Необходимое и достаточное условие экстремума функции многих переменных

Save this PDF as:
 WORD  PNG  TXT  JPG

Размер: px
Начинать показ со страницы:

Download "Необходимое и достаточное условие экстремума функции многих переменных"

Транскрипт

1 Необходимое и достаточное условие экстремума функции многих переменных Рассмотрим задачу на нахождение условного экстремума для случае функции двух переменных. Необходимое условие экстремума. Пусть имеется дважды дифференцируемая функция f = f(x, y) (1) переменные которой не произвольны между ними имеется связь Например, ϕ(x, y) () { f = xy y y x Метод подстановки. Будем решать задачу методом подстановки. Используя уравнение связи, выразим y черех x в виде y = x. Тогда приходим к функции одной переменной (3) f = f(x) = x(x ) x = x x (4) Стационарные точки находим с помощью дифференцирования. f = x 4 x = x(x 3 ) () Так как в стационарных точках производная равна нулю, то f x(x 3 ) (6) Откуда получим две точки, подозрительные на экстремум. x, x = 3 (7) Исследуем изменение знака производной вблизи стационарных точек методом интервалов. x x < 0 x 0 < x < 3 x = 3 x > 3 y (8) y 0 0 точка мини- Вывод: точка x точка максимума, а точка x = 3 мума. 1

2 Метод метод множителей Лагранжа. Разложим исследуемумую функцию f(x, y) в ряд Телора в форме Пеано: f = f(x + x, y + y) f(x, y) = = f x x + f y y + 1 f xx x + f xy y x + f yy y + α 1 ( ρ) ρ (9) где ρ = x + y. Все бесконечно малые здесь и далее будут обозначаться как α k ( ρ), k = 1,,.... Так как имеется связь ϕ(x, y), то x и y не любые: в общем случае при изменении одной переменной меняется и другая переменная, но всегда ϕ(x + x, y + y) = ϕ(x, y) (10) поэтому, разлагая и связь ϕ(x, y) в ряд Тейлора в форме Пеано, получим: 0 = ϕ = ϕ(x + x, y + y) ϕ(x, y) = = ϕ x x + ϕ y y + 1 ϕ xx x + ϕ xy y x + ϕ yy y + α ( ρ) ρ (11) Заметим, что в точке условного экстремума первый дифференциал функции f(x, y) должен равняться нулю. Действительно, допустим связь () разрешима, и мы получили: y = y(x) Тогда Откуда y = y x + α 3 ( x) x (1) df = f x x + f y y = f x x + f yy x = (f x + f yy )dx (13) или, рассматривая функцию f как функцию одной переменной, мы должны сделать вывод, что в точке экстремума по теореме Коши дифференциал этой функции равен нулю, то есть: f x + f yy (14) (дифференциалом же является главная линейная часть приращения функции. Для функции, имеющей конечную производную, производная равна коэффициенту при dx в дифференциале.) Таким образом первый дифференциал функции двух переменных (1) в точке экстремума и при наличии связей также равен нулю. Как найти эту точку, если не так-то просто разрешить связь как функцию y = y(x)? (Очевидно предыдущие рассуждения справедливы и в случае, когда связь разрешается как x = x(y).) Можно воспользоваться методом неопределённых множителей Лагранжа. Суть его в следующем: так как

3 в случае поиска экстремума достаточно исследовать только первые дифференциалы, то рассмотрим систему из уравнений (), (9), (11) в точке экстремума (ограничиваясь первыми дифференциалами): df = f x x + f y y dϕ = ϕ x x + ϕ y y (1) ϕ(x, y) Умножим вторую строку на некоторое число λ и прибавим к первой. Откуда в точке экстремума df = (f x + λϕ x) x + (f y + λϕ y) y (16) Подбираем число λ таким, чтобы вторая скобка равнялась нулю. Но при таком λ и первая скобка тоже должна быть равна нулю иначе первый дифференциал f не будет равен нулю. Следовательно в точке экстремума будут выполняться условия: f x + λϕ x f y + λϕ y (17) ϕ(x, y) Формально эта система как система, состоящая из трёх уравнений с тремя неизвестными имеет решение. Достаточное условие экстремума. Пусть найдены все точки, подозрительные на экстремум. Рассмотрим изменения функции и связей вблизи точки экстремума { f = f x x + f y y + 1 f xx x + f xy y x + 1 f yy y + α 1 ( ρ) ρ 0 = ϕ x x + ϕ y y + 1 ϕ xx x + ϕ xy y x + 1 ϕ yy y + α ( ρ) ρ (18) Умножим вторую строку на найденное ранее λ и прибавим к первой строке. f = (f x + λϕ x) x + (f y + λϕ y) y+ (19) + 1 (f xx + λϕ xx) x + (f xy + λϕ xy) x y + 1 (f yy + λϕ yy) y + α 3 ( ρ) ρ (Заметим, что в приращении (9) функции f со связью 10, приравняв нулю первый дифференциал в точке экстремума, второй дифференциал не будет равен оставшемуся выражению, так как это равенство нулю верно только с точностью до бесконечно малых более высокого порядка и приращение y(x) (y = y(x) связь, разрешённая относительно y) также даёт свой вклад во второй дифференциал: y = y x + 1 y x + α 4 x ) 3

4 Вблизи точек экстремума первый дифференциал (19) равен нулю (именно так выбирается число λ. По этой причине можно не исследовать квадратичный по x вклад в y), поэтому для функции F = f + λϕ будет F = f = 1 (f xx + λϕ xx) x + (f xy + λϕ xy) x y+ + 1 (f yy + λϕ yy) y + α 3 ( ρ) ρ (0) Здесь второй дифференциал равен оставшемуся выражению, так как выбирается число λ такое, что обе скобки (18) первого дифференциала равны нулю. Так как выражение (18) однородно и квадратично по приращениям x и y, то, исследуя связь x и y, можно ограничиться линейными членами. Таким образом ϕ x x + ϕ y y (1) Откуда y = ϕ x ϕ x () y Подставляее () в (0) и пренебрегая бесконечно малыми более высокого чем второй порядок, получим f = x ϕ (F xxϕ y F xyϕ xϕ y + F yyϕ x ) (3) y Таким обазом, если в точке, подозрительной на экстремум xxϕ y xyϕ xϕ y + yyϕ x > 0 (4) то это точка минимума; если в точке, подозрительной на экстремум xxϕ y xyϕ xϕ y + yyϕ x < 0 () то это точка максимума; если в точке, подозрительной на экстремум xxϕ y xyϕ xϕ y + yyϕ x (6) то задача требует дополнительного исследования. Отметим также, что, если в исследуемой точке ϕ y, но ϕ x 0, то все рассуждения оказываются верными, если связь разрешать относительно x = x(y), но тогда f = y ϕ (F xxϕ y F xyϕ xϕ y + F yyϕ x ) (7) x И только при ϕ y, ϕ x требуется дополнительный анализ. 4

