имеем, что f() = = R m () λ = (10 4) 2 = R 1 () λ, где R 1 () = (10 4) многочлен первой степени от переменной, а λ = 2, то есть совпадает с корнем характеристического уравнения соответствующего ЛОРС. Следовательно, a = r Q m () λ = 1 Q 1 () 2, где Q 1 () многочлен первой степени от переменной, в общем виде Q 1 () = a + b. Таким образом, получаем a = = (a + b) 2. Далее, подставляем a в исходное соотношение и находим коэффициенты a и b. ( + 2)(a ( + 2) + b) ( + 1) (a ( + 1) + b) (a + b) 2 = = (10 4) 2. Разделим это уравнение на 2 0: 4( + 2)(a ( + 2) + b) 10( + 1) (a ( + 1) + b) + 6(a + b) = 10 4; 4a + (6a 2b) = Таким образом, получили, что два многочлена равны, а тогда равны соответствующие коэффициенты: 4a = 4, a = 1, 6a 2b = 10 b = 2. Следовательно, a = (a + b) 2 = ( 2) Выписываем общее решение ЛРС, то есть a = a + a = c c ( 2) 2. С помощью начальных условий находим коэффициенты c 1, и c 2. a 0 = c c (0 2) 2 0 = 5; a 1 = c c (1 2) 2 1 = 12. Решая систему c1 + c2 = 5, 3c1 + 2c2 = 14, получим c 1 = 4, c 2 = 1. Таким образом, решение ЛРС имеет вид: a = ( 2) 2 = ( ) 2. 20

21 Задача 9. Найти решение линейного рекуррентного соотношения: a +2 = 8 a a , a 0 = 1, a 1 = 7. Перепишем ЛРС в виде a +2 8 a a = ( ) Выписываем соответствующий ЛОРС: a +2 8 a a = 0; составляем характеристическое уравнение и находим его корни. x 2 8 x + 16 = 0; x 1 = x 2 = 4 корни совпали, следовательно, кратность корня равна 2. Тогда общее решение ЛОРС имеет вид: a = (c 1 + c 2 ) (x 1 ) = (c 1 + c 2 ) Находим a частное решение ЛРС. По условию f() = R m () λ = = ( ) 1 = R 2 () λ, где R 2 () = многочлен второй степени от переменной, а λ = 1 не совпадает с корнем характеристического уравнения соответствующего ЛОРС. Следовательно, a = Q m () λ = Q 2 () 1, где Q 2 () многочлен второй степени от переменной, в общем виде Q 2 () = a 2 + b + c. Таким образом, a = = (a 2 + b + c) 1. Далее, подставляем a в исходное соотношение и находим коэффициенты a, b и c. (a ( + 2) 2 + b ( + 2)+ c) (a ( + 1) 2 + b ( + 1) + c) (a b + c) 1 = ( ) 1 ; a( + 2) 2 + b( + 2)+ c 8a( + 1) 2 8b( + 1) 8c + 16a b + 16c = = ; 9a 2 12a + 9b 4a 6b + 9c = Таким образом, получили, что два многочлена равны, а тогда равны соответствующие коэффициенты: 9a = 9, 12a + 9b = 6, 4a 6b + 9c = 2 a = 1, b = 2, c = 2. 21

22 Следовательно, a = (a 2 + b + c) 1 = Выписываем общее решение ЛРС, то есть a = a + a = (c 1 + c 2 ) ( ). С помощью начальных условий, находим коэффициенты c 1, и c 2. a 0 = (c 1 + c 2 0) ( ) = 1; a 1 = (c 1 + c 2 1) ( ) = 7. Решая систему c1 + 2 = 1, 4c1 + 4c2 + 5 = 7, получим c 1 = 1, c 2 = 2. Таким образом, решение ЛРС имеет вид: a = ( 1 2)

23 2. ЗАДАЧИ ДЛЯ САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ 2.1. Задачи для решения ЛОРС и ЛРС Линейные однородные рекуррентные соотношения второго порядка 1. a +2 = 9 a a, a 0 = 2, a 1 = a +2 = 3,5 a +1 2,5 a, a 0 = 3,5, a 1 = a +2 = 8 a a, a 0 = 4, a 1 = a +2 = 2 a a, a 0 = 3, a 1 = i. 5. a +2 = 10 a a, a 0 = 3, a 1 = a +2 = 6 a a, a 0 = 0, a 1 = 2i a +2 = 8 a a, a 0 = 2, a 1 = a +2 = 4 a a, a 0 = 7, a 1 = a +2 = a +1 + a, a 0 = 2, a 1 = a +2 = 8 a a, a 0 = 8, a 1 = a +2 = ( ) a a, a 0 = 7, a 1 = a +2 = 5 a +1 4 a, a 0 = 0, a 1 = a +2 = 2 a +1 5 a, a 0 = 5, a 1 = 6i a +2 = 3 a a, a 0 = 7, a 1 = a +2 = 6 a +1 9 a, a 0 = 8, a 1 = a +2 = 6 a a, a 0 = 3, a 1 = 9 2i. 17. a +2 = a a, a 0 = 4, a 1 = a +2 = 14 a a, a 0 = 5, a 1 = a +2 = 8 a a, a 0 = 2, a 1 = a +2 = 7 a a, a 0 = 5, a 1 = a +2 = 2 a +1 + a, a 0 = 2, a 1 =

24 1 22. a +2 = a +1 a, a 0 = 4, a 1 = a +2 = 4 a +1 a, a 0 = 12, a 1 = a +2 = a a, a 0 = 2, a 1 = a +2 = 2 a a, a 0 = 8, a 1 = a +2 = 6 a +1 9 a, a 0 = 12, a 1 = a +2 = 4 a +1 5 a, a 0 = 5, a 1 = 10 i a +2 = 3 a +1 a, a 0 = 8, a 1 = a +2 = 14 a a, a 0 = 5, a 1 = a +2 = 4 a a, a 0 = 2, a 1 = a +2 = 4 a +1 5 a, a 0 = 3, a 1 = 6 7i. 32. a +2 = a a, a 0 = 5, a 1 = a +2 = 16 a a, a 0 = 7, a 1 = a +2 = 5 a +1 6 a, a 0 = 2, a 1 = a +2 = 10 a a, a 0 = 2, a 1 = 10 4i a +2 = 6 a +1 5 a, a 0 = 11, a 1 = a +2 = 2 a a, a 0 = 11, a 1 = a +2 = 6 a a ; a 0 = 3, a 1 = 0. Линейные однородные рекуррентные соотношения третьего порядка 39. a +3 = 7 a a a, a 0 = 1, a 1 = 3, a 2 = a +3 = 4 a +2 a +1 6 a, a 0 = 4, a 1 = 5, a 2 = a +3 = 6 a a a, a 0 = 5, a 1 = 8, a 2 = a +3 = 8 a a a, a 0 = 4, a 1 = 31, a 2 = a +3 = 5 a +2 3 a +1 9 a, a 0 = 1, a 1 = 3, a 2 = a +3 = 15 a a a, a 0 = 8, a 1 = 40, a 2 =

