Необходимое и достаточное условие экстремума функции многих переменных

Save this PDF as:
 WORD  PNG  TXT  JPG

Размер: px
Начинать показ со страницы:

Download "Необходимое и достаточное условие экстремума функции многих переменных"

Транскрипт

1 Необходимое и достаточное условие экстремума функции многих переменных Рассмотрим задачу на нахождение условного экстремума для случае функции двух переменных. Необходимое условие экстремума. Пусть имеется дважды дифференцируемая функция f = f(x, y) (1) переменные которой не произвольны между ними имеется связь Например, ϕ(x, y) () { f = xy y y x Метод подстановки. Будем решать задачу методом подстановки. Используя уравнение связи, выразим y черех x в виде y = x. Тогда приходим к функции одной переменной (3) f = f(x) = x(x ) x = x x (4) Стационарные точки находим с помощью дифференцирования. f = x 4 x = x(x 3 ) () Так как в стационарных точках производная равна нулю, то f x(x 3 ) (6) Откуда получим две точки, подозрительные на экстремум. x, x = 3 (7) Исследуем изменение знака производной вблизи стационарных точек методом интервалов. x x < 0 x 0 < x < 3 x = 3 x > 3 y (8) y 0 0 точка мини- Вывод: точка x точка максимума, а точка x = 3 мума. 1

2 Метод метод множителей Лагранжа. Разложим исследуемумую функцию f(x, y) в ряд Телора в форме Пеано: f = f(x + x, y + y) f(x, y) = = f x x + f y y + 1 f xx x + f xy y x + f yy y + α 1 ( ρ) ρ (9) где ρ = x + y. Все бесконечно малые здесь и далее будут обозначаться как α k ( ρ), k = 1,,.... Так как имеется связь ϕ(x, y), то x и y не любые: в общем случае при изменении одной переменной меняется и другая переменная, но всегда ϕ(x + x, y + y) = ϕ(x, y) (10) поэтому, разлагая и связь ϕ(x, y) в ряд Тейлора в форме Пеано, получим: 0 = ϕ = ϕ(x + x, y + y) ϕ(x, y) = = ϕ x x + ϕ y y + 1 ϕ xx x + ϕ xy y x + ϕ yy y + α ( ρ) ρ (11) Заметим, что в точке условного экстремума первый дифференциал функции f(x, y) должен равняться нулю. Действительно, допустим связь () разрешима, и мы получили: y = y(x) Тогда Откуда y = y x + α 3 ( x) x (1) df = f x x + f y y = f x x + f yy x = (f x + f yy )dx (13) или, рассматривая функцию f как функцию одной переменной, мы должны сделать вывод, что в точке экстремума по теореме Коши дифференциал этой функции равен нулю, то есть: f x + f yy (14) (дифференциалом же является главная линейная часть приращения функции. Для функции, имеющей конечную производную, производная равна коэффициенту при dx в дифференциале.) Таким образом первый дифференциал функции двух переменных (1) в точке экстремума и при наличии связей также равен нулю. Как найти эту точку, если не так-то просто разрешить связь как функцию y = y(x)? (Очевидно предыдущие рассуждения справедливы и в случае, когда связь разрешается как x = x(y).) Можно воспользоваться методом неопределённых множителей Лагранжа. Суть его в следующем: так как

3 в случае поиска экстремума достаточно исследовать только первые дифференциалы, то рассмотрим систему из уравнений (), (9), (11) в точке экстремума (ограничиваясь первыми дифференциалами): df = f x x + f y y dϕ = ϕ x x + ϕ y y (1) ϕ(x, y) Умножим вторую строку на некоторое число λ и прибавим к первой. Откуда в точке экстремума df = (f x + λϕ x) x + (f y + λϕ y) y (16) Подбираем число λ таким, чтобы вторая скобка равнялась нулю. Но при таком λ и первая скобка тоже должна быть равна нулю иначе первый дифференциал f не будет равен нулю. Следовательно в точке экстремума будут выполняться условия: f x + λϕ x f y + λϕ y (17) ϕ(x, y) Формально эта система как система, состоящая из трёх уравнений с тремя неизвестными имеет решение. Достаточное условие экстремума. Пусть найдены все точки, подозрительные на экстремум. Рассмотрим изменения функции и связей вблизи точки экстремума { f = f x x + f y y + 1 f xx x + f xy y x + 1 f yy y + α 1 ( ρ) ρ 0 = ϕ x x + ϕ y y + 1 ϕ xx x + ϕ xy y x + 1 ϕ yy y + α ( ρ) ρ (18) Умножим вторую строку на найденное ранее λ и прибавим к первой строке. f = (f x + λϕ x) x + (f y + λϕ y) y+ (19) + 1 (f xx + λϕ xx) x + (f xy + λϕ xy) x y + 1 (f yy + λϕ yy) y + α 3 ( ρ) ρ (Заметим, что в приращении (9) функции f со связью 10, приравняв нулю первый дифференциал в точке экстремума, второй дифференциал не будет равен оставшемуся выражению, так как это равенство нулю верно только с точностью до бесконечно малых более высокого порядка и приращение y(x) (y = y(x) связь, разрешённая относительно y) также даёт свой вклад во второй дифференциал: y = y x + 1 y x + α 4 x ) 3

4 Вблизи точек экстремума первый дифференциал (19) равен нулю (именно так выбирается число λ. По этой причине можно не исследовать квадратичный по x вклад в y), поэтому для функции F = f + λϕ будет F = f = 1 (f xx + λϕ xx) x + (f xy + λϕ xy) x y+ + 1 (f yy + λϕ yy) y + α 3 ( ρ) ρ (0) Здесь второй дифференциал равен оставшемуся выражению, так как выбирается число λ такое, что обе скобки (18) первого дифференциала равны нулю. Так как выражение (18) однородно и квадратично по приращениям x и y, то, исследуя связь x и y, можно ограничиться линейными членами. Таким образом ϕ x x + ϕ y y (1) Откуда y = ϕ x ϕ x () y Подставляее () в (0) и пренебрегая бесконечно малыми более высокого чем второй порядок, получим f = x ϕ (F xxϕ y F xyϕ xϕ y + F yyϕ x ) (3) y Таким обазом, если в точке, подозрительной на экстремум xxϕ y xyϕ xϕ y + yyϕ x > 0 (4) то это точка минимума; если в точке, подозрительной на экстремум xxϕ y xyϕ xϕ y + yyϕ x < 0 () то это точка максимума; если в точке, подозрительной на экстремум xxϕ y xyϕ xϕ y + yyϕ x (6) то задача требует дополнительного исследования. Отметим также, что, если в исследуемой точке ϕ y, но ϕ x 0, то все рассуждения оказываются верными, если связь разрешать относительно x = x(y), но тогда f = y ϕ (F xxϕ y F xyϕ xϕ y + F yyϕ x ) (7) x И только при ϕ y, ϕ x требуется дополнительный анализ. 4