5 Наконец, если связь разрешается относительно y как y y(x), то f = x (f xx + f xyy + f yyy + f yy ) (8) Таким образом, для того, чтобы найти экстремум функции двух переменных необходимо составить функцию Лагранжа F (x, y) = f(x, y) + λϕ(x, y) (9) и для неё решить систему f x + λϕ x f y + λϕ y ϕ(x, y) (30) (Необходимое условие экстремума.) Решив систему и найдя точки, подозрительные на экстремум, вычислить выражение F xxϕ y F xyϕ xϕ y + F yyϕ x (31) После чего сделать вывод о типе стационарной точки. Пример. Решим предложенную ранее задачу методом неопределённых множителей Лагранжа. Составим функцию Лагранжа. F = xy y + λ(y x ) (3) Находим первые частные производные F x = y λx F y = xy 1 + λ y x Составим необходимое условие: y λx xy 1 + λ y x Решим его Откуда Первое решение даёт y = x x 4 λx x 3 = 1 λ x(x 3 λ), x 1, λ = x 3 / (33) (34) (3) x 1, y 1, λ 1 = 1

6 Второе решение даёт x = 3, y = 3 4, λ = 1 Выясняем, есть ли экстремум в найденных точках. Находим вторые частные производные функции Лагранжа и первые частные производные связей F xx = λ { ϕ F xy = y x = x F yy ϕ = x (36) y = 1 Находим вторые частные производные функции Лагранжа и первые частные производные в первой точке F xx = { ϕ F xy x F yy ϕ (37) y = 1 Тогда в первой точке xxϕ y xyϕ xϕ y + yyϕ x = Таким образом первая точка, имеющая координаты (0, 0), соответствуе максимуму функции. Находим вторые частные производные функции Лагранжа и первые частные производные во второй точке F xx = / { F xy = 3 4 ϕ x = 3 (38) F yy = 3 ϕ y = 1 Тогда во второй точке xxϕ y xyϕ xϕ y + yyϕ x = 3/ > 0 Таким образом вторая точка, имеющая координаты ( 3, 3 4 ), соответствуе минимуму функции. Задача решена двумя способами. Решения обоих способов совпали. Необходимое и достаточное условие экстремума функции многих переменных В том случае, если число переменных больше двух, например: f = f(x 1, x,..., x n ) (39) 6

7 и имеется r связей вида ϕ 1 (x 1, x,..., x n ) ϕ (x 1, x,..., x n )... ϕ r (x 1, x,..., x n ) (40) Вводится функция Лагранжа F (x 1, x,..., x n ) = f(x 1, x,..., x n ) + r λ i ϕ i (x 1, x,..., x n ) (41) составляется необходимое условие экстремума функции многих переменных F x 1 F x... F x n i=1 (4) Решениями системы (4) будут стационарные точки. Исследуется достаточное условие. Для этого выписываются первые дифференциалы ϕ 1 x 1 x ϕ 1 x n x n ϕ x 1 x ϕ x n x n (43)... ϕ r x 1 x ϕ r x n x n Система линейных уравнений разрешается относительно x i. Решения (43) подставляются в квадратичная форму функции Лагранжа n i,j=1 x i,x j x i x j (44) которая исследуется на положительную или отрицательную определённость в стационарных точках. 7

и имеет минимум, если. Максимум и минимум называют экстремумами функции. Из данного определения следует, что в окрестности точки максимума приращение

и имеет минимум, если. Максимум и минимум называют экстремумами функции. Из данного определения следует, что в окрестности точки максимума приращение Лекция 3 Экстремум функции нескольких переменных Пусть функция нескольких переменных u = f ( x,, x ) определена в области D, и точка x ( x,, x ) = принадлежит данной области Функция u = f ( x,, x ) имеет

Подробнее

7. Экстремумы функций нескольких переменных

7. Экстремумы функций нескольких переменных 7. Экстремумы функций нескольких переменных 7.. Локальные экстремумы Пусть функция f(x,..., x n ) определена на некотором открытом множестве D R n. Точка M D называется точкой локального максимума (локального

Подробнее

А.В. Абанин, Д.А. Полякова ЛОКАЛЬНЫЙ ЭКСТРЕМУМ ФУНКЦИЙ МНОГИХ ПЕРЕМЕННЫХ

А.В. Абанин, Д.А. Полякова ЛОКАЛЬНЫЙ ЭКСТРЕМУМ ФУНКЦИЙ МНОГИХ ПЕРЕМЕННЫХ МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное автономное образовательное учреждение высшего образования «ЮЖНЫЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ» АВ Абанин, ДА Полякова ЛОКАЛЬНЫЙ

Подробнее

Математический анализ 2.5

Математический анализ 2.5 Математический анализ 2.5 Лекция: Экстремумы функции нескольких переменных Доцент кафедры ВММФ Зальмеж Владимир Феликсович Рассмотрим функцию w = f ( x), определённую в области D R n. Точка x 0 D называется

Подробнее

Формула Тейлора для ФНП. Экстремумы ФНП

Формула Тейлора для ФНП. Экстремумы ФНП Математический анализ Раздел: Функция нескольких переменных Тема: Формула Тейлора для ФНП. Экстремумы ФНП Лектор Рожкова С.В. 1 г. 18. Формула Тейлора для ФНП Если y = раз дифференцируема в окрестности

Подробнее

Экстремум функции двух переменных

Экстремум функции двух переменных ПРАКТИЧЕСКОЕ ЗАНЯТИЕ 11 Экстремум функции двух переменных Максимум или минимум функции называется её экстремумом Точка M 0, в которой функция имеет экстремум, называется точкой экстремума Если дифференцируемая

Подробнее

6.1 Определения, предварительные сведения

6.1 Определения, предварительные сведения 6. Неявные функции 6.1 Определения, предварительные сведения Зависимость одной переменной от другой (или от других) не обязательно может быть выражена при помощи так называемого явного представления, когда

Подробнее

6. Дифференциал функции 1. Определение и геометрический смысл

6. Дифференциал функции 1. Определение и геометрический смысл 6. Дифференциал функции 1. Определение и геометрический смысл ОПРЕДЕЛЕНИЕ. Функция y = f(x) называется дифференцируемой в точке x 0, если ее приращение в этой точке может быть записано как сумма линейной

Подробнее

Практикум: «Дифференцируемость и дифференциал функции». Если функция y f (x)

Практикум: «Дифференцируемость и дифференциал функции». Если функция y f (x) Практикум: «Дифференцируемость и дифференциал функции» Если функция y f () имеет конечную производную в точке, то приращение функции в этой точке можно представить в виде: y(, ) f ( ) ( ) (), где ( ) при

Подробнее

1. ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ПЕР- ВОГО ПОРЯДКА 1.1. Основные понятия

1. ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ПЕР- ВОГО ПОРЯДКА 1.1. Основные понятия . ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ПЕР- ВОГО ПОРЯДКА.. Основные понятия Дифференциальным уравнением называется уравнение, в которое неизвестная функция входит под знаком производной или дифференциала.