25 45. a +3 = 27 a a, a 0 = 6, a 1 = 3, a 2 = a +3 = 6 a a a, a 0 = 15, a 1 = 32, a 2 = a +3 = 15 a a a, a 0 = 1, a 1 = 20, a 2 = a +3 = 9 a a a, a 0 = 0, a 1 = 4, a 2 = a +3 = 2 a a +1 6 a, a 0 = 4, a 1 = 5, a 2 = a +3 = 4 a +2 5 a a, a 0 = 2, a 1 = 6, a 2 = a +3 = 6 a +2 5 a a, a 0 = 4, a 1 = 2, a 2 = a +3 = 3 a a a, a 0 = 2, a 1 = 17, a 2 = a +3 = 9 a a a, a 0 = 1, a 1 = 3, a 2 = a +3 = 6 a a +1 6 a, a 0 = 13, a 1 = 31, a 2 = a +3 = 5 a +2 3 a +1 9 a, a 0 = 3, a 1 = 14, a 2 = a +3 = a a +1 4 a, a 0 = 2, a 1 = 1, a 2 = a +3 = 3 a a a, a 0 = 2, a 1 = 3, a 2 = a +3 = 12 a a a, a 0 = 2, a 1 = 16, a 2 = a +3 = 4 a a a, a 0 = 0,2, a 1 = 6, a 2 = a +3 = 8 a a a, a 0 = 3, a 1 = 13, a 2 = a +3 = 4 a a a, a 0 = 3, a 1 = 29, a 2 = a +3 = 5 a +2 7 a a, a 0 = 11, a 1 = 34, a 2 = a +3 = 11 a a a, a 0 = 27, a 1 = 17, a 2 = a +3 = 12 a a a, a 0 = 1, a 1 = 37, a 2 = a +3 = 3 a a a, a 0 = 11, a 1 = 23, a 2 = a +3 = 7 a a a, a 0 = 3, a 1 = 6, a 2 = a +3 = 4 a a a, a 0 = 4, a 1 = 1, a 2 = 4.; 68. a +3 = 7 a a a, a 0 = 1, a 1 = 0, a 2 = a +3 = 5 a a a, a 0 = 6, a 1 = 0, a 2 = a +3 = 5 a +2 3 a a, a 0 = 10, a 1 = 1, a 2 = a +3 = 3 a +2 3 a +1 + a, a 0 = 2, a 1 = 4, a 2 = a +3 = 3 a a a, a 0 = 6, a 1 = 5, a 2 =

26 73. a +3 = 10 a a a, a 0 = 0, a 1 = 1, a 2 = a +3 = 8 a a a, a 0 = 8, a 1 = 23, a 2 = a +3 = 5 a +2 8 a +1 4 a, a 0 = 11, a 1 = 15, a 2 = a +3 = a a a, a 0 = 6, a 1 = 5, a 2 = a +3 = 10 a a a, a 0 = 1, a 1 = 2, a 2 = a +3 = a a a, a 0 = 1, a 1 = 14, a 2 = a +3 = 2 a +2 + a a, a 0 = 10, a 1 = 1, a 2 = a +3 = 5 a +2 8 a a, a 0 = 9, a 1 = 9, a 2 = a +3 = 8i a a +1 10i a, a 0 = 8, a 1 = 14i, a 2 = 38. Линейные рекуррентные соотношения первого порядка 82. a +1 = 4 a + 6, a 0 = a +1 = a + + 1, a 0 = a +1 = 5 a , a 0 = a +1 = 3 a + 5 2, a 0 = a +1 = 3 a + ( 4) 5 1, a 0 = a +1 = 4 a + 8 4, a 0 = a +1 = 3 a , a 0 = 14. Линейные рекуррентные соотношения второго порядка 89. a +2 = 7 a a + 10, a 0 = 4, a 1 = a +2 = 10 a a + 32, a 0 = 1, a 1 = a +2 = 6 a +1 9 a 2 3, a 0 = 0, a 1 = a +2 = 7 a a , a 0 = 3, a 1 = a +2 = 9 a a + (18 20) 2, a 0 = 6, a 1 = a +2 = 8 a +1 7 a , a 0 = 9, a 1 = a +2 = 4 a +1 9 a , a 0 = 15, a 1 = 27 i a +2 = 12 a a , a 0 = 13, a 1 = 6. 26


Решение рекуррентных соотношений.

Решение рекуррентных соотношений. Благовещенский государственный педагогический университет кафедра алгебры, геометрии и МПМ 16 апреля 2011 г. 1 Решение рекуррентных соотношений Определение Рекуррентным соотношением называется соотношение

Подробнее

Лектор - доцент Селезнева Светлана Николаевна. Лекции по дискретной математике 2. 1-й курс, группа 141, факультет ВМК МГУ имени М.В.

Лектор - доцент Селезнева Светлана Николаевна. Лекции по дискретной математике 2. 1-й курс, группа 141, факультет ВМК МГУ имени М.В. Лекция 3. Последовательности, определяемые рекуррентными соотношениями. Однородные и неоднородные линейные рекуррентные уравнения (ЛОРУ и ЛНРУ). Общие решения ЛОРУ и ЛНРУ. Лектор - доцент Селезнева Светлана

Подробнее

ОГЛАВЛЕНИЕ. Предисловие... 3

ОГЛАВЛЕНИЕ. Предисловие... 3 ОГЛАВЛЕНИЕ Предисловие............................................ 3 Часть 1. Лекции......................................... 4 1. Определение и простейшие свойства чисел Фибоначчи.... 4 2. Биномиальные

Подробнее

Лектор - доцент Селезнева Светлана Николаевна

Лектор - доцент Селезнева Светлана Николаевна Лекция: Последовательности. Однородные и неоднородные линейные рекуррентные уравнения. Общие решения линейных рекуррентных однородных и неоднородных уравнений. Лектор - доцент Селезнева Светлана Николаевна

Подробнее

Лектор - доцент Селезнева Светлана Николаевна. Лекции по Дискретным моделям. Магистратура, 1-й курс, факультет ВМК МГУ имени М.В.

Лектор - доцент Селезнева Светлана Николаевна. Лекции по Дискретным моделям. Магистратура, 1-й курс, факультет ВМК МГУ имени М.В. Лекция. Функции натурального аргумента (последовательности). Однородные и неоднородные линейные рекуррентные уравнения (ЛОРУ и ЛНРУ). Общие решения ЛОРУ и ЛНРУ. Примеры Лектор - доцент Селезнева Светлана

Подробнее

РЕШЕНИЕ РЕКУРРЕНТНЫХ УРАВНЕНИЙ

РЕШЕНИЕ РЕКУРРЕНТНЫХ УРАВНЕНИЙ РЕШЕНИЕ РЕКУРРЕНТНЫХ УРАВНЕНИЙ Обозначим через значение некоторого выражения при подстановке в него целого числа Тогда зависимость члена последовательности от членов последовательности F F со значениями

Подробнее

Лектор - доцент Селезнева Светлана Николаевна. Лекции по Дискретным моделям. Магистратура, 1-й курс, факультет ВМК МГУ имени М.В.