5 Наконец, если связь разрешается относительно y как y y(x), то f = x (f xx + f xyy + f yyy + f yy ) (8) Таким образом, для того, чтобы найти экстремум функции двух переменных необходимо составить функцию Лагранжа F (x, y) = f(x, y) + λϕ(x, y) (9) и для неё решить систему f x + λϕ x f y + λϕ y ϕ(x, y) (30) (Необходимое условие экстремума.) Решив систему и найдя точки, подозрительные на экстремум, вычислить выражение F xxϕ y F xyϕ xϕ y + F yyϕ x (31) После чего сделать вывод о типе стационарной точки. Пример. Решим предложенную ранее задачу методом неопределённых множителей Лагранжа. Составим функцию Лагранжа. F = xy y + λ(y x ) (3) Находим первые частные производные F x = y λx F y = xy 1 + λ y x Составим необходимое условие: y λx xy 1 + λ y x Решим его Откуда Первое решение даёт y = x x 4 λx x 3 = 1 λ x(x 3 λ), x 1, λ = x 3 / (33) (34) (3) x 1, y 1, λ 1 = 1

6 Второе решение даёт x = 3, y = 3 4, λ = 1 Выясняем, есть ли экстремум в найденных точках. Находим вторые частные производные функции Лагранжа и первые частные производные связей F xx = λ { ϕ F xy = y x = x F yy ϕ = x (36) y = 1 Находим вторые частные производные функции Лагранжа и первые частные производные в первой точке F xx = { ϕ F xy x F yy ϕ (37) y = 1 Тогда в первой точке xxϕ y xyϕ xϕ y + yyϕ x = Таким образом первая точка, имеющая координаты (0, 0), соответствуе максимуму функции. Находим вторые частные производные функции Лагранжа и первые частные производные во второй точке F xx = / { F xy = 3 4 ϕ x = 3 (38) F yy = 3 ϕ y = 1 Тогда во второй точке xxϕ y xyϕ xϕ y + yyϕ x = 3/ > 0 Таким образом вторая точка, имеющая координаты ( 3, 3 4 ), соответствуе минимуму функции. Задача решена двумя способами. Решения обоих способов совпали. Необходимое и достаточное условие экстремума функции многих переменных В том случае, если число переменных больше двух, например: f = f(x 1, x,..., x n ) (39) 6

7 и имеется r связей вида ϕ 1 (x 1, x,..., x n ) ϕ (x 1, x,..., x n )... ϕ r (x 1, x,..., x n ) (40) Вводится функция Лагранжа F (x 1, x,..., x n ) = f(x 1, x,..., x n ) + r λ i ϕ i (x 1, x,..., x n ) (41) составляется необходимое условие экстремума функции многих переменных F x 1 F x... F x n i=1 (4) Решениями системы (4) будут стационарные точки. Исследуется достаточное условие. Для этого выписываются первые дифференциалы ϕ 1 x 1 x ϕ 1 x n x n ϕ x 1 x ϕ x n x n (43)... ϕ r x 1 x ϕ r x n x n Система линейных уравнений разрешается относительно x i. Решения (43) подставляются в квадратичная форму функции Лагранжа n i,j=1 x i,x j x i x j (44) которая исследуется на положительную или отрицательную определённость в стационарных точках. 7


и имеет минимум, если. Максимум и минимум называют экстремумами функции. Из данного определения следует, что в окрестности точки максимума приращение

и имеет минимум, если. Максимум и минимум называют экстремумами функции. Из данного определения следует, что в окрестности точки максимума приращение Лекция 3 Экстремум функции нескольких переменных Пусть функция нескольких переменных u = f ( x,, x ) определена в области D, и точка x ( x,, x ) = принадлежит данной области Функция u = f ( x,, x ) имеет

Подробнее

7. Экстремумы функций нескольких переменных

7. Экстремумы функций нескольких переменных 7. Экстремумы функций нескольких переменных 7.. Локальные экстремумы Пусть функция f(x,..., x n ) определена на некотором открытом множестве D R n. Точка M D называется точкой локального максимума (локального

Подробнее

А.В. Абанин, Д.А. Полякова ЛОКАЛЬНЫЙ ЭКСТРЕМУМ ФУНКЦИЙ МНОГИХ ПЕРЕМЕННЫХ

А.В. Абанин, Д.А. Полякова ЛОКАЛЬНЫЙ ЭКСТРЕМУМ ФУНКЦИЙ МНОГИХ ПЕРЕМЕННЫХ МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное автономное образовательное учреждение высшего образования «ЮЖНЫЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ» АВ Абанин, ДА Полякова ЛОКАЛЬНЫЙ

Подробнее

ЛЕКЦИЯ 23. Экстремум функции нескольких переменных.

ЛЕКЦИЯ 23. Экстремум функции нескольких переменных. ЛЕКЦИЯ Экстремум функции нескольких переменных Экстремум функции нескольких переменных Необходимые и достаточные условия существования экстремума Точка M, 0) называется точкой минимума максимума) функции

Подробнее

бесконечно малой величиной более высокого порядка малости по сравнению с ρ n ), т.е. можно представить его в форме Пеано ( ) ( )

бесконечно малой величиной более высокого порядка малости по сравнению с ρ n ), т.е. можно представить его в форме Пеано ( ) ( ) 55 является при бесконечно малой величиной более высокого порядка малости по сравнению с ρ n (, ), где ρ ( ) + ( ), те можно представить его в форме Пеано n R, ρ Пример Записать формулу Тейлора при n с

Подробнее

Математический анализ 2.5

Математический анализ 2.5 Математический анализ 2.5 Лекция: Экстремумы функции нескольких переменных Доцент кафедры ВММФ Зальмеж Владимир Феликсович Рассмотрим функцию w = f ( x), определённую в области D R n. Точка x 0 D называется

Подробнее

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование»

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ Московский государственный технический университет имени Н.Э. Баумана Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» À.Í. Êàíàòíèêîâ,

Подробнее

равен k во всех точках множества Q.