Подробнее

называется прямая, проходящая через эту точку перпендикулярно к касательной плоскости, проведенной в данной точке поверхности.

называется прямая, проходящая через эту точку перпендикулярно к касательной плоскости, проведенной в данной точке поверхности. 5 Точка в которой F F F или хотя бы одна из этих производных не существует называется особой точкой поверхности В такой точке поверхность может не иметь касательной плоскости Определение Нормалью к поверхности

Подробнее

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ГЕОДЕЗИИ И КАРТОГРАФИИ (МИИГАиК) О. В. Исакова Л. А. Сайкова

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ГЕОДЕЗИИ И КАРТОГРАФИИ (МИИГАиК) О. В. Исакова Л. А. Сайкова Федеральное агентство по образованию МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ГЕОДЕЗИИ И КАРТОГРАФИИ (МИИГАиК) О. В. Исакова Л. А. Сайкова УЧЕБНОЕ ПОСОБИЕ ДЛЯ СТУДЕНТОВ ПО САМОСТОЯТЕЛЬНОМУ ИЗУЧЕНИЮ РАЗДЕЛА

Подробнее

ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ. 1 Функции двух переменных.. Соответствие f, которое каждой паре чисел ( x;

ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ. 1 Функции двух переменных.. Соответствие f, которое каждой паре чисел ( x; ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ Функции одной независимой переменной не охватывают все зависимости, существующие в природе. Поэтому естественно расширить известное понятие функциональной зависимости и ввести

Подробнее

ВАРИАЦИОННОЕ ИСЧИСЛЕНИЕ

ВАРИАЦИОННОЕ ИСЧИСЛЕНИЕ Глава ВАРИАЦИОННОЕ ИСЧИСЛЕНИЕ Лекция 9 Введение В этой главе мы будем рассматривать задачи отыскания экстремумов (максимумов или минимумов) функционалов Сразу отметим, что такие задачи относятся к числу

Подробнее

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ Общие понятия Дифференциальные уравнения имеют многочисленные и самые разнообразные приложения в механике физике астрономии технике и в других разделах высшей математики (например

Подробнее

МЕТОДИЧЕСКИЕ УКАЗАНИЯ К РАСЧЕТНЫМ ЗАДАНИЯМ ПО КУРСУ ВЫСШЕЙ МАТЕМАТИКИ «ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ. РЯДЫ. ДВОЙНЫЕ ИНТЕГРАЛЫ» ЧАСТЬ Ш

МЕТОДИЧЕСКИЕ УКАЗАНИЯ К РАСЧЕТНЫМ ЗАДАНИЯМ ПО КУРСУ ВЫСШЕЙ МАТЕМАТИКИ «ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ. РЯДЫ. ДВОЙНЫЕ ИНТЕГРАЛЫ» ЧАСТЬ Ш МЕТОДИЧЕСКИЕ УКАЗАНИЯ К РАСЧЕТНЫМ ЗАДАНИЯМ ПО КУРСУ ВЫСШЕЙ МАТЕМАТИКИ «ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ РЯДЫ ДВОЙНЫЕ ИНТЕГРАЛЫ» ЧАСТЬ Ш ТЕМА РЯДЫ Оглавление Ряды Числовые ряды Сходимость и расходимость

Подробнее

10. ИССЛЕДОВАНИЕ ФУНКЦИЙ И ПОСТРОЕНИЕ ГРАФИКОВ 1. Возрастание и убывание функции

10. ИССЛЕДОВАНИЕ ФУНКЦИЙ И ПОСТРОЕНИЕ ГРАФИКОВ 1. Возрастание и убывание функции 10 Исследование функций и построение графиков 10 ИССЛЕДОВАНИЕ ФУНКЦИЙ И ПОСТРОЕНИЕ ГРАФИКОВ 1 Возрастание и убывание функции 1 x ( 1 1 ОПРЕДЕЛЕНИЕ Функция y = f (x) называется возрастающей (неубывающей)

Подробнее

6. Достаточные условия экстремума в задаче с закрепленными концами. Вернемся к задаче с закрепленными концами: найти минимум функционала b

6. Достаточные условия экстремума в задаче с закрепленными концами. Вернемся к задаче с закрепленными концами: найти минимум функционала b Лекция 1 6 Достаточные условия экстремума в задаче с закрепленными концами Вернемся к задаче с закрепленными концами: найти минимум функционала [ ] (,, ) V = F x x при условии, что = A, = B Необходимое

Подробнее

). Частной производной функции f по переменной x k в точке x. ). Полным дифференциалом функции f

). Частной производной функции f по переменной x k в точке x. ). Полным дифференциалом функции f ГЛАВА 7 Дифференциальное исчисление функций нескольких переменных 1 Частные производные и полный дифференциал функции нескольких переменных Опр711 Пусть М (, y ), : O(М, ) Рассмотрим функцию 1 = 1 ()=

Подробнее

Практическое занятие 3 ДИФФЕРЕНЦИРОВАНИЕ СЛОЖНОЙ И НЕЯВНОЙ ФУНКЦИИ

Практическое занятие 3 ДИФФЕРЕНЦИРОВАНИЕ СЛОЖНОЙ И НЕЯВНОЙ ФУНКЦИИ Практическое занятие ДИФФЕРЕНЦИРОВАНИЕ СЛОЖНОЙ И НЕЯВНОЙ ФУНКЦИИ Дифференцирование сложной функции Дифференцирование неявной функции задаваемой одним уравнением Системы неявных и параметрически заданных

Подробнее

3. СИСТЕМЫ ЛИНЕЙНЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ С ПОСТОЯННЫМИ КОЭФФИЦИЕНТАМИ. 1. Приведение к одному уравнению n -го порядка

3. СИСТЕМЫ ЛИНЕЙНЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ С ПОСТОЯННЫМИ КОЭФФИЦИЕНТАМИ. 1. Приведение к одному уравнению n -го порядка СИСТЕМЫ ЛИНЕЙНЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ С ПОСТОЯННЫМИ КОЭФФИЦИЕНТАМИ Приведение к одному уравнению -го порядка С практической точки зрения очень важны линейные системы с постоянными коэффициентами

Подробнее

3. Дифференцирование функций

3. Дифференцирование функций lim 3 Дифференцирование функций 3 Производная функции Производной функции f в точке называют следующий предел f f df f ' d, где f ' и df d условные обозначения производной Операция нахождения производной