Лектор - доцент Селезнева Светлана Николаевна. Лекции по Дискретным моделям. Магистратура, 1-й курс, факультет ВМК МГУ имени М.В. Лекция 3. Последовательности, определяемые рекуррентными соотношениями. Однородные и неоднородные линейные рекуррентные уравнения (ЛОРУ и ЛНРУ). Общие решения ЛОРУ и ЛНРУ. Примеры Лектор - доцент Селезнева

Подробнее

Рекуррентные последовательности. Алгебра формальных рядов

Рекуррентные последовательности. Алгебра формальных рядов Пензенский государственный педагогический университет им В Г Белинского О А Монахова, Н А Осьминина Рекуррентные последовательности Алгебра формальных рядов Методические рекомендации для студентов специальностей

Подробнее

Министерство образования и науки Российской Федерации. Кафедра высшей математики

Министерство образования и науки Российской Федерации. Кафедра высшей математики Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Сибирский государственный индустриальный университет»

Подробнее

АНАЛИЗ РЕКУРРЕНТНЫХ СООТНОШЕНИЙ

АНАЛИЗ РЕКУРРЕНТНЫХ СООТНОШЕНИЙ Министерство транспорта Российской Федерации ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «РОССИЙСКИЙ УНИВЕРСИТЕТ ТРАНСПОРТА (МИИТ)» Кафедра «Математический анализ»

Подробнее

ТЕОРИЯ МАГИЧЕСКИХ МАТРИЦ

ТЕОРИЯ МАГИЧЕСКИХ МАТРИЦ Лекции по Математике Вып ТММ- Ю В Чебраков ТЕОРИЯ МАГИЧЕСКИХ МАТРИЦ Санкт-Петербург, 00 УДК 5+5 ББК Ч35 Р е ц е н з е н т ы: Доктор физико-математических наук, профессор С-Петерб техн ун-та М А Салль Кандидат

Подробнее

А. А. КИРСАНОВ КОМПЛЕКСНЫЕ ЧИСЛА

А. А. КИРСАНОВ КОМПЛЕКСНЫЕ ЧИСЛА А А КИРСАНОВ КОМПЛЕКСНЫЕ ЧИСЛА ПСКОВ ББК 57 К45 Печатается по решению кафедры алгебры и геометрии, и редакционно-издательского совета ПГПИ им СМ Кирова Рецензент: Медведева ИН, кандидат физ мат наук, доцент

Подробнее

ОГЛАВЛЕНИЕ. Предисловие... 5

ОГЛАВЛЕНИЕ. Предисловие... 5 ОГЛАВЛЕНИЕ Предисловие............................................. 5 Глава первая Арифметика и алгебра..................................... 6 1.1. Числа и действия с ними.............................

Подробнее

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ НОВОСИБИРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ СПЕЦИАЛИЗИРОВАННЫЙ УЧЕБНО-НАУЧНЫЙ ЦЕНТР

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ НОВОСИБИРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ СПЕЦИАЛИЗИРОВАННЫЙ УЧЕБНО-НАУЧНЫЙ ЦЕНТР МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ НОВОСИБИРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ СПЕЦИАЛИЗИРОВАННЫЙ УЧЕБНО-НАУЧНЫЙ ЦЕНТР Математика 0 класс МЕТОД МАТЕМАТИЧЕСКОЙ ИНДУКЦИИ И БЕСКОНЕЧНЫЕ ЧИСЛОВЫЕ

Подробнее

1. Рекуррентный способ Выпишите первые десять членов последовательности, заданной рекуррентно. 10) а 1 = 2, 7) а 1 = 1, a = a + 1

1. Рекуррентный способ Выпишите первые десять членов последовательности, заданной рекуррентно. 10) а 1 = 2, 7) а 1 = 1, a = a + 1 Глава 0 ПОСЛЕДОВАТЕЛЬНОСТИ Алгоритмы А- Задание числовых последовательностей А- Арифметическая прогрессия А- Геометрическая прогрессия А- Суммирование А-5 Бесконечно убывающая геометрическая прогрессия

Подробнее

Лекция 2: Многочлены

Лекция 2: Многочлены Уральский федеральный университет, Институт математики и компьютерных наук, кафедра алгебры и дискретной математики Понятие многочлена Определения Многочленом от одной переменной называется выражение вида

Подробнее

ЧИСЛОВЫЕ ПОСЛЕДОВАТЕЛЬНОСТИ. ГЕОМЕТРИЧЕСКАЯ ПРОГРЕССИЯ. Геометрической прогрессией называется числовая последовательность b

ЧИСЛОВЫЕ ПОСЛЕДОВАТЕЛЬНОСТИ. ГЕОМЕТРИЧЕСКАЯ ПРОГРЕССИЯ. Геометрической прогрессией называется числовая последовательность b ЧИСЛОВЫЕ ПОСЛЕДОВАТЕЛЬНОСТИ. ГЕОМЕТРИЧЕСКАЯ ПРОГРЕССИЯ Геометрической прогрессией называется числовая последовательность b, первый член которой отличен от нуля, а каждый последующий член, начиная со второго,

Подробнее

Т.А.Спасская. Сравнения первой степени

Т.А.Спасская. Сравнения первой степени ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ Государственное общеобразовательное учреждение высшего профессионального образования «Тверской государственный университет» Математический факультет Кафедра алгебры

Подробнее

ТЕСТОВЫЕ ЗАДАНИЯ И ДИКТАНТЫ

ТЕСТОВЫЕ ЗАДАНИЯ И ДИКТАНТЫ Глава 0 ТЕСТОВЫЕ ЗАДАНИЯ И ДИКТАНТЫ Т-00 Вычисление членов последовательности по рекуррентной формуле Т-00 Составление рекуррентной формулы Т-00 Формула общего члена Т-004 Составление арифметической прогрессии

Подробнее

4. Алгебраические уравнения 1.Квадратные уравнения. В школьном курсе алгебры рассматривались квадратные уравнения 2

4. Алгебраические уравнения 1.Квадратные уравнения. В школьном курсе алгебры рассматривались квадратные уравнения 2 6-7 уч год 6, кл Математика Комплексные числа 4 Алгебраические уравнения Квадратные уравнения В школьном курсе алгебры рассматривались квадратные уравнения ax bx c =, a, () с действительными коэффициентами

Подробнее

lim ПРЕДЕЛ ФУНКЦИИ Методические указания

lim ПРЕДЕЛ ФУНКЦИИ Методические указания Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования Ухтинский государственный технический университет (УГТУ) ПРЕДЕЛ ФУНКЦИИ Методические

Подробнее

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ. Государственное образовательное учреждение высшего профессионального образования