равен k во всех точках множества Q. 17. Условный экстремум 17.1. Обратимся к рассмотрению нахождения условного (говорят также относительного) экстремума. Задача нахождения условного экстремума состоит в поиске локальных максимумов и минимумов

Подробнее

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование»

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ Московский государственный технический университет имени Н.Э. Баумана Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» À.Í. Êàíàòíèêîâ,

Подробнее

Экстремум функции двух переменных

Экстремум функции двух переменных ПРАКТИЧЕСКОЕ ЗАНЯТИЕ 11 Экстремум функции двух переменных Максимум или минимум функции называется её экстремумом Точка M 0, в которой функция имеет экстремум, называется точкой экстремума Если дифференцируемая

Подробнее

Лекции 19, Локальные экстремумы функции многих переменных

Лекции 19, Локальные экстремумы функции многих переменных Лекции 9 Локальные экстремумы функции многих переменных Определение Пусть функция многих переменных f f ( задана на ( некотором множестве D и ( некоторая точка этого множества Точка называется точкой локального

Подробнее

Формула Тейлора для ФНП. Экстремумы ФНП

Формула Тейлора для ФНП. Экстремумы ФНП Математический анализ Раздел: Функция нескольких переменных Тема: Формула Тейлора для ФНП. Экстремумы ФНП Лектор Рожкова С.В. 1 г. 18. Формула Тейлора для ФНП Если y = раз дифференцируема в окрестности

Подробнее

ТЕМА 2. ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИЙ ДВУХ И ТРЕХ ПЕРЕМЕННЫХ

ТЕМА 2. ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИЙ ДВУХ И ТРЕХ ПЕРЕМЕННЫХ МЕТОДИЧЕСКИЕ УКАЗАНИЯ К РАСЧЕТНЫМ ЗАДАНИЯМ ПОКУРСУ ВЫСШЕЙ МАТЕМАТИКИ «ИНТЕГРАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИИ ОДНОГО ПЕРЕМЕННОГО ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИЙ ДВУХ И ТРЕХ ПЕРЕМЕННЫХ» ЧАСТЬ II ТЕМА ДИФФЕРЕНЦИАЛЬНОЕ

Подробнее

Лекция 11. УСЛОВНЫЙ ЭКСТРЕМУМ. = 0, 5. Следовательно,

Лекция 11. УСЛОВНЫЙ ЭКСТРЕМУМ. = 0, 5. Следовательно, Лекция 11. УСЛОВНЫЙ ЭКСТРЕМУМ 1. Понятие условного экстремума.. Методы отыскания условного экстремума.. Наибольшее и наименьшее значения функции двух переменных в замкнутой области. 1. Понятие условного

Подробнее

Тема: Условные экстремумы ФНП

Тема: Условные экстремумы ФНП Математический анализ Раздел: Функция нескольких переменных Тема: Условные экстремумы ФНП Лектор Рожкова СВ 212 г 21 Условные экстремумы ФНП ОПРЕДЕЛЕНИЕ Условным экстремумом функции n переменных u = 1

Подробнее

Лекция 9. ЭКСРЕМУМ ФУНКЦИИ МНОГИХ ПЕРЕМЕННЫХ

Лекция 9. ЭКСРЕМУМ ФУНКЦИИ МНОГИХ ПЕРЕМЕННЫХ Лекция 9 ЭКСРЕМУМ ФУНКЦИИ МНОГИХ ПЕРЕМЕННЫХ Понятие экстремума функции многих переменных Некоторые сведения о квадратичных формах 3 Достаточные условия экстремума Понятие экстремума функции многих переменных

Подробнее

19. Скалярное поле. Поведение скалярного поля характеризуют 1) производная по направлению; 2) градиент.

19. Скалярное поле. Поведение скалярного поля характеризуют 1) производная по направлению; 2) градиент. 19. Скалярное поле ОПРЕДЕЛЕНИЕ. Пусть G некоторая область в пространстве Oz [на плоскости O]. Говорят что на G задано скалярное поле если в каждой точке G определена функция 3-х переменных u = [функция

Подробнее

2. Дифференциальные уравнения первого порядка, разрешенные относительно производной Теорема существования и единственности решения.

2. Дифференциальные уравнения первого порядка, разрешенные относительно производной Теорема существования и единственности решения. Дифференциальные уравнения первого порядка разрешенные относительно производной Теорема существования и единственности решения В общем случае дифференциальное уравнение первого порядка имеет вид F ( )

Подробнее

Лекция 19. Производные и дифференциалы высших порядков, их свойства. Точки экстремума функции. Теоремы Ферма и Ролля.

Лекция 19. Производные и дифференциалы высших порядков, их свойства. Точки экстремума функции. Теоремы Ферма и Ролля. Лекция 9. Производные и дифференциалы высших порядков, их свойства. Точки экстремума функции. Теоремы Ферма и Ролля. Пусть функция y дифференцируема на некотором отрезке [b]. В таком случае ее производная

Подробнее

Уравнения первого порядка, не разрешенные относительно производной

Уравнения первого порядка, не разрешенные относительно производной Уравнения первого порядка, не разрешенные относительно производной Будем рассматривать уравнения первого порядка, не разрешенные относительно производной: F (x, y, y ) = 0, (1) где F заданная функция своих

Подробнее

Математический анализ. Лекция 4.3

Математический анализ. Лекция 4.3 Московский Государственный Технический Университет им. Н.Э. Баумана Факультет Фундаментальные науки Кафедра Высшая математика Математический анализ Модуль 4. Функции нескольких переменных Лекция 4.3 к.ф.-м.н.

Подробнее

Лекция Формула Тейлора

Лекция Формула Тейлора Лекция 4.5 1 Формула Тейлора Теорема (формула Тейлора) Пусть функция y = f(x), x = (x 1, x 2,..., x n ) определена и непрерывна вместе со всеми своими частными производными до порядка m включительно в

Подробнее

ЛЕКЦИЯ N Скалярное поле. Производная по направлению. Градиент. 1.Производная по направлению.

