ЧАСТЬ 2. ПРИМЕНЕНИЕ ИММОБИЛИЗОВАННЫХ ФЕРМЕНТНЫХ ПРЕПАРАТОВ В БИОТЕХНОЛОГИИ И МЕДИЦИНЕ. В последние годы в результате интенсивного развития

Размер: px
Начинать показ со страницы:

Download "ЧАСТЬ 2. ПРИМЕНЕНИЕ ИММОБИЛИЗОВАННЫХ ФЕРМЕНТНЫХ ПРЕПАРАТОВ В БИОТЕХНОЛОГИИ И МЕДИЦИНЕ. В последние годы в результате интенсивного развития"

Транскрипт

1 ЧАСТЬ 2. ПРИМЕНЕНИЕ ИММОБИЛИЗОВАННЫХ ФЕРМЕНТНЫХ ПРЕПАРАТОВ В БИОТЕХНОЛОГИИ И МЕДИЦИНЕ. В последние годы в результате интенсивного развития биотехнологии и генной инженерии ферменты и белки находят широкое применение в медицине. В настоящее время существует более 400 видов лекарственных средств на основе белков. Однако при пероральном применении таких лекарств стоит проблема ферментативной и/или кислотной деградации в желудочно-кишечном тракте. При внутривенном введении препаратов ряд белок-содержащих лекарств также характеризуются коротким временем полураспада, в частности, вследствие поглощения клетками ретикулоэндотелиальной системы (РЭС), состоящей в основном из макрофагов. Другой проблемой, связанной с применением белков медицинского назначения, является наличие аллергических реакций. Для решения данной проблемы разработан ряд подходов основанных на создании фермент-содержащих функциональных систем, различного типа (по природе, структурной организации и функциональным свойствам), которые применяются в зависимости от назначения лекарств и требований предъявляемых к системам. Иммобилизация белков (ферментов) суть ограничение подвижности данных биомолекул. Иммобилизация биомолекул является одним из основных методов биотехнологии. Метод иммобилизации широко применяется в производстве лекарственных средств; в пищевой промышленности; в производстве косметических средств; в химическом анализе и многих других областях. Цели иммобилизации весьма разнообразны: это может быть перевод биокатализатора в гетерогенное состояние; стабилизация биокатализатора и/или придание новых функциональных или структурных свойств для более эффективного использования в биокаталитическом процессе. При иммобилизации ферменты из разряда гомогенных катализаторов переходят в разряд гетерогенных или микрогетерогенных. Иммобилизация позволяет пространственно разделить фермент и реагенты, что обуславливает возможность получать продукт без примеси фермента; в нужный момент остановить реакцию; регенерировать фермент после окончания реакции и использовать его для нового цикла биотехнологического процесса. Другим, не менее важным аспектом, является придание белкам по средствам образования надмолекулярных структур требуемых физико-химических свойств (гидродинамические свойства, пространственная ориентация биомолекул, агрегатное состояние). Перечисленные свойства важны для расширения области практического использования ферментов. Фактором, способствующим длительному, в том числе непрерывному, функционированию иммобилизованных ферментов является их повышенная

2 стабильность, сохранение активности в течении длительного времени как при хранении, так и в ходе протекания биокаталитической реакции (операционная стабильность). В результате иммобилизации ферменты могут приобретать свойства, не характерные для них в свободном состоянии. Каковы основные преимущества применения методов иммобилизации (инкапсулирования) при разработке новых лекарственных форм? Адресная доставка. Первое и главное преимущество - включение лекарственных препаратов в наносистемы позволяет осуществлять адресную доставку лекарства. Это может реализоваться за счет целенаправленного подбора размеров наночастиц. Например, размер наночастиц может быть больше диаметра пор капилляров, тогда объем распределения наночастиц, содержащих лекарство ограничивается компартаментом введения. Например, при внутривенном введении наночастицы плохо проникают в здоровые органы и ткани, но хорошо проникают в очаги воспаления, т.к. вблизи очагов воспаления капилляры, снабжающие эти области кровью, сильно перфорированы. Этот процесс называется пассивное нацеливание. Существует также метод «активной» адресной доставки лекарства, где в качестве "молекулярного адреса" наиболее часто выбирают иммуноглобулины, имеющие соответствующие мишени на целевых клетках. Ясно, что в результате адресной доставки (как пассивной так и активной) достигается значительное увеличение эффективности действия препаратов при существенном снижении токсичности. Пролонгированное действие лекарства. Важное преимущество наночастиц как лекарственной формы - постепенное высвобождение лекарственного вещества, инкорпорированного в них, что увеличивает время его действия. Стабилизация против био- и кислотной деградации в желудочно-кишечном тракте при пероральном применении лекарственного препарата. При внутривенном введении возможна защита (маскирование, экранирование) от захвата макрофагов клетками ретикулоэндотелиальной системы РЭС (например, при модификации поверхности частицы полиэтиленгликолем (ПЭГ)). Снижение иммуногенности за счет маскирования лекарственного материала включенного в микрокапсулы Возможность конструировать комплексные препараты, например, поливалентные вакцины. 1. Биосовместимые материалы для получения фермент-содержащих надмолекулярных систем, применяемых в биотехнологии и медицине.

3 Среди основных требований предъявляемых к носителям предназначенным для применения в биологии и медицине отметим следующие: (1) возможность синтезировать требуемые системы в мягких условиях; (2) возможность контролировать свойства синтезируемых систем (структуры, размера, гидродинамических свойств, прочности); (3) возможность включения целевых биомолекул в мягких условиях; (4) возможность придавать системам желаемые функциональные свойства (например, флуоресцентные или магнитные) путем включения в микро- (нано)капсулы или на их поверхность соответствующих компонентов (например, квантовых точек); (5) биосовместимость и биодеградируемость материалов; (6) стабильность. Материалы, используемые в качестве носителей при иммобилизации биокатализаторов, чрезвычайно разнообразны. Это могут быть частицы на основе силикагеля, гидрооксида титана, циркония, железа и др., полимерные синтетические и природные материалы. Для синтеза оболочек при инкапсулировании биокатализаторов часто используются полиэлектролиты и полиэлектролитные пары поликатион-полианион. Химическая природа, молекулярный вес и структура полиэлектролитов входящих в состав оболочки капсул определяют свойства синтезируемых капсул, структуру, размер, проницаемость, прочность и др. Синтетические полимеры обладают рядом преимуществ: четко контролируемые свойства, высокая стабильность, химическая инертность. Однако, при получении фермент-содержащих надмолекулярных систем предназначенных для применения в биологии и медицине в качестве носителей наиболее широко используются природные материалы: полиэлектролиты или полиэлектролитные пары природных полисахаридов, альгиновая кислота, каррагенан, пектин, хитозан; а также это могут быть белки, которые в силу своих амфотерных свойств в зависимости от рн могут являться как поликатионами, так и полианионами; для приготовления функциональных систем на основе липосом используются природные липиды компоненты биомембран. Преимущество природных соединений перед синтетическими полимерами в том, что они биосовместимы, нетоксичны и биодеградируемы в физиологических условиях. Рассмотрим некоторые широко применяемые в биотехнологии и медицине полисахариды. Альгинаты, соли альгиновой кислоты, широко используется для получения микро- и нанокапсул многих биоактивных молекул, ферментов, вакцин, инсулина и цитокинов. Альгинаты (соли альгиновых кислот) получают из бурых морских водорослей, они состоят из связанных 1.4-β- связями остатков D-маннуроновой (рка=3.38) и α-lгулуроновой (рка=3.2) кислот. Альгинат образует гели с высокой степенью гидратации (высоким содержанием воды), высокой прочности, но относительно мягкой консистенции,

if ($this->show_pages_images && $page_num < DocShare_Docs::PAGES_IMAGES_LIMIT) { if (! $this->doc['images_node_id']) { continue; } // $snip = Library::get_smart_snippet($text, DocShare_Docs::CHARS_LIMIT_PAGE_IMAGE_TITLE); $snips = Library::get_text_chunks($text, 4); ?>