Подробнее

Вариант Найти область определения функции : y = x 3x+ Область определения данной функции определяется двумя неравенствами:

Вариант Найти область определения функции : y = x 3x+ Область определения данной функции определяется двумя неравенствами: Вариант 7 Найти область определения функции : y Область определения данной функции определяется двумя неравенствами: и > Второе неравенство выполняется при всех значениях Корнями уравнения являются числа

Подробнее

ПРОИЗВОДНАЯ ФУНКЦИИ ПО ВОЗРАСТАЮЩЕЙ ФУНКЦИИ

ПРОИЗВОДНАЯ ФУНКЦИИ ПО ВОЗРАСТАЮЩЕЙ ФУНКЦИИ ПРОИЗВОДНАЯ ФУНКЦИИ ПО ВОЗРАСТАЮЩЕЙ ФУНКЦИИ Проф др Авыт АСАНОВ Кыргызско-Турецкий Университет «Манас» Классические понятия производной и дифференциала функции изложены во многих работах Например в []

Подробнее

удовлетворяются условия теоремы суще6ствования и единственности.

удовлетворяются условия теоремы суще6ствования и единственности. Лекция 9 Линеаризация диффе6ренциальных уравнений Линейные дифференциальные уравнения высших порядков Однородные уравнения свойства их решений Свойства решений неоднородных уравнений Определение 9 Линейным

Подробнее

2 модуль Тема 13 Функциональные последовательности и ряды. Свойства равномерной сходимости последовательностей и рядов. Степенные ряды Лекция 11

2 модуль Тема 13 Функциональные последовательности и ряды. Свойства равномерной сходимости последовательностей и рядов. Степенные ряды Лекция 11 модуль Тема Функциональные последовательности и ряды Свойства равномерной сходимости последовательностей и рядов Степенные ряды Лекция Определения функциональных последовательностей и рядов Равномерно

Подробнее

Введение Домашние контрольные работы (ДКР) по математическому анализу являются одной из основных форм текущего контроля самостоятельной работы

Введение Домашние контрольные работы (ДКР) по математическому анализу являются одной из основных форм текущего контроля самостоятельной работы Введение Домашние контрольные работы (ДКР) по математическому анализу являются одной из основных форм текущего контроля самостоятельной работы студентов. Примерное время, необходимое для выполнения ДКР,

Подробнее

Тема 8 ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ. Лекция 8.1. Функции нескольких переменных. Частные производные

Тема 8 ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ. Лекция 8.1. Функции нескольких переменных. Частные производные Тема 8 ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ Лекция 8.1. Функции нескольких переменных. Частные производные П л а н 1. Понятие функции двух и нескольких переменных.. Предел и непрерывность

Подробнее

Пределы. Производные. Функции нескольких переменных

Пределы. Производные. Функции нескольких переменных Московский авиационный институт (национальный исследовательский университете) Кафедра "Высшая математика" Пределы Производные Функции нескольких переменных Методические указания и варианты контрольных

Подробнее

Практикум: «Формула Тейлора». Если функция f (x)

Практикум: «Формула Тейлора». Если функция f (x) Практикум: «Формула Тейлора» Если функция f () имеет производные до (п +)-го порядка включительно в интервале ( 0, 0 ), 0, то для всех х из этого интервала справедлива формула Тейлора (порядка п) ( ) f

Подробнее

ЛЕКЦИЯ 16 ЗАДАЧА ОБ УСТОЙЧИВОСТИ ПОЛОЖЕНИЯ РАВНОВЕСИЯ В КОНСЕРВАТИВНОЙ СИСТЕМЕ

ЛЕКЦИЯ 16 ЗАДАЧА ОБ УСТОЙЧИВОСТИ ПОЛОЖЕНИЯ РАВНОВЕСИЯ В КОНСЕРВАТИВНОЙ СИСТЕМЕ ЛЕКЦИЯ 16 ЗАДАЧА ОБ УСТОЙЧИВОСТИ ПОЛОЖЕНИЯ РАВНОВЕСИЯ В КОНСЕРВАТИВНОЙ СИСТЕМЕ 1. Теорема Лагранжа об устойчивости положения равновесия консервативной системы Пусть имеется n степеней свободы. q 1, q 2,,

Подробнее

МЕТОД МНОЖИТЕЛЕЙ ЛАГРАНЖА

МЕТОД МНОЖИТЕЛЕЙ ЛАГРАНЖА БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ МЕХАНИКО-МАТЕМАТИЧЕСКИЙ ФАКУЛЬТЕТ Кафедра нелинейного анализа и аналитической экономики В. И. БАХТИН, И. А. ИВАНИШКО, А. В. ЛЕБЕДЕВ, О. И. ПИНДРИК МЕТОД МНОЖИТЕЛЕЙ

Подробнее

Федеральное государственное образовательное учреждение высшего профессионального образования «ЮЖНЫЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ»

Федеральное государственное образовательное учреждение высшего профессионального образования «ЮЖНЫЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ» ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное образовательное учреждение высшего профессионального образования «ЮЖНЫЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ» Факультет математики,

Подробнее

Глава 7. Функции многих переменных

Глава 7. Функции многих переменных Глава 7. Функции многих переменных 7.1. Евклидово пространство R n Начнем с определения n-мерного эвклидова пространства. Определение 7.1. n-мерным эвклидовым пространством R n над полем действительных

Подробнее

~ 1 ~ «Признаки монотонности функции»

~ 1 ~ «Признаки монотонности функции» ~ 1 ~ «Признаки монотонности функции» Теорема: Для того чтобы функция f(x), дифференцируемая на a,b возрастала (убывала) на a,b необходимо и достаточно, чтобы x a,b выполнялось неравенство f (x) 0 (f (x)

Подробнее

Методические указания к выполнению задания для самостоятельной работы

Методические указания к выполнению задания для самостоятельной работы Федеральное агентство по образованию Архангельский государственный технический университет строительный факультет РЯДЫ Методические указания к выполнению задания для самостоятельной работы Архангельск

Подробнее

Метод разделения переменных (метод Фурье)

Метод разделения переменных (метод Фурье) Метод разделения переменных (метод Фурье) Общие принципы метода разделения переменных Для простейшего уравнения с частными производными разделение переменных это поиски решений вида только от t. u (x,t

Подробнее

ОГЛАВЛЕНИЕ Предисловие Введение в теорию обыкновенных дифференциальных уравнений первого порядка Методы интегрирования уравнений в нормальной форме

ОГЛАВЛЕНИЕ Предисловие Введение в теорию обыкновенных дифференциальных уравнений первого порядка Методы интегрирования уравнений в нормальной форме ОГЛАВЛЕНИЕ Предисловие............................................. 5 Глава 1 Введение в теорию обыкновенных дифференциальных уравнений первого порядка................................. 8 1. Основные понятия

