Т. Н. Матыцина ДИСКРЕТНАЯ МАТЕМАТИКА РЕШЕНИЕ РЕКУРРЕНТНЫХ СООТНОШЕНИЙ. Практикум

Save this PDF as:
 WORD  PNG  TXT  JPG

Размер: px
Начинать показ со страницы:

Download "Т. Н. Матыцина ДИСКРЕТНАЯ МАТЕМАТИКА РЕШЕНИЕ РЕКУРРЕНТНЫХ СООТНОШЕНИЙ. Практикум"

Транскрипт

1 МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Костромской государственный университет имени Н. А. Некрасова Т. Н. Матыцина ДИСКРЕТНАЯ МАТЕМАТИКА РЕШЕНИЕ РЕКУРРЕНТНЫХ СООТНОШЕНИЙ Практикум Кострома 2010

2 ББК я73-5 М348 Печатается по решению редакционно-издательского совета КГУ им. Н. А. Некрасова Рецензент А. В. Чередникова, кандидат физико-математических наук, доцент М348 Матыцина Т. Н. Дискретная математика. Решение рекуррентных соотношений : практикум [Текст] / Т. Н. Матыцина. Кострома : КГУ им. Н. А. Некрасова, с. Практикум содержит индивидуальные задания для студентов и предназначен для обеспечения самостоятельной работы по освоению первой части курса «Дискретная математика». Для студентов 2 3 курсов физико-математического факультета, обучающихся по специальностям «Математика» с дополнительной специальностью «Информатика», «Информатика» с дополнительной специальностью «Математика». ББК я73-5 Т. Н. Матыцина, 2010 КГУ им. Н. А. Некрасова,

3 ОГЛАВЛЕНИЕ Введение Методические рекомендации по решению линейных рекуррентных соотношений Основные понятия и определения рекуррентных (возвратных) последовательностей Алгоритмы решения ЛОРС и ЛРС Примеры решения ЛОРС и ЛРС Задачи для самостоятельного решения Задачи для решения ЛОРС и ЛРС Ответы Заключение Библиографический список

4 ВВЕДЕНИЕ Первая часть курса «Дискретная математика», изучаемая студентами 2 3 курсов физико-математического факультета, обучающихся по специальностям «Информатика» с дополнительной специальностью «Математика» (IV семестр) и «Математика» с дополнительной специальностью «Информатика» (V семестр), предполагает решение рекуррентных соотношений. В настоящее издание включены задачи на вычисление однородных и неоднородных линейных рекуррентных соотношений. Поводом для написания практикума послужило то обстоятельство, что у студентов практически нет навыков решения задач по данному курсу. Одной из причин является отсутствие доступного учебника или сборника задач. Задачи из предлагаемого практикума помогут каждому из студентов (индивидуально) разобраться с основными методами и приемами решения задач. С целью более легкого освоения материала в начале пособия рассмотрены все типы задач, предлагаемых для самостоятельного решения. В конце помещен список рекомендуемой литературы, которая поможет глубже изучить данный предмет. Тема «Рекуррентные соотношения» близка к школьному курсу (арифметические и геометрические прогрессии, последовательность квадратов и кубов натуральных чисел, и т. п.), поэтому не требует от студентов предварительного изучения каких-либо других дисциплин. Основы теории рекуррентных соотношений (возвратных последовательностей) были разработаны и опубликованы в 20-х гг. XVIII в. французским математиком А. Муавром и одним из первых по времени членов Петербургской Академии наук швейцарским математиком Д. Бернулли. Развёрнутую теорию дал крупнейший математик XVIII в. 4

5 петербургский академик Л. Эйлер. Из более поздних работ следует выделить изложение теории возвратных последовательностей в курсах исчисления конечных разностей, читанных знаменитыми русскими математиками академиками П. Л. Чебышевым и А. А. Марковым. Рекуррентные соотношения (от латинского слова recurrere возвращаться) играют большую роль в дискретной математике, являясь по существу в некотором смысле дискретным аналогом дифференциальных уравнений. Кроме того, они позволяют сводить данную задачу от параметров к задаче от 1 параметров, потом к задаче от 2 параметров и т. д. Последовательно уменьшая число параметров, можно дойти до задачи, которую уже легко решить. Понятие рекуррентного соотношения (возвратной последовательности) является широким обобщением понятия арифметической или геометрической прогрессии. Как частные случаи оно охватывает также последовательности квадратов или кубов натуральных чисел, последовательности цифр десятичного разложения рационального числа (и вообще любые периодические последовательности), последовательности коэффициентов частного от деления двух многочленов, расположенных по возрастающим степеням х, и т. д. 5

6 1. МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ПО РЕШЕНИЮ ЛИНЕЙНЫХ РЕКУРРЕНТНЫХ СООТНОШЕНИЙ 1.1. Основные понятия и определения рекуррентных (возвратных) последовательностей Будем записывать последовательности в виде a 1, a 2, a 3,, a, (1) или, коротко, {a }. Если существует натуральное число k и числа α 1, α 2,, α k (действительные или мнимые), такие, что, начиная с некоторого номера и для всех следующих номеров, a +k = α 1 a +k 1 + α 2 a +k α k a, ( k 1), (2) то последовательность (1) называется рекуррентной (возвратной) последовательностью порядка k, а соотношение (2) рекуррентным (возвратным) уравнением порядка k. Таким образом, рекуррентная последовательность характеризуется тем, что каждый её член (начиная с некоторого из них) выражается через одно и то же количество k непосредственно предшествующих ему членов по формуле (2). Само название «рекуррентная» (а также возвратная) употребляется именно потому, что здесь для вычисления последующего члена возвращаются к предшествующим членам. Приведём несколько примеров рекуррентных последовательностей. Пример 1. Геометрическая прогрессия. Пусть имеем геометрическую прогрессию: a 1 = α, a 2 = α q, a 3 = α q 2,, a = α q 1, ; (3) для неё уравнение (2) принимает вид: a +1 = q a. (4) 6

7 Здесь k = 1 и α 1 = q. Таким образом, геометрическая прогрессия является рекуррентной последовательностью первого порядка. Пример 2. Арифметическая прогрессия. В случае арифметической прогрессии a 1 = α, a 2 = α + d, a 3 = α + 2d,, a = α + ( 1)d, имеем a +1 = a + d соотношение, не имеющее вида уравнения (2). Однако если мы рассмотрим два соотношения, написанные для двух соседних значений : a +2 = a +1 + d и a +1 = a + d, то получим из них путём почленного вычитания a +2 a +1 = a +1 a, или a +2 = 2a +1 a уравнение вида (2). Здесь k = 2, α 1 = 2, α 2 = 1. Следовательно, арифметическая прогрессия является рекуррентной последовательностью второго порядка. Пример 3. Рассмотрим старинную задачу Фибоначчи 1 о числе кроликов. В ней требуется определить число пар зрелых кроликов, образовавшихся от одной пары в течение года, если известно, что каждая зрелая пара кроликов ежемесячно рождает новую пару, причём новорождённые достигают полной зрелости в течение месяца. В этой задаче интересен отнюдь не результат, получить который совсем нетрудно, но последовательность, члены которой выражают общее число зрелых пар кроликов в начальный момент (a 1 ) через месяц (a 2 ), через два месяца (a 3 ) и, вообще, через месяцев (a +1 ). Очевидно, что a 1 = 1. Через месяц прибавится пара новорождённых, но число зрелых пар будет прежнее: a 2 = 1. Через два месяца крольчата достигнут зрелости и общее число зрелых пар будет равно двум: a 3 = 2. Пусть мы вычислили уже количество 1 Фибоначчи, или Леонардо Пизанский, итальянский средневековый математик (около 1200 г.) оставил после себя книгу «Об абаке», содержащую обширные арифметические и алгебраические сведения, заимствованные у народов Средней Азии и византийцев и творчески им переработанные и развитые. 7

8 зрелых пар через 1 месяцев a и через месяцев a +1. Так как к этому времени a ранее имевшихся зрелых пар дадут ещё a пар приплода, то через + 1 месяцев общее число зрелых пар будет: a +2 = a +1 + a. (6) Отсюда a 4 = a 3 + a 2 = 3, a 5 = a 4 + a 3 = 5, a 6 = a 5 + a 4 = 8, a 7 = a 6 + a 5 = 13,. Мы получили, таким образом, последовательность a 1 = 1, a 2 = 1, a 3 = 2, a 4 = 3, a 5 = 5, a 6 = 8, a 7 = 13,, a 13 = 233,, (7) в которой каждый последующий член равен сумме двух предыдущих. Последовательность эта называется последовательностью Фибоначчи, а члены её числами Фибоначчи. Уравнение (6) показывает, что последовательность Фибоначчи есть рекуррентная последовательность второго порядка. Пример 4. В качестве следующего примера рассмотрим последовательность квадратов натуральных чисел: a 1 = 1 2, a 2 = 2 2, a 3 = 3 2,, a = 2,. (8) Здесь a +1 = ( + 1) 2 = и, следовательно, a +1 = a (9) Увеличивая на единицу, получим: a +2 = a (10) И, следовательно (вычитая почленно (9) из (10)), a +2 a +1 = a +1 a + 2, или a +2 = 2a +1 a + 2. (11) Увеличивая в равенстве (11) на единицу, будем иметь: a +3 = 2a +2 a ; (12) откуда (вычитая почленно (11) из (12)) a +3 a +2 = 2a +2 3a +1 + a, 8

9 или a +3 = 3a +2 3a +1 + a. (13) Мы получили рекуррентное уравнение третьего порядка. Следовательно, последовательность (8) есть рекуррентная последовательность третьего порядка. Пример 5. Рассмотрим последовательность кубов натуральных чисел: a 1 = 1 3, a 2 = 2 3, a 3 = 3 3,, a = 3,. (14) Подобным же образом, как в примере 4, можно убедиться в том, что последовательность кубов натуральных чисел есть рекуррентная последовательность четвёртого порядка. Члены её удовлетворяют уравнению a +4 = 4a +3 6a a +1 a. (15) В случае простейших рекуррентных последовательностей, например арифметической и геометрической прогрессий, последовательности квадратов или кубов натуральных чисел, мы можем находить любой член последовательности, не прибегая к вычислению предшествующих членов. В случае же последовательности чисел Фибоначчи мы, на первый взгляд, не имеем возможности для этого и, чтобы вычислить тринадцатое число Фибоначчи a 13, находим предварительно, один за другим, все предшествующие члены (пользуясь уравнением a +2 = a +1 + a (6)): a 1 = 1, a 2 = 1, a 3 = 2, a 4 = 3, a 5 = 5, a 6 = 8, a 7 = 13, a 8 = 21, a 9 = 34, a 10 = 55, a 11 = 89, a 12 = 144, a 13 = 233. В ходе детального исследования структуры членов рекуррентной последовательности можно получить формулы, позволяющие вычислить в самом общем случае любой член рекуррентной последовательности, не прибегая к вычислению предшествующих членов. Другими словами, следующая задача состоит в том, чтобы отыскать формулу -го члена последовательности, зависящую только от номера. 9