ЛЕКЦИЯ N Скалярное поле. Производная по направлению. Градиент. 1.Производная по направлению. ЛЕКЦИЯ N. Скалярное поле. Производная по направлению. Градиент. Касательная плоскость и нормаль к поверхности. Экстремумы функции многих переменных. Условный экстремум.. Скалярное поле. Производная по

Подробнее

6.1 Определения, предварительные сведения

6.1 Определения, предварительные сведения 6. Неявные функции 6.1 Определения, предварительные сведения Зависимость одной переменной от другой (или от других) не обязательно может быть выражена при помощи так называемого явного представления, когда

Подробнее

ПОНЯТИЕ ПРОИЗВОДНОЙ ФУНКЦИИ

ПОНЯТИЕ ПРОИЗВОДНОЙ ФУНКЦИИ ПОНЯТИЕ ПРОИЗВОДНОЙ ФУНКЦИИ Пусть имеем функцию определенную на множестве X и пусть точка X - внутренняя точка те точка для которой существует окрестность X Возьмем любую точку и обозначим через называется

Подробнее

6. Дифференциал функции 1. Определение и геометрический смысл

6. Дифференциал функции 1. Определение и геометрический смысл 6. Дифференциал функции 1. Определение и геометрический смысл ОПРЕДЕЛЕНИЕ. Функция y = f(x) называется дифференцируемой в точке x 0, если ее приращение в этой точке может быть записано как сумма линейной

Подробнее

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование»

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ Московский государственный технический университет имени НЭ Баумана Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» ÀÍ Êàíàòíèêîâ, ÀÏ Êðèùåíêî ÔÓÍÊÖÈÈ

Подробнее

P Проверим выполнение достаточных

P Проверим выполнение достаточных Функции нескольких переменных (ФНП). Локальный экстремум. 1) Исследовать на локальный экстремум функцию z z e ; а) -х переменных б) 3-х переменных 3 3 3 u u z z 17 48 z. а) z e e e e 1 1 z e e Находим

Подробнее

= 0. Следовательно нельзя, пользуясь теоремой, ответить на вопрос об экстремуме. ; является точкой локального ми-,0 0

= 0. Следовательно нельзя, пользуясь теоремой, ответить на вопрос об экстремуме. ; является точкой локального ми-,0 0 6 ( ) Получаем, что HP =. Следовательно нельзя, пользуясь теоремой, ответить на вопрос об экстремуме. В данном случае стационарная точка P ( ) ; является точкой локального ми- Δz > P O & P : z = z =. δ

Подробнее

Глава 3. Исследование функций с помощью производных

Глава 3. Исследование функций с помощью производных Глава 3. Исследование функций с помощью производных 3.1. Экстремумы и монотонность Рассмотрим функцию y = f (), определённую на некотором интервале I R. Говорят, что она имеет локальный максимум в точке

Подробнее

, обращающая уравнение в тождество. Определение. Общим решением дифференциального уравнения первого порядка называется функция y ( x, c)

, обращающая уравнение в тождество. Определение. Общим решением дифференциального уравнения первого порядка называется функция y ( x, c) II ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ Дифференциальные уравнения первого порядка Определение Соотношения, в которых неизвестные переменные и их функции находятся под знаком производной или дифференциала, называются

Подробнее

Практикум: «Дифференцируемость и дифференциал функции». Если функция y f (x)

Практикум: «Дифференцируемость и дифференциал функции». Если функция y f (x) Практикум: «Дифференцируемость и дифференциал функции» Если функция y f () имеет конечную производную в точке, то приращение функции в этой точке можно представить в виде: y(, ) f ( ) ( ) (), где ( ) при

Подробнее

Тема 39. «Производные функций»

Тема 39. «Производные функций» Тема 39. «Производные функций» Функция Производной функции в точке х 0 называется предел отношения приращения функции к приращению переменной, то есть = lim = lim + ( ) Таблица производных: Производная

Подробнее

Разложение функции в ряд Тейлора

Разложение функции в ряд Тейлора 82 4. Раздел 4. Функциональные и степенные ряды 4.2. Занятие 3 4.2. Занятие 3 4.2.. Разложение функции в ряд Тейлора ОПРЕДЕЛЕНИЕ 4.2.. Пусть функция y = f(x) бесконечно дифференцируема в некоторой окрестности

Подробнее

Практическое занятие 5 Экстремум функции многих переменных. 5.2 Некоторые сведения о квадратичных формах 5.3 Достаточные условия экстремума

Практическое занятие 5 Экстремум функции многих переменных. 5.2 Некоторые сведения о квадратичных формах 5.3 Достаточные условия экстремума Практическое занятие 5 Экстремум функции многих переменных 5 Определение и необходимые условия экстремума 5 Некоторые сведения о квадратичных формах 53 Достаточные условия экстремума 5 Определение и необходимые

Подробнее

Простейшие задачи вариационного исчисления

Простейшие задачи вариационного исчисления Глава VI. Простейшие задачи вариационного исчисления 1. Функционалы в линейном нормированном пространстве Опр. 6. 1. Функционалом J[y] в линейном нормированном пространстве E называется закон соответствия,

Подробнее

Лекция 2.8. Теоремы Ферма, Ролля, Коши, Лагранжа и Лопиталя

Лекция 2.8. Теоремы Ферма, Ролля, Коши, Лагранжа и Лопиталя Лекция 8 Теоремы Ферма, Ролля, Коши, Лагранжа и Лопиталя Аннотация: Доказываются все названные теоремы и приводятся примеры раскрытия неопределенностей по правилу Лопиталя Определение Функция y=f() достигает

Подробнее

1 Метод Фурье для эллиптического уравнения. 717 a).случай однородных краевых условий по x. Найти решение u(x, t) краевой задачи

1 Метод Фурье для эллиптического уравнения. 717 a).случай однородных краевых условий по x. Найти решение u(x, t) краевой задачи 1 Метод Фурье для эллиптического уравнения. 717 a).случай однородных краевых условий по x. u(, y) = u x (, y) =, y (, s), u(x, ) =, u(x, s) = f(x), x (, ). (1.1) Шаг 1. Будем искать решение уравнения u

Подробнее

Математический анализ Лекция 4.6

Математический анализ Лекция 4.6 Московский Государственный Технический Университет им. Баумана Факультет Фундаментальные науки Кафедра Высшая математика Математический анализ Лекция 4.6 к.ф.-м.н. Семакин А.Н. Математический анализ, Лекция

Подробнее

5. Дифференциальное исчисление функций нескольких переменных Функции нескольких переменных

5. Дифференциальное исчисление функций нескольких переменных Функции нескольких переменных Дифференциальное исчисление функций нескольких переменных Функции нескольких переменных Величина называется функцией переменных величин n если каждой точке М n принадлежащей некоторому множеству X поставлено

Подробнее

Введение. 1 Область определения. Изображение функций двух переменных при помощи линий уровня

Введение. 1 Область определения. Изображение функций двух переменных при помощи линий уровня Введение Методические указания посвящены вопросам изучения и практического применения теории функции двух переменных Каждый параграф соответствует одному практическому занятию по данной теме Цель указаний

Подробнее

1. ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ПЕР- ВОГО ПОРЯДКА 1.1. Основные понятия

1. ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ПЕР- ВОГО ПОРЯДКА 1.1. Основные понятия . ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ПЕР- ВОГО ПОРЯДКА.. Основные понятия Дифференциальным уравнением называется уравнение, в которое неизвестная функция входит под знаком производной или дифференциала.