Подробнее

g(b) g(a) = f (c) a) y = x 3 + 4x 2 7x 10, [ 1, 2 ] ; b) y = x 2 + 3x 1, [ 3; 0 ] ; ] ; d) y = (x 1)(x 2)(x 3), [ 1, 3 ].

g(b) g(a) = f (c) a) y = x 3 + 4x 2 7x 10, [ 1, 2 ] ; b) y = x 2 + 3x 1, [ 3; 0 ] ; ] ; d) y = (x 1)(x 2)(x 3), [ 1, 3 ]. Занятие 7 Теоремы о среднем. Правило Лопиталя 7. Теоремы о среднем Теоремы о среднем это три теоремы: Ролля, Лагранжа и Коши, каждая следующая из которых обобщает предыдущую. Эти теоремы называют также

Подробнее

Глава 7. Понятие об асимптотических методах

Глава 7. Понятие об асимптотических методах Глава 7 Понятие об асимптотических методах Лекция Регулярно и сингулярно возмущенные задачи При построении математических моделей физических объектов, характеризующихся различными масштабами по пространству,

Подробнее

ВОПРОСЫ К ПЕРВОЙ ЧАСТИ ЭКЗАМЕНА ПО МАТЕМАТИЧЕСКОМУ АНАЛИЗУ (I КУРС, ВЕСЕННИЙ СЕМЕСТР )

ВОПРОСЫ К ПЕРВОЙ ЧАСТИ ЭКЗАМЕНА ПО МАТЕМАТИЧЕСКОМУ АНАЛИЗУ (I КУРС, ВЕСЕННИЙ СЕМЕСТР ) ВОПРОСЫ К ПЕРВОЙ ЧАСТИ ЭКЗАМЕНА ПО МАТЕМАТИЧЕСКОМУ АНАЛИЗУ (I КУРС, ВЕСЕННИЙ СЕМЕСТР 2007-2008) 1 Сформулируйте определение шаровой окрестности точки пространства R 2 Сформулируйте определение прямоугольной

Подробнее

Олимпиада для студентов и выпускников вузов 2014 г.

Олимпиада для студентов и выпускников вузов 2014 г. Олимпиада для студентов и выпускников вузов 014 г. Направление «Математические методы анализа экономики» Профили: Математические методы анализа экономики Экономика Статистический анализ экономических и

Подробнее

ПРИМЕНЕНИЕ ПРОИЗВОДНОЙ ФУНКЦИИ. Уравнение касательной

ПРИМЕНЕНИЕ ПРОИЗВОДНОЙ ФУНКЦИИ. Уравнение касательной ПРИМЕНЕНИЕ ПРОИЗВОДНОЙ ФУНКЦИИ Уравнение касательной Рассмотрим следующую задачу: требуется составить уравнение касательной l, проведенной к графику функции в точке Согласно геометрическому смыслу производной

Подробнее

, которые реализует по фиксированным ценам p. y, которые связаны между собой так, что каждому набору числовых значений переменных x

, которые реализует по фиксированным ценам p. y, которые связаны между собой так, что каждому набору числовых значений переменных x Лекции Глава Функции нескольких переменных Основные понятия Некоторые функции многих переменных хорошо знакомы Приведем несколько примеров Для вычисления площади треугольника известна формула Герона S

Подробнее

Лекция 1 (13 января 2017)

Лекция 1 (13 января 2017) КОНСПЕКТ ЛЕКТОРА математический анализ, курс, 2 семестр, 207, А.М. Красносельский Числовые ряды Лекция (3 января 207) Рассмотрим последовательность R и напишем «бесконечную сумму»: a k a + a 2 +... + a

Подробнее

ϕ, π ϕ и ϕ. В каждом интервале

ϕ, π ϕ и ϕ. В каждом интервале Вариант + Найти область определения функции: y lg Область определения данной функции определяется неравенством + те Далее знаменатель не должен обращаться в нуль: lg или ± Кроме того аргумент логарифма

Подробнее

Решения задач по алгебре за второй семестр

Решения задач по алгебре за второй семестр Решения задач по алгебре за второй семестр Д.В. Горковец, Ф.Г. Кораблев, В.В. Кораблева 1 Линейные векторные пространства Задача 1. Линейно зависимы ли векторы в R 4? a 1 = (4, 5, 2, 6), a 2 = (2, 2, 1,

Подробнее

ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ

ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ Министерство образования и науки Российской Федерации Санкт-Петербургский государственный архитектурно-строительный университет В Б СМИРНОВА, Л Е МОРОЗОВА ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ Учебное

Подробнее

Уравнения переноса. Схемы «бегущего» счета

Уравнения переноса. Схемы «бегущего» счета Уравнения переноса. Схемы «бегущего» счета Рассмотрим ряд наиболее часто используемых разностных схем, аппроксимирующих начально-краевые задачи для линейного уравнения переноса: u t + c(x, t) u x = f(x,

Подробнее

В.И. Иванов. Министерство образования Российской Федерации. Российский государственный университет нефти и газа имени И.М. Губкина

В.И. Иванов. Министерство образования Российской Федерации. Российский государственный университет нефти и газа имени И.М. Губкина Министерство образования Российской Федерации Российский государственный университет нефти и газа имени ИМ Губкина ВИ Иванов Методические указания к изучению темы «ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ» (для студентов

Подробнее

Тема 2-19: Билинейные и квадратичные формы

Тема 2-19: Билинейные и квадратичные формы Тема 2-19: Билинейные и квадратичные формы А. Я. Овсянников Уральский федеральный университет Институт математики и компьютерных наук кафедра алгебры и дискретной математики алгебра и геометрия для механиков

Подробнее

ОСНОВЫ ВЕКТОРНОГО ИСЧИСЛЕНИЯ

ОСНОВЫ ВЕКТОРНОГО ИСЧИСЛЕНИЯ ОСНОВЫ ВЕКТОРНОГО ИСЧИСЛЕНИЯ Вектором называется количественная характеристика, имеющая не только числовую величину, но и направление Иногда говорят, что вектор это направленный отрезок Векторная система

Подробнее

ЛЕКЦИЯ 11 МНОГОМЕРНАЯ ИНТЕРПОЛЯЦИЯ. ЗАДАЧА ОПТИМИЗАЦИИ

ЛЕКЦИЯ 11 МНОГОМЕРНАЯ ИНТЕРПОЛЯЦИЯ. ЗАДАЧА ОПТИМИЗАЦИИ ЛЕКЦИЯ 11 МНОГОМЕРНАЯ ИНТЕРПОЛЯЦИЯ ЗАДАЧА ОПТИМИЗАЦИИ На прошлой лекции были рассмотрены методы решения нелинейных уравнений Были рассмотрены двухточечные методы, которые используют локализацию корня,

Подробнее

10 класс, базовый уровень Задание 1 Вариант 0 (демонстрационный, с решениями)

10 класс, базовый уровень Задание 1 Вариант 0 (демонстрационный, с решениями) 10 класс, базовый уровень Задание 1 Вариант 0 (демонстрационный, с решениями) Заочная математическая школа 009/010 учебный год 1 Представьте выражение в виде многочлена стандартного вида и найдите его

Подробнее

Министерство образования и науки Российской Федерации. Федеральное агентство по образованию. Пензенский государственный университет

Министерство образования и науки Российской Федерации. Федеральное агентство по образованию. Пензенский государственный университет Министерство образования и науки Российской Федерации Федеральное агентство по образованию Пензенский государственный университет Руденко АК, Руденко МН, Семерич ЮС СБОРНИК ЗАДАЧ С РЕШЕНИЯМИ ДЛЯ ПОДГОТОВКИ

Подробнее

~ 1 ~ Ряды. Числовой ряд и его сумма. Определение: Числовым рядом называется сумма членов бесконечной числовой последовательности.