10 Рекуррентное соотношение в общем случае может быть записано в виде a +k = F(, a +k 1, a +k 2,, a ), где F функция от k + 1 переменной, а число k называют порядком соотношения. Решением рекуррентного соотношения называется числовая последовательность b 1, b 2, b 3,, b,, для которой выполняется равенство: b +k = F(, b +k 1, b +k 2,, b ) при любом = 0, 1, 2,. Вообще говоря, произвольное рекуррентное соотношение имеет бесконечно много решений. Например, если рассмотреть рекуррентное соотношение второго порядка a +2 = a +1 + a, то ему, кроме последовательности Фибоначчи: 1, 1, 2, 3, 5, 8, 13, 21, 34,..., характеризующейся тем, что здесь a 1 = a 2 = 1, удовлетворяет ещё бесконечное множество других последовательностей, получающихся при различном выборе значений a 1 и a 2. Так, например, при a 1 = 3 и a 2 = 1 получаем последовательность: 3, 1, 2, 1, 3, 4, 7, 11, 18, 29,. Чтобы однозначно определить решение рекуррентного соотношения, необходимо задать начальные условия (начальных условий должно быть ровно столько, каков порядок рекуррентного соотношения). Решить рекуррентное соотношение значит найти формулу -го члена последовательности. К сожалению, не существует общего метода решения произвольных рекуррентных соотношений. Исключением является класс так называемых линейных рекуррентных соотношений с постоянными коэффициентами. Рекуррентное соотношение вида a +k = α 1 a +k 1 + α 2 a +k α k a, где a i некоторые числа, i = 1, 2,, k, называется линейным однородным рекуррентным соотношением (ЛОРС) с постоянными коэффициентами порядка k. 10

11 Рекуррентное соотношение вида a +k = α 1 a +k 1 + α 2 a +k α k a + f(), где a i некоторые числа, i = 1, 2,, k, f() 0 функция от, называется линейным рекуррентным соотношением (ЛРС) с постоянными коэффициентами порядка k Алгоритмы решения ЛОРС и ЛРС Алгоритм решения ЛОРС. Имеем ЛОРС: a +k = α 1 a +k 1 + α 2 a +k α k a. 1 шаг. Каждому ЛОРС порядка k соответствует алгебраическое уравнение степени k с теми же коэффициентами, и оно называется характеристическим уравнением ЛОРС. Составляем характеристическое уравнение x k = α 1 x k 1 + α 2 x k α k x 0 и находим его корни x i, где i = 1,, k. 2 шаг. Если x i корни кратности 1 (т. е. все различны между собой), то общее решение ЛОРС имеет вид: a = c 1 (x 1 ) + c 2 (x 2 ) + c 3 (x 3 ) + + c k (x k ) = c i x i Если x i корни кратности r i, то общее решение ЛОРС имеет вид k a = i= 1 ( c 1 2 ri 1 i1 + ci2 + ci cir ) (например, если корень x кратности 2, то a = (c 1 + c 2 ) x ). i x i k i= 1 3 шаг. Коэффициенты c i находятся с помощью начальных условий. 11

12 Алгоритм решения ЛРС. Имеем ЛРС: a +k = α 1 a +k 1 + α 2 a +k α k a + f(). Функцию f() можно представить в виде R m () λ, где R m () многочлен степени m от переменной. В самом деле, например: f() = 10 3= (10 3)1 = R 1 () 1, или f() = = ( 2 + 3) 3 = R 2 () 3. Перепишем ЛРС в виде a +k α 1 a +k 1 α 2 a +k 2 α k a = R m () λ. 1 шаг. Выписываем соответствующий ЛОРС: a +k α 1 a +k 1 α 2 a +k 2 α k a = 0 и находим его общее решение. Для этого составляем характеристическое уравнение x k α 1 x k 1 α 2 x k 2 α k x 0 = 0 и находим его корни x i, где i = 1,, k. Пусть, например, x i различные корни, тогда общее решение соответствующего ЛОРС имеет вид: a = c 1 (x 1 ) + c 2 (x 2 ) + c 3 (x 3 ) + + c k (x k ). 2 шаг. Находим a частное решение ЛРС: а) если λ не корень характеристического уравнения x k α 1 x k 1 α 2 x k 2 α k = 0, то a = Q m () λ, где Q m () многочлен степени m от переменной ; б) если λ корень характеристического уравнения x k α 1 x k 1 α 2 x k 2 α k = 0 кратности r, то a = r Q m () λ, где Q m () многочлен степени m от переменной. Далее, подставляем a в исходное ЛРС и находим коэффициенты в многочлене Q m (). 12

13 3 шаг. Находим общее решение ЛРС, оно представляет собой сумму общего решения соответствующего ЛОРС a и частного решения ЛРС a, то есть a = a + a. Коэффициенты c i находятся с помощью начальных условий Примеры решения ЛОРС и ЛРС Пользуясь приведенным алгоритмом нахождения решения ЛОРС и ЛРС, разберём несколько задач. Задача 1. Найти решение линейного однородного рекуррентного соотношения второго порядка: a +2 = 6 a +1 8 a, a 0 = 3, a 1 = Составляем характеристическое уравнение x 2 = 6 x 8 x 0 и находим его корни. x 2 6x + 8 = 0; x 1 = 2, x 2 = 4 корни различные, следовательно, их кратность равна Находим общее решение ЛОРС: a = c 1 (x 1 ) + c 2 (x 2 ) = c c Так как заданы начальные условия, то коэффициенты c 1 и c 2 определяются однозначно. a 0 = c c = c 1 + c 2 = 3; a 1 = c c = 2c 1 + 4c 2 = 4. Получили систему: c1 + c2 = 3, 2c1 + 4c2 = 4. Решая её, найдём коэффициенты: c 1 = 8, c 2 = 5. Таким образом, решение ЛОРС имеет вид a = Задача 2. Найти решение линейного однородного рекуррентного соотношения: 13

14 a +2 = 6 a +1 9 a, a 0 = 5, a 1 = Составляем характеристическое уравнение x 2 = 6x 9 и находим его корни. x 2 6x + 9 = 0; (x 3) 2 = 0; x 1 = x 2 = 3 два корня, при этом x 1 и x 2 совпали, следовательно, кратность корня равна Находим общее решение ЛОРС: a = (c 1 + c 2 ) (x 1 ) = (c 1 + c 2 ) С помощью начальных условий определяем коэффициенты c 1 и c 2 : a 0 = (c 1 + c 2 0) 3 0 = c 1 = 5; a 1 = (c 1 + c 2 1) 3 1 = (c 1 + c 2 ) 3 = 6. Получили систему c1 = 5, c1 + c2 = 2. Решая её, найдём коэффициенты c 1 = 5, c 2 = 3. Таким образом, решение ЛОРС имеет вид: a = (5 3) 3. Замечание. Как известно, корнями квадратного уравнения могут служить рациональные, иррациональные, комплексные числа и т. п. Метод решения линейных рекуррентных соотношений с такими корнями решается аналогично. Задача 3. Найти решение линейного однородного рекуррентного соотношения третьего порядка: a +3 = 3 a a +1 8 a, a 0 = 9, a 1 = 9, a 2 = Составляем характеристическое уравнение x 3 = 3 x x 8 и находим его корни. x 3 3x 2 6x + 8 = 0; (x 1)(x + 2)(x 4) = 0; x 1 = 1, x 2 = 2, x 3 = 4 корни различные, следовательно, их кратность равна Находим общее решение ЛОРС: a = c 1 (x 1 ) + c 2 (x 2 ) + c 3 (x 3 ) = c c 2 ( 2) + c

15 3. С помощью начальных условий, находим коэффициенты c 1, c 2 и c 3. a 0 = c c 2 ( 2) 0 + c = c 1 + c 2 + c 3 = 9; a 1 = c c 2 ( 2) 1 + c = c 1 2c 2 + 4c 3 = 9; a 2 = c c 2 ( 2) 2 + c = c 1 + 4c c 3 = 9. c1 + c2 + ñ3 = 9, Решая систему c1 2c2 + 4c3 = 9, получим c 1 = 7, c 2 = 4, c 3 = 2. Таким c1 + 4c2 + 16c3 = 9, образом, решение ЛОРС имеет вид: a = ( 2) 2 4. Задача 4. Найти решение линейного однородного рекуррентного соотношения третьего порядка: a +3 = a a +1 3 a, a 0 = 6, a 1 = 15, a 2 = Составляем характеристическое уравнение x 3 = x 2 + 5x 3 и находим его корни. x 3 + x 2 5x + 3 = 0; (x 1) 2 (x + 3) = 0; x 1 = x 2 = 1 корень кратности 2; x 3 = 3 корень кратности Находим общее решение ЛОРС: a = (c 1 + c 2 ) (x 1 ) + c 3 (x 3 ) = (c 1 + c 2 ) 1 + c 3 ( 3). 3. С помощью начальных условий находим коэффициенты c 1, c 2 и c 3. a 0 = (c 1 + c 2 0) c 3 ( 3) 0 = c 1 + c 3 = 6; a 1 = (c 1 + c 2 1) c 3 ( 3) 1 = c 1 + c 2 3c 3 = 15; a 2 = (c 1 + c 2 2) c 3 ( 3) 2 = c 1 + 2c 2 + 9c 3 = 8. c1 + ñ3 = 6, Решая систему c1 + c2 3c3 = 15, получим c 1 = 8, c 2 = 1 и c 3 = 2. Таким c1 + 2c2 + 9c3 = 8, образом, решение ЛОРС имеет вид: a = (8 + ) 1 2 ( 3). 15