4 что делает гидродинамические свойства геля близки по своим характеристикам к природным тканям. Гель на основе альгината образуется в мягких условиях при комнатной температуре без добавления органических растворителей, гель биодеградируем в физиологических условиях. Уникальные свойства альгината делают его одним из основных белковых носителей для доставки лекарств в организме. Пектин. Среди природных полисахаридов, содержащих отрицательно заряженные группы, помимо альгината широко распространенным является пектин, который используется в качестве гелеобразующего и влагоудерживающего агента, а также в качестве загустителя в пищевой и фармацевтической промышленности. Пектин выделяют из клеточных стенок растений, например, из лимонной кожуры. Пектин представляет собой линейный полимер α-галактуроновой кислоты, в котором часть карбоксильных групп находится в метоксилированном состоянии (рис. 1.). Молекулярный вес пектинов обычно находится в интервале кда. Различают высоко-метоксилированный пектин, в котором степень метоксилирования более 50%, и низко-метоксилированный пектин, в котором степень метоксилирования соответственно меньше 50%. Рис. 1. Структурная формула низкометоксилированного пектина. Взаимодействие пектина с белками лежит в основе его многочисленных практических применениях, в основном для гелеобразования и стабилизации пен и эмульсий в производстве лекарственных средств, пищевых добавок и в пищевой промышленности. Классическим примером является использование пектина для стабилизации казеин-содержащих мицелл в кисломолочных напитках. Благодаря электростатическому взаимодействию отрицательно заряженных групп пектина с положительно заряженными аминогруппами казеина, молекулы пектина адсорбируются на казеиновых мицеллах, тем самым, предотвращая агрегацию в кислых средах. Свойства комплексов белков с анионными полисахаридами (в частности, пектином), применяющихся для стабилизации пищевых коллоидных систем, пен и эмульсий, интенсивно изучаются в связи с открывающимися перспективами промышленного применения. Так, для смеси молочных белков, и некоторых других глобулярных белков было установлено, что в присутствие пектина система может

5 находиться в четырех различных состояниях в зависимости от рн, ионной силы и соотношения компонентов. При нейтральных значениях рн пектин отрицательно заряжен, и хотя общий заряд белков также отрицателен, имеет место взаимодействие положительно заряженных аминогрупп групп белков с карбоксильными группами полисахарида. В таких условиях образуется гомогенная система, состоящая из расторимых белокполисахаридных комплексов находящихся в равновесии со свободными компонентами (1). При снижении значения рн до изоэлектрической точки белка и ниже образуется растворимый белок-полисахаридный комплекс (2). В частности, в случае β- лактоглобулина растворимый комплекс с пектином образуется при значениях рн 4-5. Дальнейшее снижение значения рн приводит к снижению общего отрицательного заряда комплекса. Наблюдается образование двухфазной системы, состоящей из нерастворимого комплекса, в котором большая часть зарядов ПЭ компенсирована, за счет взаимодействия с белком (образуется белок-пэ комплекс «стехиометрического» состава) и водной фазы, в которой растворен избыток полисахарида (3). При значениях рн ниже рка полисахарида происходит протонирование карбоксильных групп пектина и комплексообразования не наблюдается (4). Таким образом, в случае белок-полисахаридных комплексов, варьирование параметров среды позволяет в широких пределах изменять состояние системы, переходить от гомогенных водных растворов к гетерогенным системам, формировать комплексы различной структуры, и размеров. На этом основано все возрастающее применение пектина и других природных полисахаридов в пищевой и косметической промышленности, в производстве пищевых добавок и лекарственных средств. Аравийская камедь. Аравийская камедь - натуральный гидроколлоидный полисахарид. В ее состав входят арабин (кальциевые, калиевые, магниевые соли арабиновой кислоты), глюкуроновая кислота, гиалуроновая кислота, ксилоза, галактоза растворяется в воде с образованием геля. Гуммиарабик отборный, белый, Gummi arabicum electum, albissimum, употребляется в медицине как средство для похудения, замедляет прохождение пищи по кишечнику, уменьшает всасывание холестерина и жиров, лекарства на основе аравийской камеди обладают смягчающим, болеутоляющим, заживляющим действием. Аравийская камедь - противоожоговое средство для кожи, слизистых дыхательных путей и ЖКТ. Может использоваться как основное лекарственное средство, а также как компонент для инкапсулирования и доставки лекарств. Для иллюстрации практического применения аравийской камеди в пищевой промышленности приведем инкапсулирование капель подсолнечного масла, а также масел лимона и апельсина с использованием комплексов молочных белков с аравийской

6 камедью. Полученные капсулы включались в сыр Гауда в качестве натуральных вкусовых добавок, а также использовались для изменения текстурных свойств сыра. Последние варьировали размером капель масла и составом капсул. Хитозан. Одним из наиболее распространенных и широко используемым аминополисахаридом является хитозан. Хитозан является деацилированным (частично или полностью) производным хитина, линейного полисахарида, построенного из остатков N ацетил - β - D глюкозамина с 1 4 связями между ними (рис. 2). Рис. 2. Структурная формула хитозана. Деацилированные производные хитина, хитозаны, существуют в природе, а также их получают путем химической обработки хитина. Молекулярная масса хитозана в зависимости от источника и способа выделения составляет 0.5 8*10 5 Да. Физикохимические свойства и микробиологическая активность хитозана определяются молекулярным весом и степенью деацилирования. Данные факторы влияют на растворимость полисахарида, вязкость полученных растворов и взаимодействие с клеточными стенками микроорганизмов. Хитозан нерастворим в воде при нейтральных значениях рн, но растворяется в разбавленных органических кислотах, например в водном растворе уксусной кислоты с образованием солей, дающих высоковязкие растворы. Некоторые N ацилпроизводные хитозана хорошие гелеобразователи; при ацилирование хитозана производными дикарбоновых кислот получают поперечносшитые гели, удобные для получения ферментсодержащих систем. На примере ряда ферментов: липазы, целлюлазы, щелочной протеазы, L аспарагиназы и др. было установлено, что в результате их иммобилизации на хитозане существенно увеличивается термостабильность ферментов. В ряде случаев наблюдается увеличение каталитической активности ферментов. Ферменты могут быть иммобилизованы на хитозане, используя как амино- так и гидроксильные группы, такую иммобилизацию называют двойной иммобилизацией. Сначала образуется связь между аминогруппой и глутаровым альдегидом, а затем между

7 гидроксильной группой и карбодиимидом (рис. 3.). Двойная иммобилизация приводит к дополнительной стабилизации фермента. Рис. 3. Иммобилизация липазы на хитозане. Важным свойством хитозана является его способность образовывать прочные нековалентные комплексы с белками, анионными полисахаридами, а также, хелатные комплексы с металлами, на чем основано его применение в качестве материала для инкапсулирования биомолекул при изготовлении медицинских препаратов; для удаления белка из сточных вод в производстве пищевых продуктов (мясная, рыбная, молочная промышленность, сыроделие), создания хелатирующих ионнонообмеников, иммобилизации живых клеток в биотехнологии, а также при изготовлении медицинских препаратов. Липидные носители. Липосомы находят широкое применение в качестве наноносителей для ферментов и лекарственных препаратов, что обусловлено главным образом близостью свойств липидных носителей и природных биомембран.