Подробнее

- количества производимых товаров, p. - цены на товары и затраты на производство товаров определены функцией издержек f ( x1,

- количества производимых товаров, p. - цены на товары и затраты на производство товаров определены функцией издержек f ( x1, Глава Экстремумы функции двух переменных Экстремум функции двух переменных При решении многих экономических задач приходится вычислять наибольшее и наименьшее значения В качестве примера рассмотрим задачу

Подробнее

Задача Коши для волнового уравнения. Формула Даламбера

Задача Коши для волнового уравнения. Формула Даламбера Задача Коши для волнового уравнения. Формула Даламбера 37, 438, I, II, 385, 439, 445, 37, III, IV, 37, 446.. 37 Найти общее решение уравнения u tt a u xx..) Шаг. Находим замену переменных Способ через

Подробнее

Функции нескольких переменных.

Функции нескольких переменных. 1. Основные понятия. Функции нескольких переменных. Исследование функции нескольких переменных проведем на примерах функций двух и трех переменных, так как все данные определения и полученные результаты

Подробнее

ВАРИАЦИЯ И ЭКСТРЕМУМ ФУНКЦИОНАЛА

ВАРИАЦИЯ И ЭКСТРЕМУМ ФУНКЦИОНАЛА ВАРИАЦИЯ И ЭКСТРЕМУМ ФУНКЦИОНАЛА А. Н. Мягкий Интегральные уравнения и вариационное исчисление Лекция Пусть задан функционал V = V [y(x)], y(x) M E. Зафиксируем функцию y (x) M. Тогда любую другую функцию

Подробнее

Тема 41 «Задания с параметром»

Тема 41 «Задания с параметром» Тема 41 «Задания с параметром» Основные формулировки заданий с параметром: 1) Найти все значения параметра, при каждом из которых выполняется определенное условие. ) Решить уравнение или неравенство с

Подробнее

называется прямая, проходящая через эту точку перпендикулярно к касательной плоскости, проведенной в данной точке поверхности.

называется прямая, проходящая через эту точку перпендикулярно к касательной плоскости, проведенной в данной точке поверхности. 5 Точка в которой F F F или хотя бы одна из этих производных не существует называется особой точкой поверхности В такой точке поверхность может не иметь касательной плоскости Определение Нормалью к поверхности

Подробнее

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ГЕОДЕЗИИ И КАРТОГРАФИИ (МИИГАиК) О. В. Исакова Л. А. Сайкова

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ГЕОДЕЗИИ И КАРТОГРАФИИ (МИИГАиК) О. В. Исакова Л. А. Сайкова Федеральное агентство по образованию МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ГЕОДЕЗИИ И КАРТОГРАФИИ (МИИГАиК) О. В. Исакова Л. А. Сайкова УЧЕБНОЕ ПОСОБИЕ ДЛЯ СТУДЕНТОВ ПО САМОСТОЯТЕЛЬНОМУ ИЗУЧЕНИЮ РАЗДЕЛА

Подробнее

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование»

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ Московский государственный технический университет имени Н.Э. Баумана Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» À.Í. Êàíàòíèêîâ,

Подробнее

4. Дифференцируемость функции многих переменных

4. Дифференцируемость функции многих переменных 4. Дифференцируемость функции многих переменных 4.1. Линейное нормированное пространство Пусть E линейное пространство над полем вещественных чисел, то есть E множество, на котором определены операция

Подробнее

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ГРАЖДАНСКОЙ АВИАЦИИ. В.М. Любимов, Е.А. Жукова, В.А. Ухова, Ю.А. Шуринов М А Т Е М А Т И К А

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ГРАЖДАНСКОЙ АВИАЦИИ. В.М. Любимов, Е.А. Жукова, В.А. Ухова, Ю.А. Шуринов М А Т Е М А Т И К А МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ГРАЖДАНСКОЙ АВИАЦИИ В.М. Любимов, Е.А. Жукова, В.А. Ухова, Ю.А. Шуринов М А Т Е М А Т И К А Р Я Д Ы ПОСОБИЕ по изучению дисциплины и контрольные задания

Подробнее

ТЕОРЕТИЧЕСКАЯ МЕХАНИКА ЛЕКЦИЯ 5 УРАВНЕНИЯ ЛАГРАНЖА ВТОРОГО РОДА КИНЕТИЧЕСКАЯ ЭНЕРГИЯ СИСТЕМЫ В ОБОБЩЁННЫХ КООРДИНАТАХ

ТЕОРЕТИЧЕСКАЯ МЕХАНИКА ЛЕКЦИЯ 5 УРАВНЕНИЯ ЛАГРАНЖА ВТОРОГО РОДА КИНЕТИЧЕСКАЯ ЭНЕРГИЯ СИСТЕМЫ В ОБОБЩЁННЫХ КООРДИНАТАХ ТЕОРЕТИЧЕСКАЯ МЕХАНИКА 2 СЕМЕСТР ЛЕКЦИЯ 5 УРАВНЕНИЯ ЛАГРАНЖА ВТОРОГО РОДА КИНЕТИЧЕСКАЯ ЭНЕРГИЯ СИСТЕМЫ В ОБОБЩЁННЫХ КООРДИНАТАХ ТЕОРЕМА ОБ ИЗМЕНЕНИИ ПОЛНОЙ МЕХАНИЧЕСКОЙ ЭНЕРГИИ Лектор: Батяев Евгений Александрович

Подробнее

2 Дифференцируемость функций многих переменных. точке. Достаточные условия дифференцируемости

2 Дифференцируемость функций многих переменных. точке. Достаточные условия дифференцируемости В.В. Жук, А.М. Камачкин Дифференцируемость функций многих переменных. Дифференцируемость функции в точке. Достаточные условия дифференцируемости в терминах частных производных. Дифференцирование сложной

Подробнее

Поздравляю с началом нового учебного года. Желаю успехов в изучении функций многих переменных и дифференциальных уравнений

Поздравляю с началом нового учебного года. Желаю успехов в изучении функций многих переменных и дифференциальных уравнений Поздравляю с началом нового учебного года. Желаю успехов в изучении функций многих переменных и дифференциальных уравнений Веб- страница кафедры http://kvm.gubkin.ru 1 Функции многих переменных 2 Определение

Подробнее

Достаточные условия существования решения задачи об условном экстремуме методом Лагранжа. В.В. Колыбасова, Н.Ч. Крутицкая

Достаточные условия существования решения задачи об условном экстремуме методом Лагранжа. В.В. Колыбасова, Н.Ч. Крутицкая Достаточные условия существования решения задачи об условном экстремуме методом Лагранжа ВВ Колыбасова, НЧ Крутицкая В В Колыбасова, Н Ч Крутицкая Достаточные условия существования решения задачи об условном