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ. Государственное образовательное учреждение высшего профессионального образования МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Государственное образовательное учреждение высшего профессионального образования МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ МАШИНОСТРОЕНИЯ ИИ Поспелов,

Подробнее

которая означает, что множество B состоит из элементов, удовлетворяющих указанному условию. Например, множество решений неравенства

которая означает, что множество B состоит из элементов, удовлетворяющих указанному условию. Например, множество решений неравенства Лекция Глава Множества и операции над ними Понятие множества Понятие множество относится к наиболее первичным понятиям математики не определяемым через более простые Под множеством понимают совокупность

Подробнее

ТЕОРИЯ МАГИЧЕСКИХ МАТРИЦ

ТЕОРИЯ МАГИЧЕСКИХ МАТРИЦ Лекции по Математике. Вып. ТММ-1 Ю. В. Чебраков ТЕОРИЯ МАГИЧЕСКИХ МАТРИЦ Санкт-Петербург, 010 УДК 511+51 ББК Ч345 Р е ц е н з е н т ы: Доктор физико-математических наук, профессор С.-Петерб. техн. ун-та

Подробнее

1. Прогрессии. 2. Задание последовательности рекуррентным соотношением: а 1, а 2,, а n 1, a n = f(a n 1, a n 2,, a 1 ).

1. Прогрессии. 2. Задание последовательности рекуррентным соотношением: а 1, а 2,, а n 1, a n = f(a n 1, a n 2,, a 1 ). . Прогрессии Последовательность функция натурального аргумента.. Задание последовательности формулой общего члена: a n = f(n), n N, например, a n = n + n + 4, а = 43, а = 47, а 3 = 3,. Задание последовательности

Подробнее

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ Общие понятия Дифференциальные уравнения имеют многочисленные и самые разнообразные приложения в механике физике астрономии технике и в других разделах высшей математики (например

Подробнее

Оглавление. Введение. Основные понятия Интегральные уравнения Вольтерры... 5 Варианты домашних заданий... 8

Оглавление. Введение. Основные понятия Интегральные уравнения Вольтерры... 5 Варианты домашних заданий... 8 Оглавление Введение. Основные понятия.... 4 1. Интегральные уравнения Вольтерры... 5 Варианты домашних заданий.... 8 2. Резольвента интегрального уравнения Вольтерры. 10 Варианты домашних заданий.... 11

Подробнее

Лекция Числа Фибоначчи, последовательность Фибоначчи, рекуррентная формула

Лекция Числа Фибоначчи, последовательность Фибоначчи, рекуррентная формула Лекция. Задача о кроликах. Числа Фибоначчи, последовательность Фибоначчи, рекуррентная формула 3. Свойства чисел Фибоначчи (a) Линейность (b) Теоретико-числовые свойства (c) Суммы: F + F +... + F n, нечетных

Подробнее

ЛИНЕЙНАЯ АЛГЕБРА. Издательство ТГТУ

ЛИНЕЙНАЯ АЛГЕБРА. Издательство ТГТУ ЛИНЕЙНАЯ АЛГЕБРА Издательство ТГТУ Министерство образования и науки Российской Федерации ГОУ ВПО "Тамбовский государственный технический университет" ЛИНЕЙНАЯ АЛГЕБРА Методические указания для студентов

Подробнее

Основные методы решения тригонометрических уравнений

Основные методы решения тригонометрических уравнений Тишин В И Основные методы решения тригонометрических уравнений г Тишин В И Математика для учителей и учащихся Материал подготовлен учителем математики Тишиным Владимиром Ивановичем года Тишин В И Основные

Подробнее

МИНИСТЕРСТВО ОБЩЕГО И ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ НИЖЕГОРОДСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ им. Н. И. ЛОБАЧЕВСКОГО Факультет вычислительной математики и кибернетики Кафедра математической

Подробнее

Дифференциальные уравнения высшего порядка. Конев В.В. Наброски лекций. 1. Основные понятия.

Дифференциальные уравнения высшего порядка. Конев В.В. Наброски лекций. 1. Основные понятия. Дифференциальные уравнения высшего порядка. Конев В.В. Наброски лекций. Содержание 1. Основные понятия 1 2. Уравнения, допускающие понижение порядка 2 3. Линейные дифференциальные уравнения высшего порядка

Подробнее

Лекция 1.7. Расширение понятия числа. Комплексные числа, действия над ними

Лекция 1.7. Расширение понятия числа. Комплексные числа, действия над ними Лекция.7. Расширение понятия числа. Комплексные числа, действия над ними Аннотация: В лекции указывается на необходимость обобщения понятия числа от натурального до комплексного. Вводятся алгебраическая,

Подробнее

В.И. Иванов. Министерство образования Российской Федерации. Российский государственный университет нефти и газа имени И.М. Губкина

В.И. Иванов. Министерство образования Российской Федерации. Российский государственный университет нефти и газа имени И.М. Губкина Министерство образования Российской Федерации Российский государственный университет нефти и газа имени ИМ Губкина ВИ Иванов Методические указания к изучению темы «ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ» (для студентов

Подробнее

УЛЬЯНОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

УЛЬЯНОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «УЛЬЯНОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Подробнее

1=1 ; 1+3=2 ; 1+3+5=3 ;

1=1 ; 1+3=2 ; 1+3+5=3 ; НОВОСИБИРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ Заочная школа Математическое отделение МЕТОД МАТЕМАТИЧЕСКОЙ ИНДУКЦИИ И БЕСКОНЕЧНЫЕ ЧИСЛОВЫЕ ПОСЛЕДОВАТЕЛЬНОСТИ 0-й класс, задание ПРАВИЛА ОФОРМЛЕНИЯ ЗАДАНИЯ Приступая

Подробнее

x n однозначно. Задача 1. Выразить симметрический многочлен f через элементарные симметрические многочлены. Решение. Многочлен f x1, x2,

x n однозначно. Задача 1. Выразить симметрический многочлен f через элементарные симметрические многочлены. Решение. Многочлен f x1, x2, ЗАДАНИЯ К КОНТРОЛЬНОЙ РАБОТЕ По дисциплине: «Алгебра» Специальность: «Математика» заочная форма обучения 6 семестр Составитель: зав кафедрой Трофимук АА Многочлены от нескольких переменных результант алгебраические

Подробнее

Лекция 3. Ряды Тейлора и Маклорена. Применение степенных рядов. Разложение функций в степенные ряды. Ряды Тейлора и Маклорена ( ) ( ) ( ) 1! 2!