8 По своей природе входящие в состав биологических мембран липиды можно разделить на три класса: фосфолипиды, гликолипиды и нейтральные липиды, основным представителем которых является холестерин. Структурные формулы основных представителей каждого класса представлены в таблице 1. Таблица 1. Структурные формулы основных липидов биомембран. КЛАСС Фосфолипиды СТРУКТУРНАЯ ФОРМУЛА ОСНОВНЫЕ ПРЕДСТАВИТЕЛИ КЛАССА Х R 1 и R 2 остатки жирных кислот X: X: Фосфатидилхолин (ФХ) Фосфатидилэтаноламин (ФЭ) X: Фосфатидилсерин (ФС) Фосфатидилинозит (ФИ) X: Кардиолипин X: Гликолипиды R остаток жирной кислоты Y: Н Цереброзиды Y: SO 3 H Сульфатиды Нейтральные липиды Холестерин

9 Фосфолипиды составляют мажорную часть липидов биомембран. Фосфолипиды со сравнительно длинными углеводородными цепями (18-22 углеродных атома) и большим количеством ненасыщенных связей представляют собой жидкие липиды. Температура фазовых переходов таких липидов в биомембранах лежит значительно ниже температуры организма, что необходимо для осуществления в мембранах быстропротекающих процессов. Фазовые переходы в мембранах играют важную роль в протекании не только транспортных процессов, но и функционировании мембранных ферментов и ферментных комплексов. Здесь идет речь о регуляции ферментативной активности при фазовом переходе, т.н. вязкотропной регуляции. Механизм вязкотропной регуляции рассматривает в качестве регулирующего фактора не только фазовое состояние, но и плотность упаковки липидов в мембране, которая определяется насыщенностью и длинной углеводородной цепи. Фосфолипидным составом определяется также проницаемость мембран. Важную роль в регуляции биопроцессов играет холестерин. Не будет большим преувеличением, если сказать, что любое нарушение функционального состояния организма сопровождается изменением уровня холестерина в крови. Молекула холестерина отличается уникальным по сравнению с другими липидными компонентами мембран сочетанием структурных особенностей. Она имеет: жесткий углеводородный скелет, который, как правило, трудно разрушается ферментными системами организма; наличие в структуре в целом гидрофобной молекулы гидроксильной спиртовой группы, благодаря чему молекула холестерина легко может проникать в мембрану. Кроме того, холестерин обладает способностью образовывать многочисленные молекулярные соединения с белками, аминами, глюкозой и другими углеводами, желчными и жирными кислотами, неорганическими солями (CaCl 2, MgCl 2, ZnCl 2 и др.). Холестерин образует молекулярные комплексы и с различными фосфолипидами мембран. Включаясь в мембраны, холестерин делает их структуру более жесткой, уменьшая подвижность как в модельных, так и в естественных мембранах. При включении холестерина в мембранах происходит повышение температуры и скорости фазовых переходов липидов. В присутствии холестерина значительно понижается проницаемость мембран для воды, катионов, различных неэлектролитов и других соединений. Для приготовления липосом наиболее часто используются мембранные фосфолипиды: Фосфатидилхолин (ФХ), Фосфатидилэтаноламин (ФЭ), Фосфатидилсерин (ФС), Кардиолипин, а также часто используют смеси липидов. Размер, форма и

10 биологические свойства липосом определяются и регулируются липидным составом, способом и условиями приготовления липосом. 2. Принципы получении белок-содержащих систем для применения в биотехнологии и медицине. Способы иммобилизации чрезвычайно разнообразны, что позволяет подобрать наиболее оптимальный метод включения биомолекул с учетом специфики их последуещего применения. Иммобилизацию биомолекул можно проводить методом адсорбции или «ковалентной пришивки» ферментов к поверхности природных или синтетических носителей; включением ферментов в полимерные гели, поперечной сшивкой молекул фермента, включением в комплексы с полиэлектролитами; инкапсулированием; а также включение белков в липопротеидные комплексы, липосомы, обращенные мицеллы ПАВ. В последние годы для получения белок-содержащих микро- и наносистем широко применяют комбинации различных методов иммобилизации и/или образования коньюгатов. Ярким примером комбинации нескольких методов иммобилизации относятся получение мультифункциональных многослойных полиэлектролитных капсул, где капсулы являются носителями биомолекул, и при этом капсулам можно придавать требуемые функциональные свойства путем введения специфицеских молекул или коллоидных частиц (например, флуоресцентных или магнитных). Классические методы иммобилизации подробно рассмотрены в книге «Биотехнология» части 1 и 7.? Студенты при сдаче коллоквиума должны уметь рассмотреть следующие аспекты: 1. Классификация носителей для иммобилизации ферментов и обсудить области их возможного применения (привести примеры); 2. Методы иммобилизации их применение (привести примеры) 3. Ковалентная «пришивка» фермента к носителю. Активация функциональных групп носителей (привести уравнения реакции) 4. Особенности (характеристики и свойства) иммобилизованных ферментов Здесь мы рассмотрим наиболее часто употребляемые методы при получении белоксодержащих систем для применения в биотехнологии и медицине.: образование интерполиэлектролитных и фермент-полиэлектролитных комплексов, инкапсулирование биомолекул

11 включение в липосомы или обращенные мицеллы ПАВ, образование коньюгатов с полиспиртами ПЭГ и блоксополимерами, плюрониками и проксанолами. Интерполиэлектролитные и Белок-Полиэлектролитные комплексы Метод образования интерполиэлектролитных комплексов широко применяется для получения белок-содержащих коллоидных частиц, а также при создании оболочки микрокапсул. Преимуществом данного метода является технологичность, мягкие условия получения и наоборот - деградации, а также возможность целенаправленного контроля свойств частиц: размера, который может варьироваться от нм до микрометров; функциональных, гидродинамических, поверхностных свойств частиц. Белокполиэлектролитные комплексы (БПЭК) спонтанно образуются, в основном, за счет электростатических взаимодействий противоположно заряженных групп полиэлектролитной пары или пары белок-полиэлектролит (рис. 4.). Рис. 4. Образования белок-полиэлектролитных комплексов. БПЭК устойчивы в широком интервале значений рн и ионной силы и отличаются высокой стабильностью благодаря кооперативному характеру взаимодействия. Состав и свойства БПЭК зависят от таких параметров как рн, ионная сила, количество зарядов на поверхности белка, его изоэлектрическая точка и степень полимеризации полиэлектролита. При изменении рн меняется количество зарядов на поверхности белковой глобулы (рис. 5.), что приводит к изменению числа межмолекулярных контактов

12 между белком и полиэлектролитом, в результате чего меняется состав комплекса, его структура и общий размер частицы. Например, если комплекс состоит из белка и поликатиона, то снижение рн приводит к увеличению "емкости" поликатиона по 0 молекулам белка при неизменной длине поликатиона. При этом уменьшается число 0 pi межмолекулярных контактов в комплексе в расчете на одну глобулу белка. ph Рис. 5. Зависимость количества положительных (1) и отрицательных (2) зарядов на поверхности белка от рн среды. рi - изоэлектрическая точка белка. Наличие в системе низкомолекулярного электролита оказывает влияние на характеристический состав БПЭК. При увеличении ионной силы низкомолекулярный электролит начинает конкурировать с полиэлектролитом за солевые связи с белком, что приводит к уменьшению "емкости" полиэлектролита по белку. При низкой ионной силе для БПЭК наблюдается образование неравновесного комплекса. Для того, чтобы образовался равновесный БПЭК необходимо добавлять небольшое (5-10 мм) количество соли в растворы полиэлектролита и белка. При высокой концентрации соли (свыше 0,5 М) происходит полное разрушение комплекса белка с полиэлектролитом, а сильное обессоливание (методом диализа) системы приводит к электростатической дестабилизации частиц БПЭК. При этом увеличивается вязкость среды, что связано с образованием крупных агрегатов, которые при добавлении соли восстанавливают свойства БПЭК. Каталитическая активность ферментов в комплексе с ПЭ