16 Задача 5. Найти решение линейного рекуррентного соотношения второго порядка: Перепишем ЛРС в виде a +2 = 18 a a + 128, a 0 = 5, a 1 = 2. a a a = () 1. Выписываем соответствующий ЛОРС: a a a = 0. Составляем характеристическое уравнение и находим его корни. x 2 18x + 81 = 0; (x 9) 2 = 0; x 1 = x 2 = 9 корни характеристического уравнения совпали, следовательно, их кратность равна 2. Тогда общее решение a = (c 1 + c 2 ) (x 1 ) = (c 1 + c 2 ) Находим a частное решение ЛРС. По условию f() = R m () λ = = = R 0 () λ, где R 0 () = 128 многочлен нулевой степени от переменной, а λ = 1 не корень характеристического уравнения соответствующего ЛОРС. Следовательно, a = Q m () λ = Q 0 () 1, где Q 0 () многочлен нулевой степени от переменной, в общем виде Q 0 () = с. Таким образом, a = с 1. Далее, подставляем a в исходное ЛРС () и находим коэффициент с в многочлене Q 0 (): с с с 1 = ; с 18с + 81с = 128; 64с = 128; с = 2. Следовательно, получили a = с 1 = 2 1 = 2. 16

17 3. Находим общее решение ЛРС, оно представляет собой сумму общего решения соответствующего ЛОРС a и частного решения ЛРС a, то есть a = a + a = (c 1 + c 2 ) Осталось с помощью начальных условий найти коэффициенты c 1, и c 2. a 0 = (c 1 + c 2 0) = c = 5; a 1 = (c 1 + c 2 1) = 9c 1 + 9c = 2; Решая систему c1 + 2 = 5, 9c1 + 9c2 + 2 = 2, получим c 1 = 3, c 2 = 3. Таким образом, решение ЛРС имеет вид: a = (3 3) Задача 6. Найти решение линейного рекуррентного соотношения: a +2 = 10 a a , a 0 = 7, a 1 = 50. Перепишем ЛРС в виде a a a = Выписываем соответствующий ЛОРС: a a a = 0; составляем характеристическое уравнение и находим его корни. x 2 10 x + 25 = 0; (x 5) 2 = 0; x 1 = x 2 = 5 корень кратности 2. Тогда общее решение ЛОРС имеет вид: a = (c 1 + c 2 ) (x 1 ) = (c 1 + c 2 ) Находим a частное решение ЛРС. По условию f() = R m () λ = 50 5 = R 0 () λ, где R 0 () = 50 многочлен нулевой степени от переменной, а λ = 5 совпадает с корнем x 1 кратности 2 характеристического уравнения соответствующего ЛОРС. Следовательно, a = r Q m () λ = = 2 Q 0 () 5, где Q 0 () = с многочлен нулевой степени от переменной. Таким образом, a = 2 с 5. Далее, подставляем a в исходное ЛРС и находим коэффициент с: 17

18 с ( + 2) с ( + 1) с 2 5 = 50 5 (разделим на 5 0); 25с ( + 2) 2 50с ( + 1) с 2 = 50; с ( ) 2с ( ) + с 2 = 2; с = 1. Следовательно, a = 2 с 5 = Выписываем общее решение ЛРС: a = a + a = (c 1 + c 2 ) С помощью начальных условий находим коэффициенты c 1, и c 2 : a 0 = (c 1 + c 2 0) = c 1 = 7; a 1 = (c 1 + c 2 1) = 5c 1 + 5c = 50; Решая систему c1 = 7, c1 + c2 + 1 = 10, получим c 1 = 7, c 2 = 2. Таким образом, решение ЛРС имеет вид: a = (7 + 2) = ( ) 5. Задача 7. Найти решение линейного рекуррентного соотношения: a +2 = 6 a +1 8 a , a 0 = 0, a 1 = 11. Перепишем ЛРС в виде a +2 6 a a = Выписываем соответствующий ЛОРС: a +2 6 a a = 0; составляем характеристическое уравнение и находим его корни. x 2 6x + 8 = 0; x 1 = 2, x 2 = 4 корни кратности равной 1. Тогда общее решение ЛОРС имеет вид a = c 1 (x 1 ) + c 2 (x 2 ) = c c Находим a частное решение ЛРС. По условию f() = R m () λ = = (3 + 2) 1 = R 1 () λ, где R 1 () = многочлен первой степени от переменной, а λ = 1 не корень характеристического уравнения соответствующего ЛОРС. Следовательно, a = Q m () λ = Q 1 () 1, где Q 1 () многочлен первой степени от переменной, в общем виде Q 1 () = = a + b. Таким образом, a = (a + b) 1. 18

19 a и b: Далее, подставляем a в исходное ЛРС и находим коэффициенты (a ( + 2) + b) (a ( + 1) + b) (a + b) 1 = 3 + 2; 25с ( + 2) 2 50с ( + 1) с 2 = 3 + 2; 3a + (3b 4a) = Таким образом, получили, что два многочлена равны, а тогда равны соответствующие коэффициенты: 3a = 3, a = 1, 3b 4a = 2 b = 2. Следовательно, a = (a + b) 1 = Выписываем общее решение ЛРС: a = a + a = c c ( + 2). С помощью начальных условий находим коэффициенты c 1, и c 2 : a 0 = c c (0 + 2) = 0; a 1 = c c (1 + 2) = 11; Решая систему c1 + c2 = 2, 2c1 + 4c2 = 14, получим c 1 = 3, c 2 = 5. Таким образом, решение ЛРС имеет вид: a = Задача 8. Найти решение линейного рекуррентного соотношения: a +2 = 5 a +1 6 a + (10 4) 2, a 0 = 5, a 1 = 12. Перепишем ЛРС в виде a +2 5 a a = (10 4) Выписываем соответствующий ЛОРС: a +2 5 a a = 0; составляем характеристическое уравнение и находим его корни. x 2 5x + 6 = 0; x 1 = 3, x 2 = 2 корни различные кратности 1. Тогда общее решение ЛОРС имеет вид: a = c 1 (x 1 ) + c 2 (x 2 ) = c c

20 2. Находим a частное решение ЛРС. По условию имеем, что f() = = R m () λ = (10 4) 2 = R 1 () λ, где R 1 () = (10 4) многочлен первой степени от переменной, а λ = 2, то есть совпадает с корнем характеристического уравнения соответствующего ЛОРС. Следовательно, a = r Q m () λ = 1 Q 1 () 2, где Q 1 () многочлен первой степени от переменной, в общем виде Q 1 () = a + b. Таким образом, получаем a = = (a + b) 2. Далее, подставляем a в исходное соотношение и находим коэффициенты a и b. ( + 2)(a ( + 2) + b) ( + 1) (a ( + 1) + b) (a + b) 2 = = (10 4) 2. Разделим это уравнение на 2 0: 4( + 2)(a ( + 2) + b) 10( + 1) (a ( + 1) + b) + 6(a + b) = 10 4; 4a + (6a 2b) = Таким образом, получили, что два многочлена равны, а тогда равны соответствующие коэффициенты: 4a = 4, a = 1, 6a 2b = 10 b = 2. Следовательно, a = (a + b) 2 = ( 2) Выписываем общее решение ЛРС, то есть a = a + a = c c ( 2) 2. С помощью начальных условий находим коэффициенты c 1, и c 2. a 0 = c c (0 2) 2 0 = 5; a 1 = c c (1 2) 2 1 = 12. Решая систему c1 + c2 = 5, 3c1 + 2c2 = 14, получим c 1 = 4, c 2 = 1. Таким образом, решение ЛРС имеет вид: a = ( 2) 2 = ( ) 2. 20

21 Задача 9. Найти решение линейного рекуррентного соотношения: a +2 = 8 a a , a 0 = 1, a 1 = 7. Перепишем ЛРС в виде a +2 8 a a = ( ) Выписываем соответствующий ЛОРС: a +2 8 a a = 0; составляем характеристическое уравнение и находим его корни. x 2 8 x + 16 = 0; x 1 = x 2 = 4 корни совпали, следовательно, кратность корня равна 2. Тогда общее решение ЛОРС имеет вид: a = (c 1 + c 2 ) (x 1 ) = (c 1 + c 2 ) Находим a частное решение ЛРС. По условию f() = R m () λ = = ( ) 1 = R 2 () λ, где R 2 () = многочлен второй степени от переменной, а λ = 1 не совпадает с корнем характеристического уравнения соответствующего ЛОРС. Следовательно, a = Q m () λ = Q 2 () 1, где Q 2 () многочлен второй степени от переменной, в общем виде Q 2 () = a 2 + b + c. Таким образом, a = = (a 2 + b + c) 1. Далее, подставляем a в исходное соотношение и находим коэффициенты a, b и c. (a ( + 2) 2 + b ( + 2)+ c) (a ( + 1) 2 + b ( + 1) + c) (a b + c) 1 = ( ) 1 ; a( + 2) 2 + b( + 2)+ c 8a( + 1) 2 8b( + 1) 8c + 16a b + 16c = = ; 9a 2 12a + 9b 4a 6b + 9c = Таким образом, получили, что два многочлена равны, а тогда равны соответствующие коэффициенты: 9a = 9, 12a + 9b = 6, 4a 6b + 9c = 2 a = 1, b = 2, c = 2. 21

22 Следовательно, a = (a 2 + b + c) 1 = Выписываем общее решение ЛРС, то есть a = a + a = (c 1 + c 2 ) ( ). С помощью начальных условий, находим коэффициенты c 1, и c 2. a 0 = (c 1 + c 2 0) ( ) = 1; a 1 = (c 1 + c 2 1) ( ) = 7. Решая систему c1 + 2 = 1, 4c1 + 4c2 + 5 = 7, получим c 1 = 1, c 2 = 2. Таким образом, решение ЛРС имеет вид: a = ( 1 2)

23 2. ЗАДАЧИ ДЛЯ САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ 2.1. Задачи для решения ЛОРС и ЛРС Линейные однородные рекуррентные соотношения второго порядка 1. a +2 = 9 a a, a 0 = 2, a 1 = a +2 = 3,5 a +1 2,5 a, a 0 = 3,5, a 1 = a +2 = 8 a a, a 0 = 4, a 1 = a +2 = 2 a a, a 0 = 3, a 1 = i. 5. a +2 = 10 a a, a 0 = 3, a 1 = a +2 = 6 a a, a 0 = 0, a 1 = 2i a +2 = 8 a a, a 0 = 2, a 1 = a +2 = 4 a a, a 0 = 7, a 1 = a +2 = a +1 + a, a 0 = 2, a 1 = a +2 = 8 a a, a 0 = 8, a 1 = a +2 = ( ) a a, a 0 = 7, a 1 = a +2 = 5 a +1 4 a, a 0 = 0, a 1 = a +2 = 2 a +1 5 a, a 0 = 5, a 1 = 6i a +2 = 3 a a, a 0 = 7, a 1 = a +2 = 6 a +1 9 a, a 0 = 8, a 1 = a +2 = 6 a a, a 0 = 3, a 1 = 9 2i. 17. a +2 = a a, a 0 = 4, a 1 = a +2 = 14 a a, a 0 = 5, a 1 = a +2 = 8 a a, a 0 = 2, a 1 = a +2 = 7 a a, a 0 = 5, a 1 = a +2 = 2 a +1 + a, a 0 = 2, a 1 =