Лекция 3. Ряды Тейлора и Маклорена. Применение степенных рядов. Разложение функций в степенные ряды. Ряды Тейлора и Маклорена ( ) ( ) ( ) 1! 2! Лекция 3 Ряды Тейлора и Маклорена Применение степенных рядов Разложение функций в степенные ряды Ряды Тейлора и Маклорена Для приложений важно уметь данную функцию разлагать в степенной ряд, те функцию

Подробнее

Указания, решения, ответы. нет, поэтому уравнение b 4ac имеет решений в целых числах. Третье решение. Перепишем уравнение УРАВНЕНИЯ В ЦЕЛЫХ ЧИСЛАХ

Указания, решения, ответы. нет, поэтому уравнение b 4ac имеет решений в целых числах. Третье решение. Перепишем уравнение УРАВНЕНИЯ В ЦЕЛЫХ ЧИСЛАХ Указания, решения, ответы УРАВНЕНИЯ В ЦЕЛЫХ ЧИСЛАХ. Уравнение с одной неизвестной.. Решение. Подставим в уравнение. Получим равенство ( 4a b 4) (a b 8) 0. Равенство A B 0, где А и В целые, выполняется,

Подробнее

ДОПОЛНИТЕЛЬНЫЕ ГЛАВЫ МАТЕМАТИКИ 10 класс Модуль 4 МЕТОДЫ РЕШЕНИЯ АЛГЕБРАИЧЕСКИХ УРАВНЕНИЙ

ДОПОЛНИТЕЛЬНЫЕ ГЛАВЫ МАТЕМАТИКИ 10 класс Модуль 4 МЕТОДЫ РЕШЕНИЯ АЛГЕБРАИЧЕСКИХ УРАВНЕНИЙ АГЕНТСТВО ОБРАЗОВАНИЯ АДМИНИСТРАЦИИ КРАСНОЯРСКОГО КРАЯ КРАСНОЯРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ЗАОЧНАЯ ЕСТЕСТВЕННО-НАУЧНАЯ ШКОЛА при КрасГУ ДОПОЛНИТЕЛЬНЫЕ ГЛАВЫ МАТЕМАТИКИ 10 класс Модуль 4 МЕТОДЫ РЕШЕНИЯ

Подробнее

1. ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ПЕР- ВОГО ПОРЯДКА 1.1. Основные понятия

1. ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ПЕР- ВОГО ПОРЯДКА 1.1. Основные понятия . ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ПЕР- ВОГО ПОРЯДКА.. Основные понятия Дифференциальным уравнением называется уравнение, в которое неизвестная функция входит под знаком производной или дифференциала.

Подробнее

Лекция 1. Понятие множества. Определение функции, основные свойства. Основные элементарные функции

Лекция 1. Понятие множества. Определение функции, основные свойства. Основные элементарные функции ВВЕДЕНИЕ В МАТЕМАТИЧЕСКИЙ АНАЛИЗ Лекция. Понятие множества. Определение функции основные свойства. Основные элементарные функции СОДЕРЖАНИЕ: Элементы теории множеств Множество вещественных чисел Числовая

Подробнее

Планируемые результаты освоения учебного предмета «Алгебра» знать/понимать уметь

Планируемые результаты освоения учебного предмета «Алгебра» знать/понимать уметь Рабочая программа по алгебре для учащихся 8-9 классов разработана на основе требований к результатам освоения основной образовательной программы основного общего образования. Рабочая программа рассчитана

Подробнее

СБОРНИК ЗАДАЧ (МЕТОД МАТЕМАТИЧЕСКОЙ ИНДУКЦИИ)

СБОРНИК ЗАДАЧ (МЕТОД МАТЕМАТИЧЕСКОЙ ИНДУКЦИИ) МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Нижегородский государственный университет им НИ Лобачевского Национальный исследовательский университет АВ Леонтьева СБОРНИК ЗАДАЧ (МЕТОД МАТЕМАТИЧЕСКОЙ

Подробнее

3. СИСТЕМЫ ЛИНЕЙНЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ С ПОСТОЯННЫМИ КОЭФФИЦИЕНТАМИ. 1. Приведение к одному уравнению n -го порядка

3. СИСТЕМЫ ЛИНЕЙНЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ С ПОСТОЯННЫМИ КОЭФФИЦИЕНТАМИ. 1. Приведение к одному уравнению n -го порядка СИСТЕМЫ ЛИНЕЙНЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ С ПОСТОЯННЫМИ КОЭФФИЦИЕНТАМИ Приведение к одному уравнению -го порядка С практической точки зрения очень важны линейные системы с постоянными коэффициентами

Подробнее

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ПРОМЫШЛЕННЫХ

Подробнее

В.И. Иванов. Министерство образования Российской Федерации. Российский государственный университет нефти и газа имени И.М. Губкина

В.И. Иванов. Министерство образования Российской Федерации. Российский государственный университет нефти и газа имени И.М. Губкина Министерство образования Российской Федерации Российский государственный университет нефти и газа имени ИМ Губкина ВИ Иванов Методические указания к изучению темы «ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ» (для студентов

Подробнее

Лекция 7: Векторные пространства

Лекция 7: Векторные пространства Уральский федеральный университет, Институт математики и компьютерных наук, кафедра алгебры и дискретной математики Вступительные замечания В этой лекции мы приступаем к изучению линейной алгебры как таковой,

Подробнее

X = O. В этом случае любое решение системы ( A λ E)

X = O. В этом случае любое решение системы ( A λ E) В заключение этого пункта заметим что говорят также о собственных векторах матрицы порядка имея при этом ввиду собственные векторы оператора -мерного пространства имеющего своей матрицей в некотором базисе

Подробнее

Решить дифференциальное уравнение Решение: составим и решим характеристическое уравнение:

Решить дифференциальное уравнение Решение: составим и решим характеристическое уравнение: Решить дифференциальное уравнение Решение: составим и решим характеристическое уравнение:, Получены два различных действительных корня Всё, что осталось сделать записать ответ, руководствуясь формулой

Подробнее

СТЕПЕНЬ С ДРОБНЫМ ПОКАЗАТЕЛЕМ. m n. m def. a = a. a < операция возведения в. дробную степень не определена. В частности, это означает, что

СТЕПЕНЬ С ДРОБНЫМ ПОКАЗАТЕЛЕМ. m n. m def. a = a. a < операция возведения в. дробную степень не определена. В частности, это означает, что СТЕПЕНЬ С ДРОБНЫМ ПОКАЗАТЕЛЕМ Если показатель t степени числа является дробным, те t,, N,, то для неотрицательных значений ( 0) по определению полагают def Для отрицательных чисел ( 0) < операция возведения

Подробнее

Тема 2-11: Собственные векторы и собственные значения

Тема 2-11: Собственные векторы и собственные значения Тема 2-11: Собственные векторы и собственные значения А. Я. Овсянников Уральский федеральный университет Институт математики и компьютерных наук кафедра алгебры и дискретной математики алгебра и геометрия

Подробнее

Интегрирование рациональных дробей. Рациональной дробью называется дробь вида P ( x)

Интегрирование рациональных дробей. Рациональной дробью называется дробь вида P ( x) ПРАКТИЧЕСКОЕ ЗАНЯТИЕ Интегрирование рациональных дробей Рациональной дробью называется дробь вида P Q, где P и Q многочлены Рациональная дробь называется правильной, если степень многочлена P ниже степени