13 Образование комплекса с ПЭ, как правило, не приводит к изменению каталитических параметров ферментов. Катализ ферментами в комплексе с полиэлектролитами как правило описывается схемой Михаэлиса-Ментен. В ряде случаев наблюдаеются увеличение каталитической активности ферментов за счет эффектов микросреды, образуемой полиэлектролитной оболочкой, может наблюдаться также уменьшение константы Михаэлиса в 2-5 раз для низкомолекулярных субстратов, но чаще всего кинетические константы остаются практически неизменными. Для ферментов, включенных в комплекс с полиэлектролитом наблюдается: сохранение каталитических свойств; повышение устойчивости к действию протеолитических ферментов; повышение термостабильности, и стабильности при хранении, часто наблюдается изменение рн профиля зависимости каталитической активности. Студенты при сдаче коллоквиума по данной теме должны уметь объяснить: а) за счет чего может увеличиваться стабильность ферментов? б) за счет чего может меняться рн профиль зависимости каталитической активности ферментов при образовании комплексов с полиэлектролитами? в) Какие свойства обуславливают применимость ИПЭК и фермент-пэ комплексов в биотехнологии и медицине? Для получения нерастворимых в воде комплексов применяют метод образования тройных комплексов белок-полианион-поликатион, в которых белок связан с обоими ПЭ и в которых регулируется число нескомпенсированных зарядов на полиэлектролитах путем подбора условий. Данный принцип образования комплексов применяют, например, при синтезе белок-содержащих многослойных полиэлектролитных капсул. Многослойные полиэлектролитные капсулы Многослойные полиэлектролитные капсулы можно расматриватиь как универсальные мультифункциональные носители. Полиэлектролитные капсулы состоят из следующих блоков: (1) Полиэлектролитные оболочка капсул; (2) Включаемые целевые биомолекулы; (3) Дополнительные функциональные агенты (магнитные, флуоресцентные молекулы или частицы, коллоидные частицы драгоценных металлов, золота или серебра) (рис. 6.).

14 Многофункциональные полиэлектролитные капсулы Включаемые вещества: Биомакромолекулы, лекарства Дополнительные функциональные молекулы/частицы Полиэлектролитная оболочка капсулы Искусственные ПЭ Природные ПЭ: полисахариды Белки, антитела, ферменты ДНК, лекарства 6. Структура многослойных полиэлектролитных капсул ферромагнитные частицы Рис. флуоресцентные молекулы, частицы квантовые точки локальный перегрев капсул, коллоидные частицы Au, Ag Синтез многослойных полиэлектролитных капсул проводят послойной адсорбцией полиэлектролитов (поочередно, поликатионов и полианионов) на противоположных по заряду сферических частицах (рис. 7). Частицы могут быть полистиреновые, силикагельные, карбонатные, (MnCO 3, CaCO 3, CdCO 3 ), а также это могут быть биологические клетки. После окончания процесса послойной адсорбции сферическая частица, служившая в качестве матрицы при синтезе полиэлектролитных капсул удаляется (например, методом растворения) без повреждения структуры полиэлектролитной оболочки. Рис. 7. Синтез многослойных полиэлектролитных капсул. Для растворения ядра полиэлектролитных капсул используют растворы соляной кислоты, раствор ЕДТА и др. в зависимости от химической природы материала. Размер внутренней полости капсул регулируется размером используемой в качестве матрицы частицы, размер

15 которой и соответственно размер внутренней полости капсул может варьироваться от 20 до нескольких сотен нанометров. Отметим, что для использования в медицинских целях при синтезе многослойных полиэлектролитных нанокапсул используют биосовместимые материалы природные полисахариды и белки (подробное описание материалов приведено выше). Споcобы инкапсулирования целевых функциональных биомолекул. Существует несколько способов включения биомолекул в полимерные капсулы. Одна из стратегий основана на использовании ферментов в кристаллическом состоянии или клеток в качестве ядра (матрицы) капсул, на которые послойно адсорбируют полиэлектролитные оболочки. Активность инкапсулированного фермента при этом польностью сохраняется, сохраняются также нативные функциональные свойства клеток. Недостатком такого способа является невозможность получения монодисперстных частиц и невозможность четкого контроля формы, размеров и других параметров частиц. Другой метод основан на возможности включать биомолекулы в полиэлектролитные нанокапсулы незамедлительно после растворения матрицы (ядра) капсулы. Например, существует возможность регулировать проницаемость полиэлектролитной оболочки капсул изменением условий, например, изменяя значение рн и полярность растворителя, переводя капсулы из «закрытого» состояния в «открытое» и обратно. Так, при понижении рн и в присутствии этанола структура полиэлектролитного комплекса становится более рыхлой и полиэлектролитная оболочка становится проницаемой и доступной для включения белков. После включения целевых биомолекул, полиэлектролитная капсула переводится в «закрытое состояние» путем изменения условий среды (рис. 8.). Преимуществом данного метода является возможность синтезировать монодисперстные нанокапсулы заданного размера внутренней полости, используя в качестве матрицы при синтезе полиэлектролитных капсул комерчески доступные полимерные частицы. Рис. 8. Включение функциональных биомолекул методом регулирования проницаемости полиэлектролитной микрокапсулы Альтернативным методом включения целевых функциональных биомолекул является предварительная адсорбция целевых биомолекул на порах наночастиц

16 (например, карбонатных кристаллов), используемых в качестве матрицы при синтезе полиэлектролитных капсул с последующим растворением матрицы в мягких условиях, низких рн или в присутствии ЕДТА. Недостатком подхода является методические трудности при получении монодисперстных карбонатных наночастиц. Помимо включения целевых биомолекул, полиэлектролитным капсулам можно придавать дополнительные функциональные свойства. Например при включении полупроводниковых коллоидных наночастиц CdSe или CdTe (квантовых точек) капсуле придают флуоресцентные свойства и тем самым, возможность детекции наночастиц (рис. 6.). Путем включения магнитных наночастиц, Fe 3 О 4, капсулам придают контролируемую подвижность в требуемом направлении с заданной скоростью, которую регулируют, применяя внешний градиент магнитного поля. Включение коллоидных частиц благородных металлов, золота или серебра в полиэлектролитные слои позволяет регулировать проницаемость полиэлектролитных капсул или инициировать их разрушение. Метод основан на том, что поглощении света частицами золота или серебра приводит к локальному перегреву полиэлектролитных капсул, что ведет к разрушению капсулы и выбросу целевых молекул (лекарства) (рис. 10). Физико-химические методы контроля свойств частиц Для контроля свойств полиэлектролитных капсул и/или роста полиэлектролитных слоев на сферической матрице при синтезе частиц используют ряд физико-химических методов, светорассеяние, электрофоретическая подвижность, за структурой частиц обычно следят методом атомно-силовой микроскопии. Метод лазерной сканирующей микроскопии (или флуоресцентной микроскопии) используется для наблюдения в реальном времени и в условиях in vivo за свойствами нанокапсул, их подвижностью, проникающей способности, поглощения клеткой, и доставкой инкапсулированных материалов. Контролируемая доставка и выброс лекарства. Механизм контролируемого выброса лекарства основан на разрушении или регуляции проницаемости оболочки нанокапсул с применением физических методов (свет, ультразвук, радиоволны).

17 Рис. 9. Контролируемый выброс лекарства путем разрушения нанокапсулы под воздействием лазерного света. (i) Направленный лазерный луч вызывает локальный нагрев частиц коллоидного золота (содержащихся в нанокапсуле), что приводит к светоразрушению капсулы и высвобождению инкапсулированного материала. Таким образом, многослойные полиэлектролитные капсулы являют собой мультифункциональные наносистемы, с четко регулируемыми свойствами. Инкапсулирование альгинат-хитозан. Основная область применения - для доставки лекарств, инкапсулирование обеспечивает устойчивость лекарств (в том числе, белков) к био- и кислотной деградации в желудочно-кишечном тракте, а также пролонгированое действие лекарств. Одним из наиболее широко применяемых методов для придания требуемых свойств лекарственным средствам на основе белков является инкапсулирование биоактивных молекул с использованием альгината, каррагинана, коллагена, желатины, целлюлозы, а также некоторых синтетических полимеров. Белки включенные в такие частицы характеризуются высокой биологической и термостабильностью, устойчивостью к изменению рн, улучшенным (в том числе, более пролонгированным) лечебным эффектом и возможностью направленной доставки. Существует два принципиально различных способа инкапсулирования биомолекул. Первый способ метод внешнего гелеобразования. Раствор альгината, содержащий инкапсулируемый материал (белок) с помощью специального «микроразбрызгивателя» вносят в раствор хлорида кальция. «Микроразбрызгиватель» - (или пульверизатор) позволяет получать однородные капли заданного размера. При контакте альгината с ионами кальция немедленно образуются сферические полимерные белок-содержащие частицы. Гелеобразование происходит в направлении от поверхности к центру частиц. Поэтому рассматриваемый метод называют способ внешнего гелеобразования.