24 1 22. a +2 = a +1 a, a 0 = 4, a 1 = a +2 = 4 a +1 a, a 0 = 12, a 1 = a +2 = a a, a 0 = 2, a 1 = a +2 = 2 a a, a 0 = 8, a 1 = a +2 = 6 a +1 9 a, a 0 = 12, a 1 = a +2 = 4 a +1 5 a, a 0 = 5, a 1 = 10 i a +2 = 3 a +1 a, a 0 = 8, a 1 = a +2 = 14 a a, a 0 = 5, a 1 = a +2 = 4 a a, a 0 = 2, a 1 = a +2 = 4 a +1 5 a, a 0 = 3, a 1 = 6 7i. 32. a +2 = a a, a 0 = 5, a 1 = a +2 = 16 a a, a 0 = 7, a 1 = a +2 = 5 a +1 6 a, a 0 = 2, a 1 = a +2 = 10 a a, a 0 = 2, a 1 = 10 4i a +2 = 6 a +1 5 a, a 0 = 11, a 1 = a +2 = 2 a a, a 0 = 11, a 1 = a +2 = 6 a a ; a 0 = 3, a 1 = 0. Линейные однородные рекуррентные соотношения третьего порядка 39. a +3 = 7 a a a, a 0 = 1, a 1 = 3, a 2 = a +3 = 4 a +2 a +1 6 a, a 0 = 4, a 1 = 5, a 2 = a +3 = 6 a a a, a 0 = 5, a 1 = 8, a 2 = a +3 = 8 a a a, a 0 = 4, a 1 = 31, a 2 = a +3 = 5 a +2 3 a +1 9 a, a 0 = 1, a 1 = 3, a 2 = a +3 = 15 a a a, a 0 = 8, a 1 = 40, a 2 =

25 45. a +3 = 27 a a, a 0 = 6, a 1 = 3, a 2 = a +3 = 6 a a a, a 0 = 15, a 1 = 32, a 2 = a +3 = 15 a a a, a 0 = 1, a 1 = 20, a 2 = a +3 = 9 a a a, a 0 = 0, a 1 = 4, a 2 = a +3 = 2 a a +1 6 a, a 0 = 4, a 1 = 5, a 2 = a +3 = 4 a +2 5 a a, a 0 = 2, a 1 = 6, a 2 = a +3 = 6 a +2 5 a a, a 0 = 4, a 1 = 2, a 2 = a +3 = 3 a a a, a 0 = 2, a 1 = 17, a 2 = a +3 = 9 a a a, a 0 = 1, a 1 = 3, a 2 = a +3 = 6 a a +1 6 a, a 0 = 13, a 1 = 31, a 2 = a +3 = 5 a +2 3 a +1 9 a, a 0 = 3, a 1 = 14, a 2 = a +3 = a a +1 4 a, a 0 = 2, a 1 = 1, a 2 = a +3 = 3 a a a, a 0 = 2, a 1 = 3, a 2 = a +3 = 12 a a a, a 0 = 2, a 1 = 16, a 2 = a +3 = 4 a a a, a 0 = 0,2, a 1 = 6, a 2 = a +3 = 8 a a a, a 0 = 3, a 1 = 13, a 2 = a +3 = 4 a a a, a 0 = 3, a 1 = 29, a 2 = a +3 = 5 a +2 7 a a, a 0 = 11, a 1 = 34, a 2 = a +3 = 11 a a a, a 0 = 27, a 1 = 17, a 2 = a +3 = 12 a a a, a 0 = 1, a 1 = 37, a 2 = a +3 = 3 a a a, a 0 = 11, a 1 = 23, a 2 = a +3 = 7 a a a, a 0 = 3, a 1 = 6, a 2 = a +3 = 4 a a a, a 0 = 4, a 1 = 1, a 2 = 4.; 68. a +3 = 7 a a a, a 0 = 1, a 1 = 0, a 2 = a +3 = 5 a a a, a 0 = 6, a 1 = 0, a 2 = a +3 = 5 a +2 3 a a, a 0 = 10, a 1 = 1, a 2 = a +3 = 3 a +2 3 a +1 + a, a 0 = 2, a 1 = 4, a 2 = a +3 = 3 a a a, a 0 = 6, a 1 = 5, a 2 =

26 73. a +3 = 10 a a a, a 0 = 0, a 1 = 1, a 2 = a +3 = 8 a a a, a 0 = 8, a 1 = 23, a 2 = a +3 = 5 a +2 8 a +1 4 a, a 0 = 11, a 1 = 15, a 2 = a +3 = a a a, a 0 = 6, a 1 = 5, a 2 = a +3 = 10 a a a, a 0 = 1, a 1 = 2, a 2 = a +3 = a a a, a 0 = 1, a 1 = 14, a 2 = a +3 = 2 a +2 + a a, a 0 = 10, a 1 = 1, a 2 = a +3 = 5 a +2 8 a a, a 0 = 9, a 1 = 9, a 2 = a +3 = 8i a a +1 10i a, a 0 = 8, a 1 = 14i, a 2 = 38. Линейные рекуррентные соотношения первого порядка 82. a +1 = 4 a + 6, a 0 = a +1 = a + + 1, a 0 = a +1 = 5 a , a 0 = a +1 = 3 a + 5 2, a 0 = a +1 = 3 a + ( 4) 5 1, a 0 = a +1 = 4 a + 8 4, a 0 = a +1 = 3 a , a 0 = 14. Линейные рекуррентные соотношения второго порядка 89. a +2 = 7 a a + 10, a 0 = 4, a 1 = a +2 = 10 a a + 32, a 0 = 1, a 1 = a +2 = 6 a +1 9 a 2 3, a 0 = 0, a 1 = a +2 = 7 a a , a 0 = 3, a 1 = a +2 = 9 a a + (18 20) 2, a 0 = 6, a 1 = a +2 = 8 a +1 7 a , a 0 = 9, a 1 = a +2 = 4 a +1 9 a , a 0 = 15, a 1 = 27 i a +2 = 12 a a , a 0 = 13, a 1 = 6. 26

А. А. КИРСАНОВ КОМПЛЕКСНЫЕ ЧИСЛА

А. А. КИРСАНОВ КОМПЛЕКСНЫЕ ЧИСЛА А А КИРСАНОВ КОМПЛЕКСНЫЕ ЧИСЛА ПСКОВ ББК 57 К45 Печатается по решению кафедры алгебры и геометрии, и редакционно-издательского совета ПГПИ им СМ Кирова Рецензент: Медведева ИН, кандидат физ мат наук, доцент

Подробнее

lim ПРЕДЕЛ ФУНКЦИИ Методические указания

lim ПРЕДЕЛ ФУНКЦИИ Методические указания Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования Ухтинский государственный технический университет (УГТУ) ПРЕДЕЛ ФУНКЦИИ Методические

Подробнее

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ Общие понятия Дифференциальные уравнения имеют многочисленные и самые разнообразные приложения в механике физике астрономии технике и в других разделах высшей математики (например

Подробнее

МАТЕМАТИКА. Тождественные преобразования. Решение уравнений. Задание 1 для 8-х классов. ( учебный год)

МАТЕМАТИКА. Тождественные преобразования. Решение уравнений. Задание 1 для 8-х классов. ( учебный год) Министерство образования и науки Российской Федерации Московский физико-технический институт (государственный университет) Заочная физико-техническая школа МАТЕМАТИКА Тождественные преобразования. Решение

Подробнее

Н. В. Деменева КОМПЛЕКСНЫЕ ЧИСЛА

Н. В. Деменева КОМПЛЕКСНЫЕ ЧИСЛА Министерство сельского хозяйства Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования «Пермская государственная сельскохозяйственная академия имени

Подробнее

В.И. Иванов. Министерство образования Российской Федерации. Российский государственный университет нефти и газа имени И.М. Губкина

В.И. Иванов. Министерство образования Российской Федерации. Российский государственный университет нефти и газа имени И.М. Губкина Министерство образования Российской Федерации Российский государственный университет нефти и газа имени ИМ Губкина ВИ Иванов Методические указания к изучению темы «ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ» (для студентов

Подробнее

3. СИСТЕМЫ ЛИНЕЙНЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ С ПОСТОЯННЫМИ КОЭФФИЦИЕНТАМИ. 1. Приведение к одному уравнению n -го порядка

3. СИСТЕМЫ ЛИНЕЙНЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ С ПОСТОЯННЫМИ КОЭФФИЦИЕНТАМИ. 1. Приведение к одному уравнению n -го порядка СИСТЕМЫ ЛИНЕЙНЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ С ПОСТОЯННЫМИ КОЭФФИЦИЕНТАМИ Приведение к одному уравнению -го порядка С практической точки зрения очень важны линейные системы с постоянными коэффициентами

Подробнее

Интегрирование рациональных дробей. Рациональной дробью называется дробь вида P ( x)

Интегрирование рациональных дробей. Рациональной дробью называется дробь вида P ( x) ПРАКТИЧЕСКОЕ ЗАНЯТИЕ Интегрирование рациональных дробей Рациональной дробью называется дробь вида P Q, где P и Q многочлены Рациональная дробь называется правильной, если степень многочлена P ниже степени

Подробнее

НЕКОТОРЫЕ МЕТОДЫ СУММИРОВАНИЯ ЧИСЛОВЫХ ПОСЛЕДОВАТЕЛЬНОСТЕЙ. А. В. Ласунский

НЕКОТОРЫЕ МЕТОДЫ СУММИРОВАНИЯ ЧИСЛОВЫХ ПОСЛЕДОВАТЕЛЬНОСТЕЙ. А. В. Ласунский 03 Математика в высшем образовании УДК 54; 5799 СОДЕРЖАНИЕ И ТЕХНОЛОГИИ МАТЕМАТИЧЕСКОГО ОБРАЗОВАНИЯ В ВУЗЕ НЕКОТОРЫЕ МЕТОДЫ СУММИРОВАНИЯ ЧИСЛОВЫХ ПОСЛЕДОВАТЕЛЬНОСТЕЙ А В Ласунский Новгородский государственный

Подробнее

1. ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ПЕР- ВОГО ПОРЯДКА 1.1. Основные понятия

1. ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ПЕР- ВОГО ПОРЯДКА 1.1. Основные понятия . ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ПЕР- ВОГО ПОРЯДКА.. Основные понятия Дифференциальным уравнением называется уравнение, в которое неизвестная функция входит под знаком производной или дифференциала.