Подробнее

РАЦИОНАЛЬНЫЕ ЧИСЛА Обыкновенные дроби. m или ( m ) < n. или ( m) n. Всякую неправильную дробь можно представить в виде

РАЦИОНАЛЬНЫЕ ЧИСЛА Обыкновенные дроби. m или ( m ) < n. или ( m) n. Всякую неправильную дробь можно представить в виде РАЦИОНАЛЬНЫЕ ЧИСЛА Обыкновенные дроби Определение Дроби вида, называются обыкновенными дробями Обыкновенные дроби, правильные и неправильные Определение Дробь, правильной, если < при, где Z, N Z, N Z,

Подробнее

Лекция ОПИСАНИЕ И АНАЛИЗ ДИСКРЕТНЫХ ЛИНЕЙНЫХ СИСТЕМ С ПОМОЩЬЮ РАЗНОСТНЫХ УРАВНЕНИЙ 5.1. ОДНОМЕРНЫЕ СИСТЕМЫ ПРИ ДЕТЕРМИНИРОВАННЫХ ВОЗДЕЙСТВИЯХ

Лекция ОПИСАНИЕ И АНАЛИЗ ДИСКРЕТНЫХ ЛИНЕЙНЫХ СИСТЕМ С ПОМОЩЬЮ РАЗНОСТНЫХ УРАВНЕНИЙ 5.1. ОДНОМЕРНЫЕ СИСТЕМЫ ПРИ ДЕТЕРМИНИРОВАННЫХ ВОЗДЕЙСТВИЯХ Лекция. 5. ОПИСАНИЕ И АНАЛИЗ ДИСКРЕТНЫХ ЛИНЕЙНЫХ СИСТЕМ С ПОМОЩЬЮ РАЗНОСТНЫХ УРАВНЕНИЙ 5.. ОДНОМЕРНЫЕ СИСТЕМЫ ПРИ ДЕТЕРМИНИРОВАННЫХ ВОЗДЕЙСТВИЯХ 5... Описание сигналов и систем. Описание сигналов. Сигналы

Подробнее

Тема 14 «Алгебраические уравнения и системы нелинейных уравнений».

Тема 14 «Алгебраические уравнения и системы нелинейных уравнений». Тема 14 «Алгебраические уравнения и системы нелинейных уравнений» Многочленом степени n называется многочлен вида P n () a 0 n + a 1 n-1 + + a n-1 + a n, где a 0, a 1,, a n-1, a n заданные числа, a 0,

Подробнее

МЕТОДИЧЕСКИЕ УКАЗАНИЯ, ПРОГРАММА И КОНТРОЛЬНАЯ РАБОТА

МЕТОДИЧЕСКИЕ УКАЗАНИЯ, ПРОГРАММА И КОНТРОЛЬНАЯ РАБОТА МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Московский государственный университет геодезии и картографии (МИИГАиК) Факультет дистанционных форм обучения Заочное отделение `` МЕТОДИЧЕСКИЕ УКАЗАНИЯ,

Подробнее

Лекция 17: Евклидово пространство

Лекция 17: Евклидово пространство Уральский федеральный университет, Институт математики и компьютерных наук, кафедра алгебры и дискретной математики Вступительные замечания При решении многих задач возникает необходимость иметь числовые

Подробнее

МОДУЛЬ 7 «Показательная и логарифмическая функции»

МОДУЛЬ 7 «Показательная и логарифмическая функции» МОДУЛЬ 7 «Показательная и логарифмическая функции». Обобщение понятия степени. Корень й степени и его свойства.. Иррациональные уравнения.. Степень с рациональным показателем.. Показательная функция..

Подробнее

РЯДЫ. Методические указания

РЯДЫ. Методические указания Металлургический факультет Кафедра высшей математики РЯДЫ Методические указания Новокузнецк 5 Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования

Подробнее

ЛЕКЦИЯ 1 КОМПЛЕКСНЫЕ ЧИСЛА. РАЗЛОЖЕНИЕ МНОГОЧЛЕНОВ НА МНОЖИТЕЛИ

ЛЕКЦИЯ 1 КОМПЛЕКСНЫЕ ЧИСЛА. РАЗЛОЖЕНИЕ МНОГОЧЛЕНОВ НА МНОЖИТЕЛИ ЛЕКЦИЯ КОМПЛЕКСНЫЕ ЧИСЛА РАЗЛОЖЕНИЕ МНОГОЧЛЕНОВ НА МНОЖИТЕЛИ Числовые множества Множество комплексных чисел Многочлены с вещественными коэффициентами Разложение на множители ЧИСЛОВЫЕ МНОЖЕСТВА МНОЖЕСТВО

Подробнее

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ПРОМЫШЛЕННЫХ

Подробнее

1.Дифференциальные уравнения высших порядков, общие понятия.

1.Дифференциальные уравнения высших порядков, общие понятия. ЛЕКЦИЯ N Дифференциальные уравнения высших порядков, методы решения Задача Коши Линейные дифференциальные уравнения высших порядков Однородные линейные уравнения Дифференциальные уравнения высших порядков,

Подробнее

НЕКОТОРЫЕ МЕТОДЫ СУММИРОВАНИЯ ЧИСЛОВЫХ ПОСЛЕДОВАТЕЛЬНОСТЕЙ. А. В. Ласунский

НЕКОТОРЫЕ МЕТОДЫ СУММИРОВАНИЯ ЧИСЛОВЫХ ПОСЛЕДОВАТЕЛЬНОСТЕЙ. А. В. Ласунский 03 Математика в высшем образовании УДК 54; 5799 СОДЕРЖАНИЕ И ТЕХНОЛОГИИ МАТЕМАТИЧЕСКОГО ОБРАЗОВАНИЯ В ВУЗЕ НЕКОТОРЫЕ МЕТОДЫ СУММИРОВАНИЯ ЧИСЛОВЫХ ПОСЛЕДОВАТЕЛЬНОСТЕЙ А В Ласунский Новгородский государственный

Подробнее

УДК ББК МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ. Составитель: Н.А. Пинкина КРАСНОЯРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ КАФЕДРА ВЫСШЕЙ МАТЕМАТИКИ

УДК ББК МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ. Составитель: Н.А. Пинкина КРАСНОЯРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ КАФЕДРА ВЫСШЕЙ МАТЕМАТИКИ МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ КРАСНОЯРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ УДК ББК Составитель: Н.А. Пинкина КАФЕДРА ВЫСШЕЙ МАТЕМАТИКИ Линейная алгебра. Решение типовых примеров. Варианты контрольных

Подробнее

ОСНОВНЫЕ ЭЛЕМЕНТЫ РАБОЧЕЙ ПРОГРАММЫ УЧЕБНОГО ПРЕДМЕТА «АЛГЕБРА 7 9 КЛАСС»