18 Рассмотрим метод внутреннего гелеобразования при инкапсулировании биомолекул с использованием альгината (рис. 10). Иммобилизацию биомолекул на частицах альгината проводят следующим образом: к раствору альгината добавляют твердый измельченный карбонат кальция. Полученную смесь эмульгируют в растительном масле, содержащем ПАВ (SPAN 80). Гелеобразование инициируют понижением рн системы (добавлением 0.2% уксусной кислоты). Частицы геля промывают от масла. На полученных сферических частицах адсорбируют фермент, после чего покрывают пленкой хитозана по механизму электростатического комплексообразования. Вопросы студентам: 1) при каких значениях рн (интервал) следует проводить адсорбцию фермента? наносить на фермент-содержащие частицы хитозановое покрытие? 2) Как можно определить эффективность (выход) инкапсулирования (по ферменту?) Рис. 10. Инкапсулирование ферментов на альгинат-хитозановых частицах. В заключении отметим, преимуществом инкапсулирования методом внутреннего гелеобразования путем эмульгирования является возможность получения частиц заданного размера, варьированием условий (содержания воды, ПАВ в системе). Включение ферментов и других биологически активных молекул в липосомы

19 Искусственные липопротеидные комплексы, липосомы, обращенные мицеллы, часто применяются в биологии для изучения мембраноактивных белков и моделирования различных ферментативных, транспортных и рецепторных функций клеточных мембран. Липосомы часто используют в медицине и косметике, поскольку такие системы по своим свойствам близки к природным мембранам. Основное применение липосом в области медицины создание биосовместимых носителей для направленной доставки биоактивных молекул, лекарств. Липосомы представляют собой частицы, которые образованы одним или несколькими концентрическими замкнутыми липидными бислoями, внутренний объем которых изолирован от внешней среды. В зависимости от размера частиц и числа образующих их липидных слоев различают следующие липосомы: 1) малые моноламеллярные, образованные одиночным липидным бислоем (диаметр нм); 2) крупные моноламеллярные (макровезикулярные), образованные также одиночным бислоем (диаметр нм и выше); 3) многослойные (мультиламеллярные), насчитывающие до неск. десятков и даже сотен липидных бислоев (диаметр до нм) (рис. 11). Рис. 11. Липосомы могут быть однослойными (диаметр нм) и многослойными (5-50 микрометров). Заштрихованные зоны место нахождения воды, светлые бимолекулярный липидный слой, «хвосты» составляющих его молекул обращены внутрь слоя. Один из способов получения фермент-содержащих липосом заключается в том, что раствор липида в органическом растворителе впрыскивают с помощью микро-шприца в воду или водный солевой раствор при температуре, несколько превышающей точку кипения растворителя. После испарения растворителя в токе инертного газа происходит

20 самопроизвольное образование (самосборка) бислойных пузырьков, липосом, содержащих включенный фермент. В другом варианте раствор липида (например, лецитина) в органическом растворителе (например, в хлороформе) упаривается в вакууме. Липид остается на стенках колбы в виде тонкой пленки. Затем в колбу вносят раствор фермента, встряхивают и выдерживают в течении некоторого времени. В полученной системе происходит самосборка мультиламеллярных липосом, содержащих включенный фермент. Для удаления невключившегося фермента липосомы отделяют центрифугированием и ресуспендируют в водном буферном растворе. Моноламеллярные липосомы получают из мультиламеллярных ультразвуковой обработкой. Недостатком таких систем являются их недостаточная устойчивость, что сужает область их практического применения в медицине. В последние годы применяют способ получения фермент-содержащих липосом путем включения ферментов в полимерные липосомы. Для получения липосом в этом случае используются липиды, модифицированные путем введения в их молекулу кратной связи. После включения фермента в липосомы, приготовленные из модифицированных молекул липидов, проводят полимеризацию липидных молекул (например путем облучения ультрафиолетовым светом в присутствии инициатора). Образуются ковалентно сшитые замкнутые липидные бислойные мембраны. Полимерные липосомы обладают гораздо более высокой стабильностью по сравнению с обычными. Липосомы часто применяются в биологии для изучения мембраноактивных белков и моделирования различных ферментативных, транспортных и рецепторных функций клеточных мембран. Липосомы очень хорошо зарекомендовали себя в качестве модельной системы при изучении свойств биомембран. Липосомы позволяют воссоздавать элементы биологических структур непосредственно из материала биологических мембран. Было обнаружено, что отделенные от биомембран мембранные ферменты после включения в липосомы обнаруживают сходные со связанным на биомембране ферментом физические и каталитические свойства. В настоящее время липосомы применяются в экспериментальной медицине и косметике как одно из основных средств доставки биоактивных молекул и лекарственных средств. Многие липосомальные препараты дошли до клинических испытаний и некоторые из них лицензированы и применяются. Применение липосом имеет ряд существенных преимуществ перед другими носителями лекарств. Прежде всего, это биосовместимость, что обусловлено сходством с природными мембранами клеток по

21 химическому составу: мембрана липосом состоит из природных фосфолипидов. И при правильном подборе компонентов липосом их введение в организм не вызывает негативных реакций. Второе важное свойство липосом это универсальность. Благодаря полусинтетической природе можно широко варьировать их размеры, характеристики, состав поверхности. Кроме того, вещество, заключенное в липосомы, защищено от воздействия ферментов, что увеличивает эффективность препаратов, подверженных биодеструкции в биологических жидкостях. Это позволяет использовать липосомы в качестве носителей для широкого круга фармакологически активных веществ: противоопухолевые и противомикробные препараты, гормоны, ферменты, вакцины, а также дополнительные источники энергии для клетки, генетический материал. В-третьих, липосомы сравнительно легко разрушаются в организме (они биодеградируемы), высвобождая доставленные вещества. В процессе доставки лекарств липосомы, сами лишенные свойств антигена, экранируют включенные в них биоактивные молекулы от контакта с иммунной системой, не вызывая защитных и аллергических реакций организма. Еще одно важное преимущество липосом как лекарственной формы - постепенное высвобождение лекарственного вещества, инкорпорированного в них, что увеличивает время его действия. Особую роль играет характер взаимодействия липосом с клетками, который может принимать различные формы: самая простая липосомы адсорбируются на клеточной поверхности. При определенных условиях липосомы могут поглощаться клетками, их мембрана может сливаться с клеточной мембраной, что приводит к внутриклеточной доставке их содержимого (рис. 12).