~ 1 ~ Ряды. Числовой ряд и его сумма. Определение: Числовым рядом называется сумма членов бесконечной числовой последовательности. ~ ~ Ряды Числовой ряд и его сумма. Определение: Числовым рядом называется сумма членов бесконечной числовой последовательности. Определение: Общим членом ряда называется такое его слагаемое, для которого

Подробнее

. Преобразуем функцию:, если x

. Преобразуем функцию:, если x Вариант Найти область определения функции : + + + Неравенство + выполняется всегда Поэтому область определения данной функции определяется следующими неравенствами:, те, и, те Решением системы этих неравенств

Подробнее

1.Дифференциальные уравнения высших порядков, общие понятия.

1.Дифференциальные уравнения высших порядков, общие понятия. ЛЕКЦИЯ N Дифференциальные уравнения высших порядков, методы решения Задача Коши Линейные дифференциальные уравнения высших порядков Однородные линейные уравнения Дифференциальные уравнения высших порядков,

Подробнее

НЕОПРЕДЕЛЁННЫЙ ИНТЕГРАЛ

НЕОПРЕДЕЛЁННЫЙ ИНТЕГРАЛ НЕОПРЕДЕЛЁННЫЙ ИНТЕГРАЛ. Первообразная и неопределённый интеграл Основная задача дифференциального исчисления состоит в нахождении производной (или дифференциала) данной функции. Интегральное исчисление

Подробнее

Интегралы и дифференциальные уравнения. Лекция 23

Интегралы и дифференциальные уравнения. Лекция 23 кафедра «Математическое моделирование» проф. П. Л. Иванков Интегралы и дифференциальные уравнения конспект лекций для студентов 1-го курса 2-го семестра специальностей РЛ1,2,3,6, БМТ1,2 Лекция 23 Системы

Подробнее

1., 2., 3., где а, d постоянные числа.

1., 2., 3., где а, d постоянные числа. ПЕРЕМЕННЫЕ И ПОСТОЯННЫЕ ВЕЛИЧИНЫ В результате измерения физических величин (время, площадь, объем, масса, скорость и т.д.) определяются их числовые значения. Математика занимается величинами, отвлекаясь

Подробнее

ЛЕКЦИЯ N6. Правило Бернулли-Лопиталя. Формула Тейлора.

ЛЕКЦИЯ N6. Правило Бернулли-Лопиталя. Формула Тейлора. ЛЕКЦИЯ N6 Правило Бернулли-Лопиталя Формула Тейлора Правило Бернулли-Лопиталя раскрытия неопределенностей Формула Тейлора Правило Бернулли-Лопиталя раскрытия неопределенностей Раскрытием неопределенностей

Подробнее

Построение кривых... 1.План исследования и построения кривых...

Построение кривых... 1.План исследования и построения кривых... Содержание Построение графиков функций............. План исследования функции при построении графика... Основные понятия и этапы исследования функции..... Область определения функции D f и множество значений

Подробнее

Данная функция определена на всей числовой оси, кроме точки x = 2. Если x 2± 0, то y +

Данная функция определена на всей числовой оси, кроме точки x = 2. Если x 2± 0, то y + Вариант Найти область определения функции : y + + lg(5 Область определения данной функции определяется следующими неравенствами: + те 5 > те < 5 Далее знаменатель не должен обращаться в нуль: lg( 5 или

Подробнее

Математический анализ

Математический анализ Никифоровская Анна 14 сентября 2017 г. Содержание 1. 1 1.1 4. Экстремум функций.................................. 1 1.2 4. Обратные отображения................................. 3 1.3 6. Условный экстремум..................................

Подробнее

( 0) = 0. Дисциплина Высшая математика Факультет ФАПИ специальность_занз 08 семестр III_ БИЛЕТ 2

( 0) = 0. Дисциплина Высшая математика Факультет ФАПИ специальность_занз 08 семестр III_ БИЛЕТ 2 БИЛЕТ Линейные неоднородные дифференциальные уравнения второго порядка с постоянными коэффициентами Структура общего решения Подбор частного решения Решить уравнение: x = 0 Найти решение задачи Коши: =

Подробнее

Комплексные числа. ЛОДУ с постоянными коэффициентами.

Комплексные числа. ЛОДУ с постоянными коэффициентами. Занятие 14 Комплексные числа. ЛОДУ с постоянными коэффициентами. 14.1 Комплексные числа Комплексным числом называется выражение вида z = x+iy,где x R. Имеется взаимно однозначное соответствие между множеством

Подробнее

Дифференциальное исчисление

Дифференциальное исчисление Дифференциальное исчисление Основные понятия и формулы Определение 1 Производной функции в точке называется предел отношения приращения функции к приращению аргумента, при условии, что приращение аргумента

Подробнее

По этим результатам можно схематично изобразить график функции: Терема 4 (второй достаточный признак существования экстремума).

По этим результатам можно схематично изобразить график функции: Терема 4 (второй достаточный признак существования экстремума). 6 По этим результатам можно схематично изобразить график функции: Терема 4 (второй достаточный признак существования экстремума) Стационарная точка функции f( ), дважды дифференцируемой в Oδ ( ), является

Подробнее

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ДЛЯ ПРОВЕДЕНИЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ (МОДУЛЮ).

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ДЛЯ ПРОВЕДЕНИЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ (МОДУЛЮ). ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ДЛЯ ПРОВЕДЕНИЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ (МОДУЛЮ). Общие сведения 1. Кафедра Информатики, вычислительной техники и информационной безопасности 2. Направление

Подробнее

Справедливо и обратное утверждение.