ОСНОВНЫЕ ЭЛЕМЕНТЫ РАБОЧЕЙ ПРОГРАММЫ УЧЕБНОГО ПРЕДМЕТА «АЛГЕБРА 7 9 КЛАСС» ОСНОВНЫЕ ЭЛЕМЕНТЫ РАБОЧЕЙ ПРОГРАММЫ УЧЕБНОГО ПРЕДМЕТА «АЛГЕБРА 7 9 КЛАСС» 1. Планируемые предметные результаты освоения алгебры за курс основной школы (7 9 классы). 2. Содержание учебного предмета с указанием

Подробнее

Министерство образования и науки Российской Федерации. «Сибирский государственный индустриальный университет» Кафедра высшей математики

Министерство образования и науки Российской Федерации. «Сибирский государственный индустриальный университет» Кафедра высшей математики Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Сибирский государственный индустриальный университет»

Подробнее

МИНИСТЕРСТВО ВЫСШЕГО И СРЕДНЕГО СПЕЦИАЛЬНОГО ОБРАЗОВАНИЯ РСФСР ЧЕЛЯБИНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ Кафедра алгебры и геометрии

МИНИСТЕРСТВО ВЫСШЕГО И СРЕДНЕГО СПЕЦИАЛЬНОГО ОБРАЗОВАНИЯ РСФСР ЧЕЛЯБИНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ Кафедра алгебры и геометрии МИНИСТЕРСТВО ВЫСШЕГО И СРЕДНЕГО СПЕЦИАЛЬНОГО ОБРАЗОВАНИЯ РСФСР ЧЕЛЯБИНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ Кафедра алгебры и геометрии НОРМАЛЬНАЯ ЖОРДАНОВА ФОРМА Методические указания для практических занятий

Подробнее

МАТЕМАТИКА. Тождественные преобразования. Решение уравнений. Задание 1 для 8-х классов. ( учебный год)

МАТЕМАТИКА. Тождественные преобразования. Решение уравнений. Задание 1 для 8-х классов. ( учебный год) Министерство образования и науки Российской Федерации Московский физико-технический институт (государственный университет) Заочная физико-техническая школа МАТЕМАТИКА Тождественные преобразования. Решение

Подробнее

Н. В. Деменева КОМПЛЕКСНЫЕ ЧИСЛА

Н. В. Деменева КОМПЛЕКСНЫЕ ЧИСЛА Министерство сельского хозяйства Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования «Пермская государственная сельскохозяйственная академия имени

Подробнее

Методические указания к переаттестации по дисциплине «Алгебра и геометрия» Часть 2

Методические указания к переаттестации по дисциплине «Алгебра и геометрия» Часть 2 Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования «Владимирский государственный университет имени Александра Григорьевича

Подробнее

ПРЕДЕЛЫ ПОСЛЕДОВАТЕЛЬНОСТЕЙ И ФУНКЦИЙ

ПРЕДЕЛЫ ПОСЛЕДОВАТЕЛЬНОСТЕЙ И ФУНКЦИЙ Министерство образования Московской области Государственное бюджетное образовательное учреждение высшего профессионального образования Московской области «Международный университет природы, общества и

Подробнее

Линейные уравнения первого порядка, уравнение Бернулли. Уравнение в полных дифференциалах

Линейные уравнения первого порядка, уравнение Бернулли. Уравнение в полных дифференциалах ПРАКТИЧЕСКОЕ ЗАНЯТИЕ 1 Линейные уравнения первого порядка, уравнение Бернулли Уравнение в полных дифференциалах Линейным дифференциальным уравнением первого порядка называется уравнение + p( = q( Если

Подробнее

Тема : Общая теория систем линейных уравнений

Тема : Общая теория систем линейных уравнений Тема : Общая теория систем линейных уравнений А. Я. Овсянников Уральский федеральный университет Институт математики и компьютерных наук кафедра алгебры и дискретной математики алгебра и геометрия для

Подробнее

4. Алгебраические уравнения 1.Квадратные уравнения. В школьном курсе алгебры рассматривались квадратные уравнения 2

4. Алгебраические уравнения 1.Квадратные уравнения. В школьном курсе алгебры рассматривались квадратные уравнения 2 9- уч год 6, кл Математика Комплексные числа 4 Алгебраические уравнения Квадратные уравнения В школьном курсе алгебры рассматривались квадратные уравнения ax bx c, a, () с действительными коэффициентами

Подробнее

Муниципальное общеобразовательное учреждение «Лицей 22»

Муниципальное общеобразовательное учреждение «Лицей 22» Муниципальное общеобразовательное учреждение «Лицей 22» Рабочая программа учебного предмета «Математика (алгебра)» (углубленный уровень) для 9 класса 2016-2017 учебной год Согласно федеральному базисному

Подробнее

Теорема Виета и ее применение

Теорема Виета и ее применение Базылев ДФ Теорема Виета и ее применение Теорема Виета как известно изучается в традиционном курсе школьной математики (как правило для квадратных уравнений) Большая часть задач по этой теме разбивается

Подробнее

Математика 8 класс Многочлены

Математика 8 класс Многочлены МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ НОВОСИБИРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ СПЕЦИАЛИЗИРОВАННЫЙ УЧЕБНО-НАУЧНЫЙ ЦЕНТР Математика 8 класс Многочлены Новосибирск Многочлены Рациональными

Подробнее

АЛГЕБРА (ЧАСТЬ 2) Материалы для практических занятий и самостоятельной работы для студентов направлений и

АЛГЕБРА (ЧАСТЬ 2) Материалы для практических занятий и самостоятельной работы для студентов направлений и МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Курганский государственный университет» Кафедра

Подробнее

3x x 2 + x = 0.

3x x 2 + x = 0. 4.. Метод замены переменной при решении алгебраических уравнений. В предыдущем пункте метод замены переменной был использован для разложения многочлена на множители. Данный метод широко применяется для

Подробнее

Одним из знаменитых двумерных отображений

Одним из знаменитых двумерных отображений Вестник КГУ им НА Некрасова 6 Скибицкий ЭГ Шкабура ОВ Стиль мышления как стратегия решения задач с использованием компьютера // Информатика и образование С 7 Яковлева НО Теоретико-методологические основы

Подробнее

Пензенский государственный университет. Физико-математический факультет. «Очно-заочная физико-математическая школа» МАТЕМАТИКА

Пензенский государственный университет. Физико-математический факультет. «Очно-заочная физико-математическая школа» МАТЕМАТИКА Пензенский государственный университет Физико-математический факультет «Очно-заочная физико-математическая школа» МАТЕМАТИКА Тождественные преобразования. Решение уравнений. Треугольники Задание 1 для

Подробнее

Обозначим z x. . Докажем, что m 1 и n 1 взаимно просты. Действительно, если d их общий делитель, то d делит m 1 + n 1 = z и m 1 n 1 = x. Противоречие.