22 Рисунок 12. Способы проникновения содержимого липосом в клетку (из работы А.П. Каплун, Ле Банг Шон, Ю.М. Краснопольский, В.И. Швец. Вопросы медицинской химии Том 45. выпуск 1). Как носители лекарств липосомы наиболее широкое применение получили в экспериментальной онкологии. Суть в том, что существует ряд препаратов, весьма эффективно разрушающих злокачественные клетки или тормозящих их рост. Однако применить их в терапевтических целях не всегда возможно из-за их большой токсичности или плохой растворимости в воде. С помощью липосом эти трудности могут быть преодолены. Так, одно из свойств липосом, регулируемость их размеров в нанодиапазоне стало основой для конструирования эффективных антираковых препаратов. Речь идет о соотношении размеров частиц и диаметра пор капилляров. В случае когда размер липосом больше диаметра пор капилляров, их объем распределения ограничивается компартаментом введения. Например, при внутривенном введении они не выходят за пределы кровотока, т.е. должны плохо проникать в органы и ткани. Следовательно, резко понижается токсическое действие субстанции, включенной в липосому. С другой стороны, это свойство может служить основой для направленной доставки терапевтических препаратов в опухоли и очаги воспаления, так как капилляры, снабжающие эти области кровью, как правило, сильно перфорированы (рис. 13). Следовательно, частицы, содержащие лекарство будут накапливаться в опухоли. Это явление получило название пассивное нацеливание. Таким образом, существует две причины, вследствие которых липосомальные препараты антиканцерогенных субстанций очень эффективны: уменьшение токсичности и пассивное нацеливание. Следствия: - Уменьшение токсичности - Уменьшение объема распределения и, след. - Пассивное нацеливание в "горячие" области - Увеличения концентрации в кровотоке

23 Рис. 13. Пассивное нацеливание Использование липосом для точной, целенаправленной доставки лекарственных веществ имеет, однако, и определенные сложности. Дело в том, что после попадания в организм большая часть липосом поглощается клетками ретикулоэндотелиальной системы (РЭС). Для увеличение времени циркуляции липосомальных препаратов было предложено их поверхность модифицировать полимерами с гибкой гидрофильной цепью, например полиэтиленгликолем (ПЭГ). Для этого используются модифицированные липиды, например, фосфатидилэтаноламин (ФЭ), конъюгированный с ПЭГ. На рис. 14 представлена схема такой "стерически стабилизированной" липосомы. Гибкие молекулы ПЭГ создают в примембранной области избыточное осмотическое давление. Липосомы как бы становятся невидимыми для РЭС (отсюда и название "stealth liposomes").

24 Рисунок 14. А. Стерически стабилизированные липосомы (Stealth liposomes). Белки (1) не могут достичь поверхности липосом (2) из-за избыточного осмотического давления в примембранном пространстве, создаваемом гибкими цепями (3) иммобилизованных полимеров (например, ПЭГ). Б. Фосфатидилэтаноламин, конъюгированный с ПЭГ, используемый для получения стерически стабилизированных липосом. Рис. 15. демонстрирует насколько увеличивается время циркуляции стерически стабилизированных липосом. Рисунок 15. Время циркуляции липосом, модифицированных ПЭГ в сравнении с обычными липосомами (из работы Torchilin V.P. et al. (1994) BВА, 1195, ). Во многих случаях важна адресная доставка в нужный тип клеток. В качестве "молекулярного адреса" наиболее часто выбирают иммуноглобулины, имеющие соответствующие мишени на целевых клетках. Таким образом, можно представить модель "идеальной" липосомы, как средства направленной доставки лекарственного вещества в клетку (рис. 17). Такая липосома содержит во внутреннем объеме лекарственное вещество, например, ДНК в случае генной терапии, на ее поверхности иммобилизованы гибкие цепи полимера для уменьшения поглощения клетками РЭС, молекулярный адрес, в мембрану инкорпорированы белки

25 слияния. Кроме того, мембрана состоит не только из обычных фосфолипидов, образующих бислой (чаще фосфатидилхолина), но и липидов способствующих слиянию с мембраной клетки (например, диолеоилфосфатидилэтаноламина). Рисунок 17. "Идеальная" конструкция липосомы для направленной доставки лекарственного вещества в клетку (из работы А.П. Каплун, Ле Банг Шон, Ю.М. Краснопольский, В.И. Швец. Вопросы медицинской химии Том 45. выпуск 1). 1) Полимер для стерической защиты от РЭС (например, ПЭГ); 2) "Молекулярный адрес" на полимерной ножке (в основном иммуноглобулины); 3) Белки слияния (например, гемагглютинин); 4) Лекарственное вещество (например, ДНК); 5) Липидные положительно заряженные частицы для компактизации ДНК; 6) Мембранообразующие липиды (фосфатидилхолин); 7) Липиды, дестабилизирующие мембрану (например, ФЭ). Основной недостаток липосом как лекарственной формы - относительная небольшая стабильность при хранении. Но, и эта проблема решается. Так, был найден способ сушки предварительно замороженных липосом. Такие высушенные липосомы, содержащие лекарственные вещества, способны храниться достаточно долго: месяцы и годы. Для их использования достаточно прилить к ним тот объем воды, который был удален при сушке.

26 Обращенные мицеллы - сферические частицы, образованные ассоциатами дифильных молекул ПАВ, в которых гидрофобные части молекул ПАВ направлены в сторону неполярного растворителя, а полярные группы внутрь мицелл. Обращенные мицеллы самопроизвольно образуются в тройных системах ПАВ-вода-органический растворитель. В качестве мицеллообразующего материала используются разнообразные синтетические ПАВ, а также природные липиды. Мицеллы, построенные из анионных ПАВ, (в отличие от катионных), как правило, характеризуются узким распределением по размерам, размер мицелл не зависит от концентрации ПАВ. Благодаря способности образовывать монодисперсные системы, широкое применение нашли обращенные мицеллы на основе АОТ, натриевой соли ди-(2-этил)-гексилового эфира сульфоянтарной кислоты. Ферменты могут включаться в обращенные мицеллы ПАВ в органических растворителях с сохранением их функциональной активности. При солюбилизации ферментов в системе обращенных мицеллы ПАВ молекула белка может «выбрать» оптимальное микроокружение, соответствующее ее природе. Как показано на рисунке 18, молекула гидрофильного белка избегает прямого контакта как с органическим растворителем, так и с поверхностью внутренней полости мицеллы, локализуясь в водном ядре гидратированной обращенной мицеллы. Поверхностно-активные белки, например липазы, имеют возможность взаимодействовать с поверхностным слоем обращенной мицеллы или даже частично в него погружаться. И наконец, типичные мембранные ферменты, если это термодинамически выгодно, могут вступать в контакты с органическим растворителем (рис. 18). Рис 18. Схематическое изображение обращенной мицеллы, содержащей: гидрофильный (Е1), поверностно-активный (Е2) и гидрофобный (Е3) белок.

27 Одним из главных достоинств мицеллярных систем является возможность целенаправленного варьирования основных физико-химических параметров путем простого изменения соотношения компонентов системы (рис. 19.). [ПАВ] [Н 2 О] Рис. 19. Основные способы регуляции параметров системы обращенных мицелл. 1 - увеличение содержания воды при [ПАВ]=const: размеры мицелл растут, их число уменьшается; 2 увеличение в одинаковой пропорции концентрации воды и [ПАВ]: размеры мицелл остаются неизменными, их число увеличивается; 3 увеличение концентрации ПАВ при постоянной концентрации воды: размер мицелл уменьшается, их число растет. Мицеллярный подход является в настоящее время классическим методом контроля олигомерного состава ферментов. Применение обращенных мицелл позволяет целенаправленным подбором размера мицеллярной матрицы (при варьировании степени гидратации системы) формировать желаемую надмолекулярную форму белка. Обращенные мицеллы можно рассматривать как своеобразный «наноконтейнер», позволяющий проводить как ассоциацию, так и диссоциацию белковых комплексов, получать надмолекулярные белковые структуры не реализующиеся в водных растворах. С точки зрения практического применения перспективным направлением является управляемая диссоциация «тел включения» и сворачивание ферментов в системе обращенных мицелл ПАВ. Проблема сворачивания рекомбинантных белков на сегодняшний день остается нерешенной для многих случаев. Особенно, эта проблема проявляется в случае больших, мульти-доменных и гидрофобных ферментов. Особенностью мицеллярного подхода является возможность изолировать молекулу фермента в отдельной мицелле, что с одной стороны, усиливает эффективность процесса