Справедливо и обратное утверждение. Понятие комплексного переменного Предел и непрерывность комплексного переменного Пусть дано два множества комплексных чисел D и Δ и каждому числу z D поставлено в соответствие число ω Δ которое обозначается

Подробнее

4.3 Выпуклые задачи. Доказательство. ˆx absmin P f(x) f(ˆx) 0 = 0, x

4.3 Выпуклые задачи. Доказательство. ˆx absmin P f(x) f(ˆx) 0 = 0, x 4.3 Выпуклые задачи 4.3.1 Задачи без ограничений Пусть f : X R выпуклая функция, отображающая нормированное пространство X в расширенную прямую. Выпуклой задачей без ограничений называется следующая экстремальная

Подробнее

ВВЕДЕНИЕ В АНАЛИЗ И ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИЙ ОДНОЙ ПЕРЕМЕННОЙ

ВВЕДЕНИЕ В АНАЛИЗ И ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИЙ ОДНОЙ ПЕРЕМЕННОЙ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «ВОРОНЕЖСКИЙ ГОСУДАРСТВЕННЫЙ ПЕДАГОГИЧЕСКИЙ УНИВЕРСИТЕТ» ВВЕДЕНИЕ В АНАЛИЗ И ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИЙ ОДНОЙ ПЕРЕМЕННОЙ

Подробнее

Р. М. Гаврилова, Г. С. Костецкая, А. Н. Карапетянц. Методические указания

Р. М. Гаврилова, Г. С. Костецкая, А. Н. Карапетянц. Методические указания МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ РОСТОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ Р. М. Гаврилова, Г. С. Костецкая, А. Н. Карапетянц Методические указания для самостоятельной работы студентов 1 курса

Подробнее

ЛЕКЦИЯ N 27. Степенные ряды и ряды Тейлора.

ЛЕКЦИЯ N 27. Степенные ряды и ряды Тейлора. ЛЕКЦИЯ N 7. Степенные ряды и ряды Тейлора..Степенные ряды..... Ряд Тейлора.... 4.Разложение некоторых элементарных функций в ряды Тейлора и Маклорена.... 5 4.Применение степенных рядов.... 7.Степенные

Подробнее

Ответы к заданию Определение приращения аргумента Δx

Ответы к заданию Определение приращения аргумента Δx Ответы к заданию приращения аргумента Δ Приращением аргумента Δ f ( называется разность между значением аргумента в точке и любой другой точке из некоторой окрестности точки Δ, U ( : δ приращения f Δ (

Подробнее

6 Общая схема исследования функции

6 Общая схема исследования функции 5 6 Общая схема исследования функции Исследование дважды дифференцируемой функции будем проводить по следующей схеме. Находим область определения функции D( f.. Определяем точки разрыва функции.. Находим

Подробнее

Функции многих переменных

Функции многих переменных Функции многих переменных Задача 7 Найти все производные второго порядка функции f ( x, y) : f ( x, y) y x Искомые производные: Задача 9 Найти полный дифференциал и градиент функции А: 3 4 f ( x, y) ln

Подробнее

Область определения данной функции определяется неравенством 5x x 6> 0 являются числа x =, x 3. Так как ветви параболы

Область определения данной функции определяется неравенством 5x x 6> 0 являются числа x =, x 3. Так как ветви параболы Вариант 5 Найти область определения функции lg5 Область определения данной функции определяется неравенством 5 > Корнями уравнения 5+ являются числа, Так как ветви параболы + 5 направлены вниз, то неравенство

Подробнее

МЕТОДИЧЕСКИЕ УКАЗАНИЯ К РАСЧЕТНЫМ ЗАДАНИЯМ ПО КУРСУ ВЫСШЕЙ МАТЕМАТИКИ «ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ. РЯДЫ. КРАТНЫЕ ИНТЕГРАЛЫ» ЧАСТЬ III

МЕТОДИЧЕСКИЕ УКАЗАНИЯ К РАСЧЕТНЫМ ЗАДАНИЯМ ПО КУРСУ ВЫСШЕЙ МАТЕМАТИКИ «ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ. РЯДЫ. КРАТНЫЕ ИНТЕГРАЛЫ» ЧАСТЬ III МЕТОДИЧЕСКИЕ УКАЗАНИЯ К РАСЧЕТНЫМ ЗАДАНИЯМ ПО КУРСУ ВЫСШЕЙ МАТЕМАТИКИ «ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ РЯДЫ КРАТНЫЕ ИНТЕГРАЛЫ» ЧАСТЬ III ТЕМА ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ОГЛАВЛЕНИЕ

Подробнее

Так как y, то уравнение примет вид x и найдем его решение. x 2 Отсюда. x dy C1 2 и получим общее решение уравнения 2

Так как y, то уравнение примет вид x и найдем его решение. x 2 Отсюда. x dy C1 2 и получим общее решение уравнения 2 Лекции -6 Глава Обыкновенные дифференциальные уравнения Основные понятия Различные задачи техники естествознания экономики приводят к решению уравнений в которых неизвестной является функция одной или

Подробнее

2 Конечномерные гладкие задачи с равенствами

2 Конечномерные гладкие задачи с равенствами 2 Конечномерные гладкие задачи с равенствами В этом параграфе даются необходимые и достаточные условия экстремума в гладкой конечномерной задаче с ограничениями типа равенств. 2.1 Постановка задачи Пусть

Подробнее

Экстремум функций нескольких переменных

Экстремум функций нескольких переменных Экстремум функций нескольких переменных МЮБаландин Май 004 Аннотация Рассматриваются вопросы, связанные с темой «Экстремум функции нескольких переменных» из второго семестра курса математического анализа

Подробнее

Системы дифференциальных уравнений

Системы дифференциальных уравнений Системы дифференциальных уравнений Введение Также как и обыкновенные дифференциальные уравнения системы дифференциальных уравнений применяются для описания многих процессов реальной действительности В

Подробнее

Интегрирование рациональных дробей. Рациональной дробью называется дробь вида P ( x)

Интегрирование рациональных дробей. Рациональной дробью называется дробь вида P ( x) ПРАКТИЧЕСКОЕ ЗАНЯТИЕ Интегрирование рациональных дробей Рациональной дробью называется дробь вида P Q, где P и Q многочлены Рациональная дробь называется правильной, если степень многочлена P ниже степени

Подробнее

15. Символы o и O, теорема о среднем, формула Тейлора

15. Символы o и O, теорема о среднем, формула Тейлора 15. Символы o и O, теорема о среднем, формула Тейлора Начнем эту лекцию с того, что введем два часто используемых в анализе обозначения. Именно: пусть f и g две функции переменной x, обе стремящиеся к

Подробнее

Вариант x Область определения данной функции определяется двумя неравенствами: 1 и

Вариант x Область определения данной функции определяется двумя неравенствами: 1 и Вариант 5 Найти область определения функции : y arcsin + Область определения данной функции определяется двумя неравенствами: и или Умножим первое неравенство на и освободимся от знака модуля: Из левого

Подробнее

Министерство общего и профессионального образования Российской Федерации РОСТОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ. Е. Я. Файн МЕТОДИЧЕСКОЕ ПОСОБИЕ

Министерство общего и профессионального образования Российской Федерации РОСТОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ. Е. Я. Файн МЕТОДИЧЕСКОЕ ПОСОБИЕ Министерство общего и профессионального образования Российской Федерации РОСТОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ Е. Я. Файн МЕТОДИЧЕСКОЕ ПОСОБИЕ по курсу ЭЛЕМЕНТАРНАЯ МАТЕМАТИКА для студентов первого курса

Подробнее

Билет 6 1. Дифференциалы высших порядков функции нескольких переменных. Формула Тейлора. 2. Интегрирующий множитель, его нахождение в частных случаях.