Обозначим z x. . Докажем, что m 1 и n 1 взаимно просты. Действительно, если d их общий делитель, то d делит m 1 + n 1 = z и m 1 n 1 = x. Противоречие. ПИФАГОРОВЫ ТРОЙКИ. РЕШЕНИЕ УРАВНЕНИЙ В ЦЕЛЫХ ЧИСЛАХ Пифагоровы тройки это тройки (x, y, z) натуральных чисел x, y, z, для которых выполняется равенство (*) x 2 + y 2 = z 2. Например, (3, 4, 5) является

Подробнее

10 класс, базовый уровень Задание 1 Вариант 0 (демонстрационный, с решениями)

10 класс, базовый уровень Задание 1 Вариант 0 (демонстрационный, с решениями) 10 класс, базовый уровень Задание 1 Вариант 0 (демонстрационный, с решениями) Заочная математическая школа 009/010 учебный год 1 Представьте выражение в виде многочлена стандартного вида и найдите его

Подробнее

Лекция 1: математическая индукция

Лекция 1: математическая индукция Лекция : математическая индукция Дискретная математика, ВШЭ, факультет компьютерных наук (Осень 04 весна 05) Математическая индукция очень популярный способ рассуждений. Он будет часто применяться дальше

Подробнее

Интегралы и дифференциальные уравнения. Лекции 20-21

Интегралы и дифференциальные уравнения. Лекции 20-21 кафедра «Математическое моделирование» проф. П. Л. Иванков Интегралы и дифференциальные уравнения конспект лекций для студентов 1-го курса 2-го семестра специальностей РЛ1,2,3,6, БМТ1,2 Лекции 20-21 Линейные

Подробнее

Арифметическая прогрессия

Арифметическая прогрессия Павел Бердов Репетитор по математике www.berdov.com Арифметическая прогрессия Ответы. 8; ;.. ; ; 6.. а 9 0.. а 0,.. 76. 6.. 7. 8. 8. ;. 9. 0; ; или ; ; 7. 0. 6.. 0 детали.. 60 книг.. 6.. ; ; ; ;.... ;

Подробнее

В общем виде уравнение с n неизвестными х 1, х 2, х n может быть записано в виде:

В общем виде уравнение с n неизвестными х 1, х 2, х n может быть записано в виде: Уравнения В алгебре рассматривают два вида равенств тождества и уравнения Тождество это равенство которое выполняется при всех допустимых) значениях входящих в него букв Для тождества используют знаки

Подробнее

Тема 2-1: Линейные пространства

Тема 2-1: Линейные пространства Тема 2-1: Линейные пространства А. Я. Овсянников Уральский федеральный университет Институт математики и компьютерных наук кафедра алгебры и дискретной математики алгебра и геометрия для механиков (2 семестр)

Подробнее

ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИЙ ОДНОЙ ПЕРЕМЕННОЙ. Практикум по высшей математике

ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИЙ ОДНОЙ ПЕРЕМЕННОЙ. Практикум по высшей математике ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «САМАРСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ» Кафедра прикладной математики и

Подробнее

ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ. В. М. Сафро, А. В. Скачко, Е. С. Чумерина

ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ. В. М. Сафро, А. В. Скачко, Е. С. Чумерина МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ПУТЕЙ СООБЩЕНИЯ МИИТ Кафедра «Прикладная математика-1» МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ПУТЕЙ СООБЩЕНИЯ МИИТ Кафедра «Прикладная математика-1» В. М. Сафро,

Подробнее

Саратовский государственный университет имени Н. Г. Чернышевского. В.А. Иванов МАТЕМАТИКА. Понятие о комплексных числах

Саратовский государственный университет имени Н. Г. Чернышевского. В.А. Иванов МАТЕМАТИКА. Понятие о комплексных числах Саратовский государственный университет имени Н.Г. Чернышевского В.А. Иванов МАТЕМАТИКА Понятие о комплексных числах Учебное пособие для студентов биологического факультета ИЗДАТЕЛЬСТВО САРАТОВСКОГО УНИВЕРСИТЕТА

Подробнее

Лекция 15: Собственные значения и собственные векторы. оператора

Лекция 15: Собственные значения и собственные векторы. оператора Лекция 15: Собственные значения и собственные векторы линейного оператора Уральский федеральный университет, Институт математики и компьютерных наук, кафедра алгебры и дискретной математики Определение

Подробнее

ФИЗИКО-МАТЕМАТИЧЕСКИЙ ФАКУЛЬТЕТ КАФЕДРА МАТЕМАТИКИ И МЕТОДИКИ ОБУЧЕНИЯ МАТЕМАТИКЕ

ФИЗИКО-МАТЕМАТИЧЕСКИЙ ФАКУЛЬТЕТ КАФЕДРА МАТЕМАТИКИ И МЕТОДИКИ ОБУЧЕНИЯ МАТЕМАТИКЕ МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное бюджетное образовательное учреждение высшего образования «ЮЖНО-УРАЛЬСКИЙ ГОСУДАРСТВЕННЫЙ ГУМАНИТАРНО- ПЕДАГОГИЧЕСКИЙ УНИВЕРСИТЕТ»

Подробнее

Дифференциальные уравнения (лекция 10)

Дифференциальные уравнения (лекция 10) Дифференциальные уравнения лекция 0 Линейные неоднородные уравнения высших порядков Лектор Шерстнёва Анна Игоревна 6. Линейные неоднородные уравнения -го порядка. Метод вариации произвольных постоянных

Подробнее

ОГЛАВЛЕНИЕ ГЛАВА I АРИФМЕТИКА. АЛГЕБРА

ОГЛАВЛЕНИЕ ГЛАВА I АРИФМЕТИКА. АЛГЕБРА ОГЛАВЛЕНИЕ Введение................................ 13 ГЛАВА I АРИФМЕТИКА. АЛГЕБРА 1. Натуральные числа.................... 17 1.1. Десятичная запись натуральных чисел.... 17 1.2. Арифметические действия

Подробнее

Системы уравнений. Общий вид системы двух уравнений с двумя переменными:

Системы уравнений. Общий вид системы двух уравнений с двумя переменными: Системы уравнений Пусть даны два уравнения с двумя неизвестными f(x, y)=0 и g(x, y)=0, где f(x, y), g(x, y) некоторые выражения с переменными х и у. Если ставится задача найти все общие решения данных

Подробнее

Основы алгебры. Числовые множества. Глава 1

Основы алгебры. Числовые множества. Глава 1 Глава 1 Основы алгебры Числовые множества Рассмотрим основные числовые множества. Множество натуральных чисел N включает числа вида 1, 2, 3 и т. д., которые используются для счета предметов. Множество

Подробнее

МАТЕМАТИКА. Тождественные преобразования. Решение уравнений. Задание 1 для 8-х классов. ( учебный год)

МАТЕМАТИКА. Тождественные преобразования. Решение уравнений. Задание 1 для 8-х классов. ( учебный год) Министерство образования и науки Российской Федерации Московский физико-технический институт (государственный университет) Заочная физико-техническая школа МАТЕМАТИКА Тождественные преобразования. Решение

Подробнее