Подробнее

Решение типового варианта заданий по теме. "Дифференциальное исчисление функции одной переменной" Автор: ассистент кафедры высшей математики БГУИР

Решение типового варианта заданий по теме. Дифференциальное исчисление функции одной переменной Автор: ассистент кафедры высшей математики БГУИР Решение типового варианта заданий по теме "Дифференциальное исчисление функции одной переменной" Автор: ассистент кафедры высшей математики БГУИР Василюк Людмила Ивановна Содержание Задание Задание Задание

Подробнее

и ряды» Р. М. Гаврилова, Г. С. Костецкая Методические указания по теме «Функциональные последовательности

и ряды» Р. М. Гаврилова, Г. С. Костецкая Методические указания по теме «Функциональные последовательности Федеральное агентство по образованию Федеральное государственное образовательное учреждение высшего профессионального образования ЮЖНЫЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ Р. М. Гаврилова, Г. С. Костецкая Методические

Подробнее

Лекция 3. Ряды Тейлора и Маклорена. Применение степенных рядов. Разложение функций в степенные ряды. Ряды Тейлора и Маклорена ( ) ( ) ( ) 1! 2!

Лекция 3. Ряды Тейлора и Маклорена. Применение степенных рядов. Разложение функций в степенные ряды. Ряды Тейлора и Маклорена ( ) ( ) ( ) 1! 2! Лекция 3 Ряды Тейлора и Маклорена Применение степенных рядов Разложение функций в степенные ряды Ряды Тейлора и Маклорена Для приложений важно уметь данную функцию разлагать в степенной ряд, те функцию

Подробнее

5. Степенные ряды Степенные ряды: определение, область сходимости. Функциональный

5. Степенные ряды Степенные ряды: определение, область сходимости. Функциональный 5 Степенные ряды 5 Степенные ряды: определение, область сходимости Функциональный ряд вида ( a + a ) + a ( ) + K + a ( ) + K a ) (, (5) где, a, a, K, a,k некоторые числа, называют степенным рядом Числа

Подробнее

1.Понятие дифференциала.

1.Понятие дифференциала. ЛЕКЦИЯ N4. Дифференциал функции первого и высших порядков. Инвариантность формы дифференциала. Производные высших порядков. Применение дифференциала в приближенных вычислениях. 1.Понятие дифференциала....

Подробнее

F x, F. Пример. Записать уравнение касательной к кривой x y 2xy 17 точке М(1, 2).

F x, F. Пример. Записать уравнение касательной к кривой x y 2xy 17 точке М(1, 2). Дифференцирование неявно заданной функции Рассмотрим функцию (, ) = C (C = const) Это уравнение задает неявную функцию () Предположим, мы решили это уравнение и нашли явное выражение = () Теперь можно

Подробнее

Интегралы и дифференциальные уравнения. Лекция 17

Интегралы и дифференциальные уравнения. Лекция 17 кафедра «Математическое моделирование» проф. П. Л. Иванков Интегралы и дифференциальные уравнения конспект лекций для студентов 1-го курса 2-го семестра специальностей РЛ1,2,3,6, БМТ1,2 Лекция 17 Дифференциальные

Подробнее

). Частной производной функции f по переменной x k в точке x. ). Полным дифференциалом функции f

). Частной производной функции f по переменной x k в точке x. ). Полным дифференциалом функции f ГЛАВА 7 Дифференциальное исчисление функций нескольких переменных 1 Частные производные и полный дифференциал функции нескольких переменных Опр711 Пусть М (, y ), : O(М, ) Рассмотрим функцию 1 = 1 ()=

Подробнее

6. Достаточные условия экстремума в задаче с закрепленными концами. Вернемся к задаче с закрепленными концами: найти минимум функционала b

6. Достаточные условия экстремума в задаче с закрепленными концами. Вернемся к задаче с закрепленными концами: найти минимум функционала b Лекция 1 6 Достаточные условия экстремума в задаче с закрепленными концами Вернемся к задаче с закрепленными концами: найти минимум функционала [ ] (,, ) V = F x x при условии, что = A, = B Необходимое

Подробнее

ДИФФЕРЕНЦИРОВАНИЕ ФУНКЦИЙ ОДНОЙ ПЕРЕМЕННОЙ. ПРИЛОЖЕНИЕ ПРОИЗВОДНОЙ К ИССЛЕДОВАНИЮ ФУНКЦИЙ. Понятие производных и дифференциалов высших порядков

ДИФФЕРЕНЦИРОВАНИЕ ФУНКЦИЙ ОДНОЙ ПЕРЕМЕННОЙ. ПРИЛОЖЕНИЕ ПРОИЗВОДНОЙ К ИССЛЕДОВАНИЮ ФУНКЦИЙ. Понятие производных и дифференциалов высших порядков ДИФФЕРЕНЦИРОВАНИЕ ФУНКЦИЙ ОДНОЙ ПЕРЕМЕННОЙ. ПРИЛОЖЕНИЕ ПРОИЗВОДНОЙ К ИССЛЕДОВАНИЮ ФУНКЦИЙ Понятие производных и дифференциалов высших порядков Производная f ( называется производной первого порядка (или

Подробнее

Тема 3. Линейные дифференциальные уравнения с постоянными коэффициентами

Тема 3. Линейные дифференциальные уравнения с постоянными коэффициентами 1 Тема 3. Линейные дифференциальные уравнения с постоянными коэффициентами 3.1 Линейное однородное уравнение Дифференциальное уравнение вида y (n) + a n 1 y (n 1) +... + a 1 y + a 0 y = 0, (3.1) где a

Подробнее

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование»

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ Московский государственный технический университет имени Н.Э. Баумана Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» À.Í. Êàíàòíèêîâ,

Подробнее

ВАРИАЦИОННОЕ ИСЧИСЛЕНИЕ

ВАРИАЦИОННОЕ ИСЧИСЛЕНИЕ Глава ВАРИАЦИОННОЕ ИСЧИСЛЕНИЕ Лекция 9 Введение В этой главе мы будем рассматривать задачи отыскания экстремумов (максимумов или минимумов) функционалов Сразу отметим, что такие задачи относятся к числу

Подробнее

Общее решение дифференциального уравнения y = 0 имеет вид

Общее решение дифференциального уравнения y = 0 имеет вид Задача 1.1. Найти в указанной области отличные от тождественного нуля решения y = y(x) дифференциального уравнения, удовлетворяющие заданным краевым условиям (задача Штурма-Лиувилля) Решение: Рассмотрим

Подробнее

13. Частные производные высших порядков

13. Частные производные высших порядков 13. Частные производные высших порядков Пусть = имеет и определенные на D O. Функции и называют также частными производными первого порядка функции или первыми частными производными функции. и в общем

Подробнее

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ. 1. Основные понятия

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ. 1. Основные понятия ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ 1. Основные понятия Дифференциальным уравнением относительно некоторой функции называется уравнение, связывающее эту функцию с её независимыми перемпнными и с её производными.