Билет 6 1. Дифференциалы высших порядков функции нескольких переменных. Формула Тейлора. 2. Интегрирующий множитель, его нахождение в частных случаях. Математика 2 Билет 1 Лектор Конев В.В. 1. Дифференцирование сложной функции нескольких переменных. 2. Дифференциальные уравнения 1-го порядка, основные понятия (определение, решение уравнения, общее и

Подробнее

Романова Л.Д., Ланцова В.А., Романова Е.Г. Контрольные задания по высшей математике и методические указания к их выполнению

Романова Л.Д., Ланцова В.А., Романова Е.Г. Контрольные задания по высшей математике и методические указания к их выполнению Федеральное агентство по образованию Пензенский государственный университет Кафедра Высшей и прикладной математики Романова ЛД, Ланцова ВА, Романова ЕГ Контрольные задания по высшей математике и методические

Подробнее

Интегралы и дифференциальные уравнения. Лекция 16

Интегралы и дифференциальные уравнения. Лекция 16 кафедра «Математическое моделирование» проф. П. Л. Иванков Интегралы и дифференциальные уравнения конспект лекций для студентов 1-го курса 2-го семестра специальностей РЛ1,2,3,6, БМТ1,2 Лекция 16 Геометрическая

Подробнее

Авторский коллектив: В. К. Романко, Н. Х. Агаханов, В. В. Власов, Л. И. Коваленко

Авторский коллектив: В. К. Романко, Н. Х. Агаханов, В. В. Власов, Л. И. Коваленко 3-... 2012 УДК 517.9 ББК 22.161.1 C23 Авторский коллектив: В. К. Романко, Н. Х. Агаханов, В. В. Власов, Л. И. Коваленко C23 Сборник задач по дифференциальным уравнениям и вариационному исчислению / В.

Подробнее

П.01. Производная. . Тогда производной функции в данной точке называется следующее отношение: lim

П.01. Производная. . Тогда производной функции в данной точке называется следующее отношение: lim П0 Производная Рассмотрим некоторую функцию f ( ), зависящую от аргумента Пусть эта функция определена в точке 0 и некоторой ее окрестности, непрерывна в этой точке и ее окрестностях Рассмотрим небольшое

Подробнее

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование»

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ Московский государственный технический университет имени Н.Э. Баумана Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» À.Í. Êàíàòíèêîâ,

Подробнее

На устном экзамене студент получает два вопроса и две задачи. Вопросы к итоговому экзамену по всему курсу

На устном экзамене студент получает два вопроса и две задачи. Вопросы к итоговому экзамену по всему курсу На устном экзамене студент получает два вопроса и две задачи. Вопросы к итоговому экзамену по всему курсу 1. Дайте определение конечного предела последовательности. Приведите пример последовательности,

Подробнее

ПРИКЛАДНЫЕ МЕТОДЫ ОПТИМИЗАЦИИ. В.В. Корнев В.В. Курдюмов В.С. Рыхлов

ПРИКЛАДНЫЕ МЕТОДЫ ОПТИМИЗАЦИИ. В.В. Корнев В.В. Курдюмов В.С. Рыхлов ПРИКЛАДНЫЕ МЕТОДЫ ОПТИМИЗАЦИИ В.В. Корнев В.В. Курдюмов В.С. Рыхлов 2 Оглавление Введение 5 1 Нелинейная оптимизация 9 1.1 Постановка задачи оптимизации. Основные понятия и определения................

Подробнее

ПЕРИОДИЧЕСКИЕ В СРЕДНЕМ РЕШЕНИЯ ЛИНЕЙНОГО НЕОДНОРОДНОГО ДИФФЕРЕНЦИАЛЬНОГО УРАВНЕНИЯ ПЕРВОГО ПОРЯДКА СО СЛУЧАЙНЫМИ КОЭФФИЦИЕНТАМИ

ПЕРИОДИЧЕСКИЕ В СРЕДНЕМ РЕШЕНИЯ ЛИНЕЙНОГО НЕОДНОРОДНОГО ДИФФЕРЕНЦИАЛЬНОГО УРАВНЕНИЯ ПЕРВОГО ПОРЯДКА СО СЛУЧАЙНЫМИ КОЭФФИЦИЕНТАМИ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ, 214, том 5, 6, с. 726 744 ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ УДК 517.925.52+519.218 ПЕРИОДИЧЕСКИЕ В СРЕДНЕМ РЕШЕНИЯ ЛИНЕЙНОГО НЕОДНОРОДНОГО ДИФФЕРЕНЦИАЛЬНОГО УРАВНЕНИЯ

Подробнее

Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине (модулю):

Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине (модулю): Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине (модулю): Общие сведения. Кафедра Математики и математических методов в экономике. Направление подготовки 05000

Подробнее

7. КВАДРАТИЧНЫЕ ФОРМЫ. n. Это условие не ограничивает общности, так как сумму двух подобных членов

7. КВАДРАТИЧНЫЕ ФОРМЫ. n. Это условие не ограничивает общности, так как сумму двух подобных членов 7 КВАДРАТИЧНЫЕ ФОРМЫ 7 ОПРЕДЕЛЕНИЕ КВАДРАТИЧНОЙ ФОРМЫ Квадратичной формой переменных,, называется выражение вида q a, 7 в котором коэффициенты a, не все равные нулю, удовлетворяют условиям симметричности

Подробнее

ДИФФЕРЕНЦИРОВАНИЕ ФУНКЦИЙ ОДНОЙ ПЕРЕМЕННОЙ Понятие производной, ее геометрический и физический смысл

ДИФФЕРЕНЦИРОВАНИЕ ФУНКЦИЙ ОДНОЙ ПЕРЕМЕННОЙ Понятие производной, ее геометрический и физический смысл ДИФФЕРЕНЦИРОВАНИЕ ФУНКЦИЙ ОДНОЙ ПЕРЕМЕННОЙ Понятие производной, ее геометрический и физический смысл Задачи, приводящие к понятию производной Определение Касательной S к линии y f (x) в точке A x ; f (

Подробнее