28 сворачивания (подобно действию молекулярных шаперонов), а с другой стороны, защищает фермент от межмолекулярного взаимодействия, образования межмолекулярных S-S-связей и агрегации белка в процессе рефолдинга. Образование конъюгатов биологически активных молекул с молекулями полиэтиленгликоля (ПЭГ). Применяется для стабилизации белок-содержащих лекарственных средств, увеличения времени циркуляции лекарств, транспорт лекарств, уменьшение иммунного ответа на введение чужеродных белков. Лекарственные препараты белковой или пептидной структуры (интерфероны, гормоны, факторы роста, цитокины, тромболитики) все больше применяются в медицине. Как уже отмечалось, лечение нативными препаратами белковой природы имеет ряд существенных недостатков: белки быстро гидролизуются в гастроинтестинальном отделе пищеварительного тракта и поэтому используются, как правило, парентерально. Относительно короткий период "естественной" полужизни таких препаратов в организме пациента предусматривает их многократное использование для достижения требуемого терапевтического воздействия. Еще одним важным негативным фактором, ограничивающим применение нативных или рекомбинантных белковых препаратов, является их высокая иммуногенность и связанные с ней сенситивные реакции. Одним из путей повышения эффективности лекарственных препаратов белковой структуры является "пегилирование" - химическая модификация белков полиспиртами, полиэтиленгликолем (ПЭГ) и блоксополимерами (пролиэтилен- и полипропиленгликоля), плюрониками и проксанолами.полиэтиленгликолем (ПЭГ). Подобная химическая модификация фармакологических препаратов белковой природы направлена на улучшение их переносимости, снижение иммуногенности, повышение периода их полужизни. В настоящее время ПЭГ одобрен Управлением по питанию и лекарственным препаратам США (FDA) в качестве субстанции, разрешенной к использованию в медицине (производство лекарственных препаратов), продуктах питания и косметологии. Для пегилирования белков применяется метод образования нековалентных аддуктов, образующихся в условиях инкубирования смеси белка и ПЭГ в условиях повышенного давления, а также ковалентная модификация по аминогруппам белка. При этом удобно использовать моноальдегидные производные полиспиртов, например: ПЭГ (1) - СН 3 (ОСН 2 СН 2 ) 44 ОСН 2 СНО; ПЭГ (2) - СН 3 (ОСН 2 СН 2 ) 16 ОСН 2 СНО; Проксанол (1) - С 4 Н 9 [OCH(CH 3 )CH 2 ] 14 (OCH 2 CH 2 ) 20 OCH 2 CHO;

29 Проксанол (2) - С 4 Н 9 (OCH 2 CH 2 ) 20 [OCH(CH 3 )CH 2 ] 14 OCH(CH 3 )CHO. Молекулы ПЭГ могут иметь различную молекулярную массу и стереохимическую структуру. Молекулярный вес молекул ПЭГ может колебаться в пределах Дальтон, а выстроенные в цепи макромолекулы ПЭГ могут формировать как разветвленную, так и линейную стереохимию. Именно масса ПЭГ и его стереохимическая структура, как правило, определяют принципиальные свойства будущего модифицированого белкового субстрата. В основном более длинные цепи ПЭГ обуславливают большую продолжительность периода полужизни коньюгата "ПЭГ - пептид" и его фармакологическую стабильность. Другим важным фактором, влияющим на фармакодинамику и фармакокинетику ПЭГ - модифицированных белков, является структура ПЭГ - цепочек: разветвленная молекула ПЭГ формирует замедление активного метаболизма препарата, что также влечет за собой удлинение времени активной циркуляции препарата. С разветвленной структурой цепочек ПЭГ связана также и значительно меньшая иммуногенность модифицированных препаратов при сохранении их основных фармакологических свойств. Подобные эффекты могут быть достигнуты и другим путем - связыванием пептида, например, не одной, а несколькими молекулами ПЭГ, имеющими при этом линейную структуру цепочек. Хорошо изученным примером в этой связи является молекула интерлейкина - 2 (ИЛ - 2). Так как молекула ИЛ - 2 очень мала, последняя свободно фильтруется через почки и имеет очень короткий период полужизни. Соединение ИЛ - 2 с ПЭГ, имеющей молекулярную массу менее 20 kda, практически никак не влияет на фармакодинамику белка, но повышение молекулярной массы ПЭГ до кда уже значительно замедляет фильтрацию коньюгата "ПЭГ - ИЛ - 2" и увеличивает его время полужизни и биологическую доступность. Одно из важнейших свойств модифицированных ПЭГ - молекул - высокая гидрофильность, формирующая принципиально новые физико-химические свойства модифицированного белка. При модификации белка молекулами ПЭГ происходит формирование "водного облака" вокруг модифицированной молекулы "ПЭГ - белок", за счет чего значительно повышается гидродинамический радиус коньюгата. Этот своеобразный "щит" воды вокруг модифицированной молекулы белка с одной стороны значительно повышает растворимость и биодоступность препарата, с другой - защищает молекулу от других белков (нейтрализующие антитела, комплемент). Таким образом ПЭГ - модифицированные пептиды значительно более защищены от опсонизации (взаимодействия с белками плазмы опсонинами, которые "метят" чужеродные

30 компоненты, делают их мишенями для клеток ретикулоэндотелиальной системы РЭС) и активного фагоцитоза клеточных структур макроорганизма. ПЭГ - модификация белковых препаратов, привнесла серьезные изменения в результаты лечения при таких заболеваниях, как ферментные дефициты, лейкемия, хронические воспалительные заболевания, онкология, хронические вирусные инфекции, кардиоваскулярная патология. Например Пегинтерферон альфа-2b применяется в противовирусной терапии, индуцирует подавление репликации вирусных ДНК или РНК, что и определило его широкое применение при лечении хронических вирусных гепатитов B и С. Данный препарат уже прошел все необходимые клинические испытания и зарегистрирован к применению во всех ведущих европейских странах (в том числе и России) и США под коммерческим названием ПегИнтрон. На рисунке 2. представлены профили фармакокинетики двух препаратов: нативного интерферна альфа-2b (Б) и пегилированного его коньюгата ПегИнтрона (А). Очевидно, что ПегИнтрон имеет значительно лучший биологический профиль, по сравнению со стандартным интерфероном альфа-2b; это выражается значительным повышением периода полужизни пегилированого аналога, снижением его иммуногенных свойств. Период "эффективной" полужизни препарата составляет в среднем около 40 часов! Для ПэгИнтрона характерен баланс между противовирусной активностью и длительным периодом полувыведения, позволяющим назначать препарат один раз в неделю, а также эффективно выводить метаболиты ПЭГ из организма.

31 А Б Время, часы Рис. 19. Фармакокинетический профиль стандартного (Б) и пегилированного интерферона альфа-2b (А) (Из обзора И. Г. Никитин, Г.И. Сторожаков Пегилированные лекарственные преапраты: современное состояние проблемы и перспективы. (www.hepatit.ru)) Таким образом, пегилирование лекарственных препаратов пептидной структуры имеет ряд весомых и несомненных преимуществ, которые ранее были просто невозможны при использовании нативных аналогов: усиление биологической активности, удлинение периода "эффективной" полужизни, замедление выведения, понижение токсичности и иммуногенности. К основным недостаткам ПЭГ - коньюгированных пептидов, используемых и в качестве уже разрешенных лекарственных форм, и в продолжающихся клинических испытаниях, можно отнести: возможное уменьшение активности белка, связанное с выбором "неправильного" размера или структуры ПЭГ; с этой же причиной может быть связано и возможное удлинение элиминации пептида. Так или иначе, полученные результаты уже проведенных и продолжающихся клинических испытаний с ПЭГ - модифицированными препаратами белковой структуры, а также экспериментальные данные свидетельствуют о явном преимуществе коньюгированных аналогов по сравнению с нативными белками.