Подробнее

ФИЗИКО-МАТЕМАТИЧЕСКИЙ ФАКУЛЬТЕТ КАФЕДРА МАТЕМАТИКИ И МЕТОДИКИ ОБУЧЕНИЯ МАТЕМАТИКЕ

ФИЗИКО-МАТЕМАТИЧЕСКИЙ ФАКУЛЬТЕТ КАФЕДРА МАТЕМАТИКИ И МЕТОДИКИ ОБУЧЕНИЯ МАТЕМАТИКЕ МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное бюджетное образовательное учреждение высшего образования «ЮЖНО-УРАЛЬСКИЙ ГОСУДАРСТВЕННЫЙ ГУМАНИТАРНО- ПЕДАГОГИЧЕСКИЙ УНИВЕРСИТЕТ»

Подробнее

РЯДЫ АНАЛИТИЧЕСКИХ ФУНКЦИЙ

РЯДЫ АНАЛИТИЧЕСКИХ ФУНКЦИЙ МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Национальный исследовательский Нижегородский государственный университет им НИ Лобачевского НП Семерикова АА Дубков АА Харчева РЯДЫ АНАЛИТИЧЕСКИХ ФУНКЦИЙ

Подробнее

А. И. Козко В. Г. Чирский. Задачи с параметром и другие сложные задачи

А. И. Козко В. Г. Чирский. Задачи с параметром и другие сложные задачи А. И. Козко В. Г. Чирский Задачи с параметром и другие сложные задачи Москва Издательство МЦНМО 2007 УДК 512 ББК 22.141 К59 К59 Козко А. И., Чирский В. Г. Задачи с параметром и другие сложные задачи. М.:

Подробнее

1.Дифференциальные уравнения высших порядков, общие понятия.

1.Дифференциальные уравнения высших порядков, общие понятия. ЛЕКЦИЯ N Дифференциальные уравнения высших порядков, методы решения Задача Коши Линейные дифференциальные уравнения высших порядков Однородные линейные уравнения Дифференциальные уравнения высших порядков,

Подробнее

Первые шаги в решении уравнений и неравенств с параметром

Первые шаги в решении уравнений и неравенств с параметром КАЗАНСКИЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ ИНСТИТУТ МАТЕМАТИКИ И МЕХАНИКИ ИМ. Н.И.ЛОБАЧЕВСКОГО Кафедра теории и технологий преподавания математики и информатики Фалилеева М.В. Первые шаги в решении уравнений и

Подробнее

Одним из знаменитых двумерных отображений

Одним из знаменитых двумерных отображений Вестник КГУ им НА Некрасова 6 Скибицкий ЭГ Шкабура ОВ Стиль мышления как стратегия решения задач с использованием компьютера // Информатика и образование С 7 Яковлева НО Теоретико-методологические основы

Подробнее

(Новый полный справочник для подготовки к ОГЭ) ISBN (Новый полный справочник для подготовки к ОГЭ)

(Новый полный справочник для подготовки к ОГЭ) ISBN (Новый полный справочник для подготовки к ОГЭ) УДК 373:512 ББК 22.14я721 М52 М52 Мерзляк, А.Г. Математика : Новый полный справочник для подготовки к ОГЭ / А.Г. Мерзляк, В.Б. Полонский, М.С. Якир. Москва : АСТ, 2017. 447,[1] с.: ил. ISBN 978-5-17-096816-9

Подробнее

РАБОЧАЯ ПРОГРАММА. Предмета АЛГЕБРА. 8 класс

РАБОЧАЯ ПРОГРАММА. Предмета АЛГЕБРА. 8 класс Образовательной программе на 2016-2017 учебный год (7-11 классы), утвержденной приказом МБОУ «Средняя общеобразовательная школа 21» г. Калуги 145/01-08 от 26.08.2016 РАБОЧАЯ ПРОГРАММА Предмета АЛГЕБРА

Подробнее

Тема 14 «Алгебраические уравнения и системы нелинейных уравнений».

Тема 14 «Алгебраические уравнения и системы нелинейных уравнений». Тема 14 «Алгебраические уравнения и системы нелинейных уравнений» Многочленом степени n называется многочлен вида P n () a 0 n + a 1 n-1 + + a n-1 + a n, где a 0, a 1,, a n-1, a n заданные числа, a 0,

Подробнее

( ) n ( ) ( ) ( ) ( x) ( ) ( ) ( ) Лекция 2. ИНТЕГРИРОВАНИЕ РАЦИОНАЛЬНЫХ ДРОБЕЙ

( ) n ( ) ( ) ( ) ( x) ( ) ( ) ( ) Лекция 2. ИНТЕГРИРОВАНИЕ РАЦИОНАЛЬНЫХ ДРОБЕЙ Лекция ИНТЕГРИРОВАНИЕ РАЦИОНАЛЬНЫХ ДРОБЕЙ Рациональные дроби Интегрирование простейших рациональных дробей Разложение рациональной дроби на простейшие дроби Интегрирование рациональных дробей Рациональные

Подробнее

10 класс, базовый уровень Задание 1 Вариант 0 (демонстрационный, с решениями)

10 класс, базовый уровень Задание 1 Вариант 0 (демонстрационный, с решениями) 10 класс, базовый уровень Задание 1 Вариант 0 (демонстрационный, с решениями) Заочная математическая школа 009/010 учебный год 1 Представьте выражение в виде многочлена стандартного вида и найдите его

Подробнее

Тема : Общая теория систем линейных уравнений

Тема : Общая теория систем линейных уравнений Тема : Общая теория систем линейных уравнений А. Я. Овсянников Уральский федеральный университет Институт математики и компьютерных наук кафедра алгебры и дискретной математики алгебра и геометрия для

Подробнее

Рабочая программа по алгебре

Рабочая программа по алгебре Муниципальное казенное общеобразовательное учреждение средняя общеобразовательная школа 3 города Пудожа Рассмотрено на заседании МО математики и информатики Протокол 1 от 29.08.2016 Руководитель МО Купцова

Подробнее

Рассмотрим интегрирование простейшей рациональной дроби четвертого типа. M x p + + = + N. dt =

Рассмотрим интегрирование простейшей рациональной дроби четвертого типа. M x p + + = + N. dt = 57 Рассмотрим интегрирование простейшей рациональной дроби четвертого типа ( M N ) d ( ) p q p Сделаем замену переменной, положив d. где a p q. Тогда Интеграл M N d p p p q q a, M p N Mp q d M ( p q) p

Подробнее

Тема 1-8: Комплексные числа

Тема 1-8: Комплексные числа Тема 1-8: Комплексные числа А. Я. Овсянников Уральский федеральный университет Институт математики и компьютерных наук кафедра алгебры и дискретной математики алгебра и геометрия для механиков (1 семестр)

Подробнее

Так как y, то уравнение примет вид x и найдем его решение. x 2 Отсюда. x dy C1 2 и получим общее решение уравнения 2

Так как y, то уравнение примет вид x и найдем его решение. x 2 Отсюда. x dy C1 2 и получим общее решение уравнения 2 Лекции -6 Глава Обыкновенные дифференциальные уравнения Основные понятия Различные задачи техники естествознания экономики приводят к решению уравнений в которых неизвестной является функция одной или

Подробнее

Занятие 3.1 Степень с произвольным действительным показателем, её свойства. Степенная функция, её свойства, графики.

Занятие 3.1 Степень с произвольным действительным показателем, её свойства. Степенная функция, её свойства, графики. Занятие. Степень с произвольным действительным показателем, её свойства. Степенная функция, её свойства, графики.. Вспомнить свойства степени с рациональным показателем. a a a a a для натурального раз

Подробнее

Рабочая программа учебного предмета «Алгебра» 8 класс, базовый уровень

Рабочая программа учебного предмета «Алгебра» 8 класс, базовый уровень Муниципальное бюджетное общеобразовательное учреждение средняя общеобразовательная школа 4 г. Балтийска Рабочая программа учебного предмета «Алгебра» 8 класс, базовый уровень Балтийск 2017 год 1 1. Пояснительная

Подробнее

ЭЛЕМЕНТЫ ОПЕРАЦИОННОГО ИСЧИСЛЕНИЯ ИЗДАТЕЛЬСТВО ТГТУ

ЭЛЕМЕНТЫ ОПЕРАЦИОННОГО ИСЧИСЛЕНИЯ ИЗДАТЕЛЬСТВО ТГТУ ЭЛЕМЕНТЫ ОПЕРАЦИОННОГО ИСЧИСЛЕНИЯ ИЗДАТЕЛЬСТВО ТГТУ МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ГОУ ВПО «Тамбовский государственный технический университет» ЭЛЕМЕНТЫ ОПЕРАЦИОННОГО ИСЧИСЛЕНИЯ

Подробнее

Рассмотрим первый способ решения СЛУ по правилу Крамера для системы трех уравнений с тремя неизвестными: Ответ рассчитывается по формулам Крамера:

Рассмотрим первый способ решения СЛУ по правилу Крамера для системы трех уравнений с тремя неизвестными: Ответ рассчитывается по формулам Крамера: Рассмотрим первый способ решения СЛУ по правилу Крамера для системы трех уравнений с тремя неизвестными: Ответ рассчитывается по формулам Крамера: D, D1, D2, D3 это определители Определителем третьего

Подробнее

Алгебраические многочлены.