Подробнее

1. Построить область определения следующих функций. то область определения функции является множество

1. Построить область определения следующих функций. то область определения функции является множество 1. Построить область определения следующих функций. a) Так как функции определена при то область определения функции является множество - полуплоскость. b) Так как область определения функции является

Подробнее

Глава 5. Исследование функций с помощью формулы Тейлора.

Глава 5. Исследование функций с помощью формулы Тейлора. Глава 5 Исследование функций с помощью формулы Тейлора Локальный экстремум функции Определение Функция = f ( достигает в точке с локального максимума (минимума), если можно указать такое δ >, что ее приращение

Подробнее

Элементы высшей математики

Элементы высшей математики Кафедра математики и информатики Элементы высшей математики Учебно-методический комплекс для студентов СПО, обучающихся с применением дистанционных технологий Модуль Дифференциальное исчисление Составитель:

Подробнее

Решения задач студенческой олимпиады по математике БГЭУ 2016

Решения задач студенческой олимпиады по математике БГЭУ 2016 Решения задач студенческой олимпиады по математике БГЭУ 6 Вычислить определитель n -го порядка, все элементы главной диагонали которого равны, а все остальные элементы равны Решение Такой определитель

Подробнее

Министерство образования Российской Федерации КОНСПЕКТ ЛЕКЦИЙ ПО ВЫСШЕЙ МАТЕМАТИКЕ

Министерство образования Российской Федерации КОНСПЕКТ ЛЕКЦИЙ ПО ВЫСШЕЙ МАТЕМАТИКЕ Министерство образования Российской Федерации МАТИ - РОССИЙСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ им К Э ЦИОЛКОВСКОГО Кафедра Высшая математика Н Д ВЫСК КОНСПЕКТ ЛЕКЦИЙ ПО ВЫСШЕЙ МАТЕМАТИКЕ Часть

Подробнее

Глава 10. Экстремумы функций нескольких переменных

Глава 10. Экстремумы функций нескольких переменных Глава Экстремумы функций нескольких переменных Локальные экстремумы функций двух переменных Условные экстремумы Функция z f ) имеет максимум минимум) в точке M если можно найти такую окрестность точки

Подробнее

10. ИССЛЕДОВАНИЕ ФУНКЦИЙ И ПОСТРОЕНИЕ ГРАФИКОВ 1. Возрастание и убывание функции

10. ИССЛЕДОВАНИЕ ФУНКЦИЙ И ПОСТРОЕНИЕ ГРАФИКОВ 1. Возрастание и убывание функции 10 Исследование функций и построение графиков 10 ИССЛЕДОВАНИЕ ФУНКЦИЙ И ПОСТРОЕНИЕ ГРАФИКОВ 1 Возрастание и убывание функции 1 x ( 1 1 ОПРЕДЕЛЕНИЕ Функция y = f (x) называется возрастающей (неубывающей)

Подробнее

Нелинейная задача оптимизации.

Нелинейная задача оптимизации. Нелинейная задача оптимизации. Кольцов С.Н 2014 www.linis.ru Задача безусловной оптимизации Задача оптимизации формулируется следующим образом: заданы множество Х (допустимое множество задачи) и функция

Подробнее

называется функцией n аргументов x1, x2, xn В дальнейшем будем рассматривать функции 2-х или 3-х переменных, т.е

называется функцией n аргументов x1, x2, xn В дальнейшем будем рассматривать функции 2-х или 3-х переменных, т.е Составитель ВПБелкин 1 Лекция 1 Функция нескольких переменных 1 Основные понятия Зависимость = f ( 1,, n ) переменной от переменных 1,, n называется функцией n аргументов 1,, n В дальнейшем будем рассматривать

Подробнее

ТЕМА 3. МАТЕМАТИЧЕСКИЙ АНАЛИЗ ФУНКЦИИ ОДНОГО ПЕРЕМЕННОГО

ТЕМА 3. МАТЕМАТИЧЕСКИЙ АНАЛИЗ ФУНКЦИИ ОДНОГО ПЕРЕМЕННОГО МЕТОДИЧЕСКИЕ УКАЗАНИЯ К РАСЧЕТНЫМ ЗАДАНИЯМ ПОКУРСУ ВЫСШЕЙ МАТЕМАТИКИ «ЭЛЕМЕНТЫ ЛИНЕЙНОЙ АЛГЕБРЫ И АНАЛИТИЧЕСКОЙ ГЕОМЕТРИИ ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИИ ОДНОГО ПЕРЕМЕННОГО» ЧАСТЬ I ТЕМА МАТЕМАТИЧЕСКИЙ

Подробнее

{ теорема Ферма - теорема Дарбу - теорема Ролля - теорема Лагранжа теорема о среднем значении - геометрическое истолкование теоремы о среднем -

{ теорема Ферма - теорема Дарбу - теорема Ролля - теорема Лагранжа теорема о среднем значении - геометрическое истолкование теоремы о среднем - { теорема Ферма - теорема Дарбу - теорема Ролля - теорема Лагранжа теорема о среднем значении - геометрическое истолкование теоремы о среднем - теорема Коши - формула конечных приращений - правило Лопиталя

Подробнее

Задачи по высшей математике для биологов

Задачи по высшей математике для биологов МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ имени М.В. ЛОМОНОСОВА МЕХАНИКО МАТЕМАТИЧЕСКИЙ ФАКУЛЬТЕТ БИОЛОГИЧЕСКИЙ ФАКУЛЬТЕТ Бобров А.Н. Радославова Т.В. Задачи по высшей математике для биологов МОСКВА 03 УДК

Подробнее

ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ. 1 Функции двух переменных.. Соответствие f, которое каждой паре чисел ( x;

ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ. 1 Функции двух переменных.. Соответствие f, которое каждой паре чисел ( x; ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ Функции одной независимой переменной не охватывают все зависимости, существующие в природе. Поэтому естественно расширить известное понятие функциональной зависимости и ввести

Подробнее

Дифференциальные уравнения высших порядков. Лекции 2-3

Дифференциальные уравнения высших порядков. Лекции 2-3 Дифференциальные уравнения высших порядков Лекции 2-3 Дифференциальным уравнением порядка n называется уравнение вида F( x, y, y,..., y() n ) 0, () в котором обязательно наличие n-ой производной. Будем