Алгебраические многочлены. Алгебраические многочлены. 1 Алгебраические многочлены степени n над полем K Определение 1.1 Многочленом степени n, n N {0}, от переменной z над числовым полем K называется выражение вида: fz = a n z n

Подробнее

2 модуль Тема 13 Функциональные последовательности и ряды. Свойства равномерной сходимости последовательностей и рядов. Степенные ряды Лекция 11

2 модуль Тема 13 Функциональные последовательности и ряды. Свойства равномерной сходимости последовательностей и рядов. Степенные ряды Лекция 11 модуль Тема Функциональные последовательности и ряды Свойства равномерной сходимости последовательностей и рядов Степенные ряды Лекция Определения функциональных последовательностей и рядов Равномерно

Подробнее

ГАОУ ВПО ДАГЕСТАНСКИЙ ГОСУДАРСТВЕННЫЙ ИНСТИТУТ НАРОДНОГО ХОЗЯЙСТВА. Бабичева Т.А. Кафедра высшей математики УЧЕБНОЕ ПОСОБИЕ ПО ДИСЦИПЛИНЕ

ГАОУ ВПО ДАГЕСТАНСКИЙ ГОСУДАРСТВЕННЫЙ ИНСТИТУТ НАРОДНОГО ХОЗЯЙСТВА. Бабичева Т.А. Кафедра высшей математики УЧЕБНОЕ ПОСОБИЕ ПО ДИСЦИПЛИНЕ ГАОУ ВПО ДАГЕСТАНСКИЙ ГОСУДАРСТВЕННЫЙ ИНСТИТУТ НАРОДНОГО ХОЗЯЙСТВА Бабичева ТА Кафедра высшей математики УЧЕБНОЕ ПОСОБИЕ ПО ДИСЦИПЛИНЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ Махачкала УДК 5(75) ББК я 7 Учебное пособие

Подробнее

Теоремы «пифагоровых троек»

Теоремы «пифагоровых троек» Теоремы «пифагоровых троек» Мурсеев Михаил Петрович Существует различные методы определения вариантов «пифагоровых треугольников» Иногда их называют «пифагоровы тройки» или «египетские треугольники» К

Подробнее

1. Требования к уровню подготовки учащихся.

1. Требования к уровню подготовки учащихся. 1. Требования к уровню подготовки учащихся. Учащийся, заканчивающий 9 класс, должен уметь: выполнять арифметические действия, сочетая устные и письменные приёмы; находить значения корня натуральной степени,

Подробнее

Приходовский М.А. ЛИНЕЙНЫЕ ОПЕРАТОРЫ И КВАДРАТИЧНЫЕ ФОРМЫ. Практическое пособие и комплект задач

Приходовский М.А. ЛИНЕЙНЫЕ ОПЕРАТОРЫ И КВАДРАТИЧНЫЕ ФОРМЫ. Практическое пособие и комплект задач Федеральное агентство по образованию Томский государственный университет систем управления и радиоэлектроники Кафедра высшей математики (ВМ) Приходовский М.А. ЛИНЕЙНЫЕ ОПЕРАТОРЫ И КВАДРАТИЧНЫЕ ФОРМЫ Практическое

Подробнее

I. Целевой раздел. 1. Пояснительная записка. 1.1 Общая характеристика учебного курса

I. Целевой раздел. 1. Пояснительная записка. 1.1 Общая характеристика учебного курса I. Целевой раздел 1. Пояснительная записка 1.1 Общая характеристика учебного курса Настоящая рабочая программа по «Алгебра плюс»:, как элементарная алгебра с точки зрения высшей математики (10-11 класс)

Подробнее

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ НОВОСИБИРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ СПЕЦИАЛИЗИРОВАННЫЙ УЧЕБНО-НАУЧНЫЙ ЦЕНТР

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ НОВОСИБИРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ СПЕЦИАЛИЗИРОВАННЫЙ УЧЕБНО-НАУЧНЫЙ ЦЕНТР МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ НОВОСИБИРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ СПЕЦИАЛИЗИРОВАННЫЙ УЧЕБНО-НАУЧНЫЙ ЦЕНТР Математика 9 класс СУММИРОВАНИЕ КОНЕЧНЫХ ПОСЛЕДОВАТЕЛЬНОСТЕЙ Новосибирск

Подробнее

Теория чисел. Министерство образования и науки Российской Федерации ФГБОУ ВО «Тверской государственный университет» Цветков В.П. 2015г.

Теория чисел. Министерство образования и науки Российской Федерации ФГБОУ ВО «Тверской государственный университет» Цветков В.П. 2015г. Министерство образования и науки Российской Федерации ФГБОУ ВО «Тверской государственный университет» УТВЕРЖДАЮ Руководитель ООП Цветков ВП 2015г Рабочая программа дисциплины (с аннотацией) Теория чисел

Подробнее

1. ПРОИЗВОДНАЯ, ЕЕ ГЕОМЕТРИЧЕСКИЙ И ФИЗИЧЕСКИЙ СМЫСЛ

1. ПРОИЗВОДНАЯ, ЕЕ ГЕОМЕТРИЧЕСКИЙ И ФИЗИЧЕСКИЙ СМЫСЛ ПРОИЗВОДНАЯ, ЕЕ ГЕОМЕТРИЧЕСКИЙ И ФИЗИЧЕСКИЙ СМЫСЛ Приращением функции = f() называется разность f f, где - приращение аргумента Из рис видно, что g () Рис Производной функции = f() в точке называется конечный

Подробнее

Лектор - доцент Селезнева Светлана Николаевна

Лектор - доцент Селезнева Светлана Николаевна Лекция 2. Свойства биномиальных коэффициентов. Подсчет сумм и метод производящих функций (конечный случай). Полиномиальные коэффициенты. Оценки биномиальных и полиномиальных коэффициентов. Оценки сумм

Подробнее

1. Пояснительная записка. Рабочая программа по предмету «Алгебра» для глухих обучающихся 8, 9, 10, 11 классов, разработана на основе программы

1. Пояснительная записка. Рабочая программа по предмету «Алгебра» для глухих обучающихся 8, 9, 10, 11 классов, разработана на основе программы 1. Пояснительная записка. Рабочая программа по предмету «Алгебра» для глухих обучающихся 8, 9, 10, 11 классов, разработана на основе программы общеобразовательных учреждений «Алгебра» 7-9 классы / авторы

Подробнее

Тематическое планирование по алгебре 11а класса у.г. (Трушин Б.В.) 5 часов в неделю, всего 170 часов

Тематическое планирование по алгебре 11а класса у.г. (Трушин Б.В.) 5 часов в неделю, всего 170 часов Тематическое планирование по алгебре 11а класса 2011 2012 у.г. (Трушин Б.В.) 5 часов в неделю, всего 170 часов I полугодие [1 неделя] [1 2] Контрольная работа по курсу 10 класса [3 5] Первообразная. Неопределенный

Подробнее

ББК Б94 ISBN

ББК Б94 ISBN ББК 74.262.21 Б94 Б94 Буцко Е.В. Алгебра : 7 класс : методическое пособие / Е.В. Буцко, А.Г. Мерзляк, В.Б. Полонский и др. М. : Вентана-Граф, 2017. 104 с. : ил. ISBN 978-5-360-08673-4 Пособие содержит

Подробнее

Аннотация к рабочей программе по алгебре. Учебник по алгебре для 7 кл. Авторы: Макарычев Ю.Н., Миндюк Н. Г., Нешков К. И., Суворова С. Б.

Аннотация к рабочей программе по алгебре. Учебник по алгебре для 7 кл. Авторы: Макарычев Ю.Н., Миндюк Н. Г., Нешков К. И., Суворова С. Б. Аннотация к рабочей программе по алгебре Класс: 7 Уровень изучения учебного материала: базовый УМК, учебник Рабочая программа по алгебре для 7 класса составлена на основе программы «Алгебра» (Ю.Н. Макарычев,

Подробнее

Тест по алгебре Арифметический квадратный корень I вариант 8В класс, 24 октября 2007

Тест по алгебре Арифметический квадратный корень I вариант 8В класс, 24 октября 2007 I вариант 8В класс, 4 октября 007 1 Вставьте пропущенные слова: Определение 1 Арифметическим квадратным корнем из число, которого равен a из числа a (a 0) обозначается так: выражением Действие нахождения

Подробнее

6 Предисловие автора. М. И. Шабунин

6 Предисловие автора. М. И. Шабунин Книга предназначена для учащихся старших классов средних школ, гимназий, лицеев и особенно для тех, кто, обладая знаниями основ школьного курса математики, стремится систематизировать эти знания и успешно

Подробнее

Министерство образования и науки Российской Федерации. Федеральное агентство по образованию. Пензенский государственный университет

Министерство образования и науки Российской Федерации. Федеральное агентство по образованию. Пензенский государственный университет Министерство образования и науки Российской Федерации Федеральное агентство по образованию Пензенский государственный университет Руденко АК, Руденко МН, Семерич ЮС СБОРНИК ЗАДАЧ С РЕШЕНИЯМИ ДЛЯ ПОДГОТОВКИ

Подробнее

Учебник включён в федеральный перечень

Учебник включён в федеральный перечень ББК.4я7т+.4я7.6 М5 Учебник включён в федеральный перечень Мерзляк А.Г. М5 Алгебра : 9 класс : учебник для учащихся общеобразовательных организаций / А.Г. Мерзляк, В.М. Поляков. М. : Вентана-Граф, 07. 368

Подробнее

Тема: Линейные однородные системы ДУ с постоянными коэффициентами

Тема: Линейные однородные системы ДУ с постоянными коэффициентами Математический анализ Раздел: дифференциальные уравнения Тема: Линейные однородные системы ДУ с постоянными коэффициентами Лектор Пахомова ЕГ 0 г 4 Системы линейных однородных дифференциальных уравнений

Подробнее

ÌÀÒÅÌÀÒÈÊÀ ÇÀÄÀ È Ñ ÐÅØÅÍÈßÌÈ

ÌÀÒÅÌÀÒÈÊÀ ÇÀÄÀ È Ñ ÐÅØÅÍÈßÌÈ Í. Â. Áîãîìîëîâ ÌÀÒÅÌÀÒÈÊÀ ÇÀÄÀ È Ñ ÐÅØÅÍÈßÌÈ àñòü 1 УЧЕБНОЕ ПОСОБИЕ ДЛЯ СПО 2-е издание, исправленное и дополненное Ðåêîìåíäîâàíî Ó åáíî-ìåòîäè åñêèì îòäåëîì ñðåäíåãî ïðîôåññèîíàëüíîãî îáðàçîâàíèÿ â êà

Подробнее

ПРЕДЕЛЫ Методическое пособие для студентов вузов

ПРЕДЕЛЫ Методическое пособие для студентов вузов МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ Факультет прикладной математики и кибернетики Кафедра теории вероятностей и математической статистики ПРЕДЕЛЫ Методическое

Подробнее

y отличны от нуля, то частным последовательностей

y отличны от нуля, то частным последовательностей Раздел 2 Теория пределов Тема Числовые последовательности Определение числовой последовательности 2 Ограниченные и неограниченные последовательности 3 Монотонные последовательности 4 Бесконечно малые и

Подробнее

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование»

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ Московский государственный технический университет имени Н.Э. Баумана Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» À.Í. Êàíàòíèêîâ,

Подробнее

Иррациональные уравнения и неравенства 2

Иррациональные уравнения и неравенства 2 Иррациональные уравнения и неравенства Оглавление Иррациональные уравнения Метод возведения обеих частей уравнения в одну и ту же степень Задание Задание Задание Замена иррационального уравнения смешанной

Подробнее

Об одном обобщении чисел Стирлинга

Об одном обобщении чисел Стирлинга Об одном обобщении чисел Стирлинга Устинов А. В. Моему учителю, Н. М. Коробову, к его 85 летию В работе вводятся обобщенные числа Стирлинга. Для них доказываются свойства, аналогичные свойствам обычных

Подробнее

А. Н. РУРУКИН ПОУРОЧНЫЕ РАЗРАБОТКИ ПО АЛГЕБРЕ. к учебнику Ю.Н. Макарычева и др. (М.: Просвещение) НОВОЕ ИЗДАНИЕ. 8 класс

А. Н. РУРУКИН ПОУРОЧНЫЕ РАЗРАБОТКИ ПО АЛГЕБРЕ. к учебнику Ю.Н. Макарычева и др. (М.: Просвещение) НОВОЕ ИЗДАНИЕ. 8 класс А. Н. РУРУКИН ПОУРОЧНЫЕ РАЗРАБОТКИ ПО АЛГЕБРЕ к учебнику Ю.Н. Макарычева и др. (М.: Просвещение) НОВОЕ ИЗДАНИЕ 8 класс МОСКВА «ВАКО» 015 УДК 7:167.1:51 ББК 74.6.1 Р87 Р87 Рурукин А.Н. Поурочные разработки

Подробнее

Тема: Интегрирование рациональных дробей

Тема: Интегрирование рациональных дробей Математический анализ Раздел: Неопределенный интеграл Тема: Интегрирование рациональных дробей Лектор Пахомова Е.Г. 0 г. 5. Интегрирование рациональных дробей ОПРЕДЕЛЕНИЕ. Рациональной дробью называется

Подробнее

Пояснительная записка Планируемые результаты освоения учебного предмета

Пояснительная записка  Планируемые результаты освоения учебного предмета Пояснительная записка Рабочая программа учебного предмета «Алгебра. 8-9 класс» составлена на основе: 1. Федерального компонента государственного стандарта основного общего и среднего (полного) общего образования

Подробнее

Лекция 2. Дифференциальные уравнения 2-го порядка (ДУ-2). Общий вид дифференциального уравнения порядка n запишется:

Лекция 2. Дифференциальные уравнения 2-го порядка (ДУ-2). Общий вид дифференциального уравнения порядка n запишется: Лекция Дифференциальные уравнения -го порядка (ДУ-) Общий вид дифференциального уравнения порядка n запишется: ( n) F,,,,, = 0 ( ) Уравнение -го порядка ( n = ) примет вид F(,,, ) = 0 Подобные уравнения

Подробнее

Тема 1-7: Определители

Тема 1-7: Определители Тема 1-7: Определители А. Я. Овсянников Уральский федеральный университет Институт математики и компьютерных наук кафедра алгебры и дискретной математики алгебра и геометрия для механиков (1 семестр) Перестановки

Подробнее

МЕТОДИЧЕСКИЕ УКАЗАНИЯ К РАСЧЕТНЫМ ЗАДАНИЯМ ПО КУРСУ ВЫСШЕЙ МАТЕМАТИКИ «ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ. РЯДЫ. КРАТНЫЕ ИНТЕГРАЛЫ» ЧАСТЬ III

МЕТОДИЧЕСКИЕ УКАЗАНИЯ К РАСЧЕТНЫМ ЗАДАНИЯМ ПО КУРСУ ВЫСШЕЙ МАТЕМАТИКИ «ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ. РЯДЫ. КРАТНЫЕ ИНТЕГРАЛЫ» ЧАСТЬ III МЕТОДИЧЕСКИЕ УКАЗАНИЯ К РАСЧЕТНЫМ ЗАДАНИЯМ ПО КУРСУ ВЫСШЕЙ МАТЕМАТИКИ «ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ РЯДЫ КРАТНЫЕ ИНТЕГРАЛЫ» ЧАСТЬ III ТЕМА ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ОГЛАВЛЕНИЕ

Подробнее

Методические указания к выполнению задания для самостоятельной работы

Методические указания к выполнению задания для самостоятельной работы Федеральное агентство по образованию Архангельский государственный технический университет строительный факультет РЯДЫ Методические указания к выполнению задания для самостоятельной работы Архангельск

Подробнее

Рабочая программа по математике для 9А, 9Б, 9В классов на учебный год

Рабочая программа по математике для 9А, 9Б, 9В классов на учебный год Муниципальное бюджетное общеобразовательное учреждение «Лицей им. академика Б.Н. Петрова» города Смоленска «СОГЛАСОВАНО» Заместитель директора Казанцева Т.В. «29» «08» 206 г. «ПРИНЯТО» педагогическим советом

Подробнее

9.1, 9.3 класс Модуль 5 «Последовательности. Степени и корни» В тесте проверяются теоретическая и практическая части.

9.1, 9.3 класс Модуль 5 «Последовательности. Степени и корни» В тесте проверяются теоретическая и практическая части. 9., 9. класс Модуль 5 «Последовательности. Степени и корни» В тесте проверяются теоретическая и практическая части. Последовательности Числовые последовательности. Способы задания числовых последовательностей:

Подробнее

Глава 2 ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ

Глава 2 ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ Глава ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ Дифференциальные уравнения первого порядка Введем основные понятия теории дифференциальных уравнений первого порядка Если искомая функция зависит от одной переменной то

Подробнее

Одно замечательное тождество для sin nx

Одно замечательное тождество для sin nx Одно замечательное тождество для x Г.И. Фалин д.ф.м.н., профессор кафедра теории вероятностей механико-математический факультет МГУ им.м.в.ломоносова А.И. Фалин к.ф.м.н., доцент кафедра общей математики

Подробнее

Рабочая программа учебного предмета «Алгебра» ФК ГОС. г. Липецк учебный год

Рабочая программа учебного предмета «Алгебра» ФК ГОС. г. Липецк учебный год МБОУ СШ 2 города Липецка Классы 7-9 Рабочая программа учебного предмета «Алгебра» ФК ГОС г. Липецк 207 208 учебный год МБОУ СШ 2 города Липецка ПОЯСНИТЕЛЬНАЯ ЗАПИСКА Изучение математики на ступени основного

Подробнее

Кривые второго порядка

Кривые второго порядка Министерство образования и науки Российской Федерации Ярославский государственный университет им. П. Г. Демидова Кафедра алгебры и математической логики Кривые второго порядка Часть I Методические указания

Подробнее

РАЦИОНАЛЬНЫЕ И ИРРАЦИОНАЛЬНЫЕ УРАВНЕНИЯ И НЕРАВЕНСТВА

РАЦИОНАЛЬНЫЕ И ИРРАЦИОНАЛЬНЫЕ УРАВНЕНИЯ И НЕРАВЕНСТВА МИНИСТЕРСТВО НАУКИ И ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ РЯЗАНСКАЯ ГОСУДАРСТВЕННАЯ РАДИОТЕХНИЧЕСКАЯ АКАДЕМИЯ ГС ЛУКЬЯНОВА АИНОВИКОВ РАЦИОНАЛЬНЫЕ И ИРРАЦИОНАЛЬНЫЕ УРАВНЕНИЯ И НЕРАВЕНСТВА Рязань Министерство

Подробнее

ЛЕКЦИЯ N29. Дифференциальные уравнения. Общие понятия. Дифференциальные уравнения I-го порядка. Уравнения с разделяющимися переменными.

ЛЕКЦИЯ N29. Дифференциальные уравнения. Общие понятия. Дифференциальные уравнения I-го порядка. Уравнения с разделяющимися переменными. ЛЕКЦИЯ N9. Дифференциальные уравнения. Общие понятия. Дифференциальные уравнения I-го порядка. Уравнения с разделяющимися переменными..дифференциальные уравнения. Общие понятия.....дифференциальные уравнения

Подробнее

a 1 + a цепная дробь длины 1, a 0 + a цепная дробь длины =

a 1 + a цепная дробь длины 1, a 0 + a цепная дробь длины = Цепные дроби Конечные цепные дроби Определение Выражение вида a 0 + a + a + + a m где a 0 Z a a m N a m N/{} называется цепной дробью а m - длиной цепной дроби a 0 a a m будем называть коэффициентами цепной

Подробнее

Ф. Г. Кораблёв, В. В. Кораблёва. Дискретная математика: комбинаторика

Ф. Г. Кораблёв, В. В. Кораблёва. Дискретная математика: комбинаторика Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Челябинский государственный университет» Ф.

Подробнее

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА 1 ПОЯСНИТЕЛЬНАЯ ЗАПИСКА Рабочая программа по предмету «Алгебра» в 9 классе составлена на основе федерального компонента государственного стандарта основного общего образования. Данная рабочая программа

Подробнее

Проект на тему. Виды чисел и их история. Подготовил ученик 6 класса «В» МБОУ Лицея 12 Стриганов Сергей Учитель Удманцева Е.А.

Проект на тему. Виды чисел и их история. Подготовил ученик 6 класса «В» МБОУ Лицея 12 Стриганов Сергей Учитель Удманцева Е.А. Проект на тему Виды чисел и их история Подготовил ученик 6 класса «В» МБОУ Лицея 12 Стриганов Сергей Учитель Удманцева Е.А. План проекта 1. Введение. Число как понятие в математике 2. История возникновения

Подробнее

СПРАВОЧНИК ПО МАТЕМАТИКЕ. 5 9 классы

СПРАВОЧНИК ПО МАТЕМАТИКЕ. 5 9 классы СПРАВОЧНИК ПО МАТЕМАТИКЕ 5 9 классы МОСКВА «ВАКО» 201 УДК 32.851 ББК 4.262.22 С4 6+ Издание допущено к использованию в образовательном процессе на основании приказа Министерства образования и науки РФ

Подробнее

Рабочая программа по предмету «Алгебра» 9 класс среднее общее образование (ФКГОС ООО)

Рабочая программа по предмету «Алгебра» 9 класс среднее общее образование (ФКГОС ООО) АВТОНОМНАЯ НЕКОММЕРЧЕСКАЯ ОБЩЕОБРАЗОВАТЕЛЬНАЯ ОРГАНИЗАЦИЯ «ШКОЛА СОСНЫ» УТВЕРЖДАЮ Директор И.П. Гурьянкина Приказ 8 от «29» августа 2017 г. Рабочая программа по предмету «Алгебра» 9 класс среднее общее

Подробнее

Тема 1. Действительные числа и действия над ними

Тема 1. Действительные числа и действия над ними Тема 1 Действительные числа и действия над ними 4 часа 11 Развитие понятия о числе 1 Первоначально под числами понимали лишь натуральные числа, которых достаточно для счета отдельных предметов Множество

Подробнее

ЛЕКЦИЯ N11. Методы интегрирования.