Подробнее

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ Общие понятия Дифференциальные уравнения имеют многочисленные и самые разнообразные приложения в механике физике астрономии технике и в других разделах высшей математики (например

Подробнее

Практическое занятие 3 ДИФФЕРЕНЦИРОВАНИЕ СЛОЖНОЙ И НЕЯВНОЙ ФУНКЦИИ

Практическое занятие 3 ДИФФЕРЕНЦИРОВАНИЕ СЛОЖНОЙ И НЕЯВНОЙ ФУНКЦИИ Практическое занятие ДИФФЕРЕНЦИРОВАНИЕ СЛОЖНОЙ И НЕЯВНОЙ ФУНКЦИИ Дифференцирование сложной функции Дифференцирование неявной функции задаваемой одним уравнением Системы неявных и параметрически заданных

Подробнее

ТЕОРЕТИЧЕСКАЯ МЕХАНИКА ЛЕКЦИЯ 4

ТЕОРЕТИЧЕСКАЯ МЕХАНИКА ЛЕКЦИЯ 4 ТЕОРЕТИЧЕСКАЯ МЕХАНИКА 2 СЕМЕСТР ЛЕКЦИЯ 4 ОБОБЩЁННЫЕ КООРДИНАТЫ И СИЛЫ УРАВНЕНИЯ РАВНОВЕСИЯ СИСТЕМЫ В ОБОБЩЁННЫХ КООРДИНАТАХ ВИРТУАЛЬНЫЙ ДИФФЕРЕНЦИАЛ ПОТЕНЦИАЛЬНЫЕ СИЛЫ Лектор: Батяев Евгений Александрович

Подробнее

МОДУЛЬ 5 «Применение непрерывности и производной. Применение производной к исследованию функций»

МОДУЛЬ 5 «Применение непрерывности и производной. Применение производной к исследованию функций» МОДУЛЬ «Применение непрерывности и производной. Применение производной к исследованию функций». Применение непрерывности.. Метод интервалов.. Касательная к графику. Формула Лагранжа. 4. Применение производной

Подробнее

Глава 4. Основные теоремы дифференциального исчисления. Раскрытие неопределенностей.

Глава 4. Основные теоремы дифференциального исчисления. Раскрытие неопределенностей. Глава 4 Основные теоремы дифференциального исчисления Раскрытие неопределенностей Основные теоремы дифференциального исчисления Теорема Ферма (Пьер Ферма (6-665) французский математик) Если функция y f

Подробнее

Примеры: 1. Площадь треугольника. M 1 (x 1, y 1, z 1 ) и M 2 (x 2, y 2, z 2 ):

Примеры: 1. Площадь треугольника. M 1 (x 1, y 1, z 1 ) и M 2 (x 2, y 2, z 2 ): Функции нескольких переменных Во многих вопросах геометрии естествознания и пр дисциплин приходится иметь дело с функциями двух трех и более переменных Примеры: Площадь треугольника S a h где a основание

Подробнее

Вопросы для подготовки к экзамену Тема. Линейная алгебра 1. Что такое определитель? При каких преобразованиях величина определителя не меняется? 2.

Вопросы для подготовки к экзамену Тема. Линейная алгебра 1. Что такое определитель? При каких преобразованиях величина определителя не меняется? 2. Вопросы для подготовки к экзамену Тема. Линейная алгебра 1. Что такое определитель? При каких преобразованиях величина определителя не меняется? 2. В каких случаях определитель равен нулю? Что следует

Подробнее

Задача 396. Решить уравнение y = t +4. Решение: Заметим, что условие задачи исключает случай t = 4. dy dt = dt t +4 e y =ln t +4 + C 1,C 1 IR

Задача 396. Решить уравнение y = t +4. Решение: Заметим, что условие задачи исключает случай t = 4. dy dt = dt t +4 e y =ln t +4 + C 1,C 1 IR Пояснения к тексту: знак читается как "равносильно" и обозначает, что у уравнений справа от знака и слева от знака множество решений совпадает, знак IR обозначает ммножество вещественных чисел, знак IN

Подробнее

«Юго-Западный государственный университет» (ЮЗГУ) Кафедра конструирования и технологии электронновычислительных

«Юго-Западный государственный университет» (ЮЗГУ) Кафедра конструирования и технологии электронновычислительных «Юго-Западный государственный университет» ЮЗГУ) Кафедра конструирования и технологии электронновычислительных средств МЕТОДЫ УСЛОВНОЙ ОПТИМИЗАЦИИ Методические указания по выполнению лабораторной работы

Подробнее

МЕТОДИЧЕСКИЕ УКАЗАНИЯ К РАСЧЕТНЫМ ЗАДАНИЯМ ПО КУРСУ ВЫСШЕЙ МАТЕМАТИКИ «ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ. РЯДЫ. ДВОЙНЫЕ ИНТЕГРАЛЫ» ЧАСТЬ Ш

МЕТОДИЧЕСКИЕ УКАЗАНИЯ К РАСЧЕТНЫМ ЗАДАНИЯМ ПО КУРСУ ВЫСШЕЙ МАТЕМАТИКИ «ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ. РЯДЫ. ДВОЙНЫЕ ИНТЕГРАЛЫ» ЧАСТЬ Ш МЕТОДИЧЕСКИЕ УКАЗАНИЯ К РАСЧЕТНЫМ ЗАДАНИЯМ ПО КУРСУ ВЫСШЕЙ МАТЕМАТИКИ «ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ РЯДЫ ДВОЙНЫЕ ИНТЕГРАЛЫ» ЧАСТЬ Ш ТЕМА РЯДЫ Оглавление Ряды Числовые ряды Сходимость и расходимость

Подробнее

где А матрица коэффициентов системы (основная матрица):

где А матрица коэффициентов системы (основная матрица): Лекции Глава Системы линейных уравнений Основные понятия Системой m линейных уравнений с неизвестными называется система вида: m + + + + + m + + + + m = = = m () где неизвестные величины числа ij (i =

Подробнее

ПРОИЗВОДНАЯ ФУНКЦИИ ПО ВОЗРАСТАЮЩЕЙ ФУНКЦИИ

ПРОИЗВОДНАЯ ФУНКЦИИ ПО ВОЗРАСТАЮЩЕЙ ФУНКЦИИ ПРОИЗВОДНАЯ ФУНКЦИИ ПО ВОЗРАСТАЮЩЕЙ ФУНКЦИИ Проф др Авыт АСАНОВ Кыргызско-Турецкий Университет «Манас» Классические понятия производной и дифференциала функции изложены во многих работах Например в []

Подробнее