ЛЕКЦИЯ N11. Методы интегрирования. ЛЕКЦИЯ. Методы интегрирования..интегрирование по частям..рациональные дроби. Разложение правильной дроби на простейшие...интегрирование рациональных дробей..интегрирование по частям. Пусть u и v две непрерывные

Подробнее

РАБОЧАЯ ПРОГРАММА УЧЕБНОГО ПРЕДМЕТА «АЛГЕБРА», 9 КЛАСС 1. ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОСВОЕНИЯ УЧЕБНОГО ПРЕДМЕТА «АГЕБРА», 9 КЛАСС

РАБОЧАЯ ПРОГРАММА УЧЕБНОГО ПРЕДМЕТА «АЛГЕБРА», 9 КЛАСС 1. ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОСВОЕНИЯ УЧЕБНОГО ПРЕДМЕТА «АГЕБРА», 9 КЛАСС РАБОЧАЯ ПРОГРАММА УЧЕБНОГО ПРЕДМЕТА «АЛГЕБРА», 9 КЛАСС Рабочая программа учебного предмета «Алгебра», 9 класс составлена в соответствии с федеральным компонентом государственного стандарта общего образования

Подробнее

ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ

ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ Министерство образования и науки Российской Федерации Санкт-Петербургский государственный архитектурно-строительный университет В Б СМИРНОВА, Л Е МОРОЗОВА ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ Учебное

Подробнее

Количество часов в каждом классе: в неделю: 6 час., всего 204 часа.

Количество часов в каждом классе: в неделю: 6 час., всего 204 часа. Аннотация к программе по математике 5-9 класс. Рабочая программа составлена на основе Федерального государственного образовательного стандарта основного общего образования, примерной программы основного

Подробнее

Министерство общего и профессионального образования РФ Восточно-Сибирский государственный технологический университет ЛИНЕЙНАЯ АЛГЕБРА

Министерство общего и профессионального образования РФ Восточно-Сибирский государственный технологический университет ЛИНЕЙНАЯ АЛГЕБРА Министерство общего и профессионального образования РФ Восточно-Сибирский государственный технологический университет ЛИНЕЙНАЯ АЛГЕБРА Методические указания и контрольные задания по высшей математике для

Подробнее

Календарно-тематический план по алгебре (7 класс)

Календарно-тематический план по алгебре (7 класс) п/п Тема урока (кол-во часов) Код элемента содержания (КЭС) Календарно-тематический план по алгебре (7 класс) Элемент содержания Раздел 1: Математический язык. Математическая модель (14 ч) 1 Числовые выражения

Подробнее

10 класс ПОУРОЧНЫЕ РАЗРАБОТКИ ПО АЛГЕБРЕ И НАЧАЛАМ АНАЛИЗА А. Н. РУРУКИН Л. Ю. ХОМУТОВА О. Ю. ЧЕКАНОВА НОВОЕ ИЗДАНИЕ

10 класс ПОУРОЧНЫЕ РАЗРАБОТКИ ПО АЛГЕБРЕ И НАЧАЛАМ АНАЛИЗА А. Н. РУРУКИН Л. Ю. ХОМУТОВА О. Ю. ЧЕКАНОВА НОВОЕ ИЗДАНИЕ А. Н. РУРУКИН Л. Ю. ХОМУТОВА О. Ю. ЧЕКАНОВА ПОУРОЧНЫЕ РАЗРАБОТКИ ПО АЛГЕБРЕ И НАЧАЛАМ АНАЛИЗА к УМК А.Г. Мордковича и др. (М.: Мнемозина) НОВОЕ ИЗДАНИЕ 10 класс МОСКВА «ВАКО» 01 УДК 37:851 ББК 74.6.1 Р87

Подробнее

ОСНОВЫ МАТЕМАТИЧЕСКОГО АНАЛИЗА ТЕОРИЯ ПРЕДЕЛОВ

ОСНОВЫ МАТЕМАТИЧЕСКОГО АНАЛИЗА ТЕОРИЯ ПРЕДЕЛОВ Министерство образования и науки Российской Федерации «ТАМБОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ» ФГБОУ ВПО «ТГТУ» ВАСИЛЬЕВ ВВ, ЛАНОВАЯ АВ, ЩЕРБАКОВА АВ ОСНОВЫ МАТЕМАТИЧЕСКОГО АНАЛИЗА ТЕОРИЯ ПРЕДЕЛОВ

Подробнее

Рабочая программа по математике (алгебра) для 8а,б класса (базовый уровень)

Рабочая программа по математике (алгебра) для 8а,б класса (базовый уровень) Муниципальное автономное общеобразовательное учреждение Домодедовская средняя общеобразовательная школа 8 УТВЕРЖДАЮ Директор МАОУ Домодедовской СОШ 8 О.М.Комарницкая Приказ 13 от «30» декабря 2016 г. Рабочая

Подробнее

Системы уравнений как текстовые задачи алгебраическим

Системы уравнений как текстовые задачи алгебраическим 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 Тематическое планирование «Алгебра 9» по учебнику А.Г. Мордкович Содержание материала 1. и их системы (18 часов) Системы

Подробнее

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ Министерство образования и науки Российской Федерации Государственное образовательное учреждение высшего профессионального образования «МАТИ» - Российский государственный технологический университет им.

Подробнее

Рабочая программа учебного предмета

Рабочая программа учебного предмета Приложение 4 к основной образовательной программе МБОУ СШ 2, утвержденной приказом директора от 27.06.2013 275П (в редакции приказа от 04.03.2016 69П) Рабочая программа учебного предмета «АЛГЕБРА» ФКГОС:

Подробнее

Алгебра. Программа. 9 класс

Алгебра. Программа. 9 класс Алгебра. Программа. 9 класс Пояснительная записка. Изучение математики на ступени основного общего образования направлено на достижение следующих целей: овладение системой математических знаний и умений,

Подробнее

Государственное бюджетное образовательное учреждение среднего профессионального образования

Государственное бюджетное образовательное учреждение среднего профессионального образования Государственное бюджетное образовательное учреждение среднего профессионального образования «Владимирский авиамеханический колледж» МЕТОДИЧЕСКИЕ УКАЗАНИЯ к выполнению лабораторных работ по дисциплине ЧИСЛЕННЫЕ

Подробнее

5. Методические указания по подготовке к практическим занятиям при изучении дисциплины «Математический анализ» для профиля

5. Методические указания по подготовке к практическим занятиям при изучении дисциплины «Математический анализ» для профиля 5. Методические указания по подготовке к практическим занятиям при изучении дисциплины «Математический анализ» для профиля 080100.62 - «Статистика» Основная цель практических занятий способствовать усвоению

Подробнее

Пояснительная записка

Пояснительная записка Пояснительная записка Рабочая программа составлена на основе: - Федерального компонента государственного образовательного стандарта основного общего образования по математике - Примерные программы по математике.

Подробнее

ПРОГРАММА ГОСУДАРСТВЕННОЙ ИТОГОВОЙ АТТЕСТАЦИИ ПО МАТЕМАТИКЕ ПО ПРОГРАММАМ ОСНОВНОГО ОБЩЕГО ОБРАЗОВАНИЯ в 2018 году

ПРОГРАММА ГОСУДАРСТВЕННОЙ ИТОГОВОЙ АТТЕСТАЦИИ ПО МАТЕМАТИКЕ ПО ПРОГРАММАМ ОСНОВНОГО ОБЩЕГО ОБРАЗОВАНИЯ в 2018 году ПРОГРАММА ГОСУДАРСТВЕННОЙ ИТОГОВОЙ АТТЕСТАЦИИ ПО МАТЕМАТИКЕ ПО ПРОГРАММАМ ОСНОВНОГО ОБЩЕГО ОБРАЗОВАНИЯ в 2018 году В экзаменационной работе проверяется следующий учебный материал: 1. Математика, 5 6 классы;

Подробнее

Знать правила сложения, вычитания дробей с одинаковыми и с разными знаменателями; умножение и деление. дробей. Уметь выполнять вычисления

Знать правила сложения, вычитания дробей с одинаковыми и с разными знаменателями; умножение и деление. дробей. Уметь выполнять вычисления урока Тема Требования к уровню подготовки Дополнительные знания, Формы контроля обучающихся умения(требования повышенного уровня) 1 четверть(9 недель по 5ч) 45ч Повторение курса алгебры 8 класса (8ч) Цели:

Подробнее

Алгебра: 7 класс. Урок 2. Числовые выражения. Выражения с переменными. Добрый день, ребята!

Алгебра: 7 класс. Урок 2. Числовые выражения. Выражения с переменными. Добрый день, ребята! Алгебра: 7 класс. Урок 2. Числовые выражения. Выражения с переменными Добрый день, ребята! На прошлом уроке мы повторили темы, изученные в 6 классе. Вспомнили, как выполнять действия с обыкновенными и

Подробнее

РАЦИОНАЛЬНЫЕ УРАВНЕНИЯ И НЕРАВЕНСТВА 9 Б класс. ПОЯСНИТЕЛЬНАЯ ЗАПИСКА. Общая характеристика учебного курса.

РАЦИОНАЛЬНЫЕ УРАВНЕНИЯ И НЕРАВЕНСТВА 9 Б класс. ПОЯСНИТЕЛЬНАЯ ЗАПИСКА. Общая характеристика учебного курса. РАЦИОНАЛЬНЫЕ УРАВНЕНИЯ И НЕРАВЕНСТВА 9 Б класс. ПОЯСНИТЕЛЬНАЯ ЗАПИСКА. Общая характеристика учебного курса. Рабочая программа для 9 класса составлена на основе программ по математике для учащихся 5-11

Подробнее

Контрольная работа 8 по математике (Операционное исчисление)

Контрольная работа 8 по математике (Операционное исчисление) Министерство образования и науки Российской Федерации ФГБОУ ВПО «Российский химико-технологический университет им ДИ Менделеева» Новомосковский институт (филиал) Контрольная работа 8 по математике (Операционное

Подробнее

Аннотация к рабочей программе по математике 5 класс.

Аннотация к рабочей программе по математике 5 класс. Аннотация к рабочей программе по математике 5 класс. Количество часов: Всего 170 час; в неделю 5 час. Плановых контрольных уроков 14 ч. Учебник Виленкин Н.Я. Математика. 5 класс: учебник для общеобразовательных

Подробнее