СОСТАВ И СТРОЕНИЕ КЛЕТОЧНЫХ МЕМБРАН

СОСТАВ И СТРОЕНИЕ КЛЕТОЧНЫХ МЕМБРАН СОСТАВ И СТРОЕНИЕ КЛЕТОЧНЫХ МЕМБРАН Строительным "кирпичиком" мембраны являются фосфолипиды. Вследствие своего строения фосфолипиды амфифильны, поскольку обладают полярной "головой", образованной заряженной

Подробнее

Вода как растворитель

Вода как растворитель А. Вода и метан Вода как растворитель Как известно, жизнь зародилась в воде и по-прежнему остается тесно связанной с водой. Поэтому физико-химические свойства воды имеют фундаментальное значение для процесоов

Подробнее

Ксенодинамика. Взаимодействие ксенобиотиков с биологическими мембранами и их влияние на физикохимические

Ксенодинамика. Взаимодействие ксенобиотиков с биологическими мембранами и их влияние на физикохимические Ксенодинамика. Взаимодействие ксенобиотиков с биологическими мембранами и их влияние на физикохимические свойства цитоплазмы Ксенодинамика - раздел ксенобиологии, в рамках которого изучается и рассматривается

Подробнее

ВВЕДЕНИЕ В настоящее время можно отметить постоянно растущий интерес исследователей к проблеме поиска новых биоформ препаратов, а также создание

ВВЕДЕНИЕ В настоящее время можно отметить постоянно растущий интерес исследователей к проблеме поиска новых биоформ препаратов, а также создание ВВЕДЕНИЕ В настоящее время можно отметить постоянно растущий интерес исследователей к проблеме поиска новых биоформ препаратов, а также создание более совершенных форм уже существующих биологически активных

Подробнее

2017. ХОБП, ч 1, Химическая биология (вт ЮХА, чт ЮХА, 12-40)

2017. ХОБП, ч 1, Химическая биология (вт ЮХА, чт ЮХА, 12-40) 2017. ХОБП, ч 1, Химическая биология (вт ЮХА, чт ЮХА, 12-40) I Живое/жизнь как система 07. 02 Что такое живое/жизнь с точки зрения химии - 1 09. 02 Молекулы клетки. Вода. Биологические мембраны - 2 14.

Подробнее

Zn2+ ЦИНК и ЕГО ДЕЙСТВИЕ. ГОРОС21.РУ

Zn2+ ЦИНК и ЕГО ДЕЙСТВИЕ. ГОРОС21.РУ ЦИНК и ЕГО ДЕЙСТВИЕ. Как показало большинство исследований, цинк обладает отличным эффектов в борьбе против диареи. Благодаря цинку диарея длится гораздо меньшее количество времени, животные болеют реже,

Подробнее

МЕТОДЫ ИММОБИЛИЗАЦИИ. Лекция 3

МЕТОДЫ ИММОБИЛИЗАЦИИ. Лекция 3 МЕТОДЫ ИММОБИЛИЗАЦИИ Лекция 3 План лекции 1. Классификация методов иммобилизации. Способы физической и химической иммобилизации биокатализаторов. 2. Адсорбционная иммобилизация: типы носителей, природа

Подробнее

Молекула Икс. Молекула Икс. Дополнение факты: Формула для оптимального здоровья и долголетия

Молекула Икс. Молекула Икс. Дополнение факты: Формула для оптимального здоровья и долголетия Натуропатия Формула для оптимального здоровья и долголетия Натуральный Эликсир для здоровья Эффективность пищевой добавки клинически доказана Растительная нано-мицелла молекула, заряженная со специальным

Подробнее

СИНТЕЗ КОЛЛОИДНЫХ РАСВОРОВ НАНОСЕРЕБРА

СИНТЕЗ КОЛЛОИДНЫХ РАСВОРОВ НАНОСЕРЕБРА СИНТЕЗ КОЛЛОИДНЫХ РАСВОРОВ НАНОСЕРЕБРА 1.1. Боргидридный метод В настоящее время способ восстановления солей серебра тетраборгидридоборатом (боргидридом) натрия является наиболее распространенным в процессах

Подробнее

1. Ковалентные связи в белках и ферментах. Приведите примеры.

1. Ковалентные связи в белках и ферментах. Приведите примеры. 1. Ковалентные связи в белках и ферментах. Приведите примеры. БИЛЕТ 1 2. На чем основано разделение белков фракционированием в присутствии разных концентраций солей. От каких примесей этот метод позволяет

Подробнее

и

и УДК 541.11/18 ФИЗИКО-ХИМИЧЕСКИЕ СВОЙСТВА МЕЖФАЗНОЙ ПОВЕРХНОСТИ СИСТЕМЫ НЕФТЬ ВОДА С.М.АСАДОВ, А.М.АЛИЕВ Институт Химических Проблем НАН Азербайджана, г. Баку asadov_salim@mail.ru и mirasadov@gmail.com

Подробнее

Структура курса ХОБП часть 1 Химическая биология

Структура курса ХОБП часть 1 Химическая биология Структура курса ХОБП часть 1 Химическая биология 11. 9. Что такое жизнь с точки зрения химика 13. 9. Вода. Биологические мембраны. 18. 9. Структура и функция белка 20. 9. Обмен веществом. Преобразование

Подробнее

Физические процессы в биологических мембранах

Физические процессы в биологических мембранах Физические процессы в биологических мембранах Авторы: А.А. Кягова, А.Я. Потапенко I. Структура, функции физические свойства биологических мембран 1) Структура Фосфолипидный бислой Молекулы фосфолипидов

Подробнее

СТАНДАРТ СРЕДНЕГО (ПОЛНОГО) ОБЩЕГО ОБРАЗОВАНИЯ ПО ХИМИИ БАЗОВЫЙ УРОВЕНЬ

СТАНДАРТ СРЕДНЕГО (ПОЛНОГО) ОБЩЕГО ОБРАЗОВАНИЯ ПО ХИМИИ БАЗОВЫЙ УРОВЕНЬ СТАНДАРТ СРЕДНЕГО (ПОЛНОГО) ОБЩЕГО ОБРАЗОВАНИЯ ПО ХИМИИ БАЗОВЫЙ УРОВЕНЬ Изучение химии на базовом уровне среднего (полного) общего образования направлено на достижение следующих целей: освоение знаний

Подробнее

ЛЕКЦИЯ 20. Давление насыщенного пара над мениском. Растворы. Осмос. Осмотическое давление. Закон Вант-Гоффа.

ЛЕКЦИЯ 20. Давление насыщенного пара над мениском. Растворы. Осмос. Осмотическое давление. Закон Вант-Гоффа. ЛЕКЦИЯ 2 Давление насыщенного пара над мениском. Растворы. Осмос. Осмотическое давление. Закон Вант-Гоффа. Испарение жидкости происходит с ее поверхности, поэтому изменение свойств поверхностного слоя

Подробнее

Тема. Физико-химия поверхностных явлений. Адсорбция.

Тема. Физико-химия поверхностных явлений. Адсорбция. Тема. Физико-химия поверхностных явлений. Адсорбция. Поверхностные явления проявляются в гетерогенных системах, т.е. системах, между компонентами которых имеется поверхностьраздела. Поверхностными явлениями

Подробнее

6. Самосборка сложных наноструктур

6. Самосборка сложных наноструктур 6. Самосборка сложных наноструктур В прошлой главе были рассмотрены примеры самосборки упорядоченных массивов из наночастиц, имеющих одинаковые размеры и форму. Однако, последние исследования показывают,

Подробнее

Экзаменационный билет 2. Проф. Левашов Андрей Вадимович Проф. Копылов Алексей Михайлович К.х.н. Федорчук Владимир Витальевич

Экзаменационный билет 2. Проф. Левашов Андрей Вадимович Проф. Копылов Алексей Михайлович К.х.н. Федорчук Владимир Витальевич Экзаменационный билет 1. 1. Функции, структура и свойства биологических мембран. 2. Стационарная кинетика ферментативных реакций. Схема Михаэлиса-Ментен. Методы определения параметров из экспериментальных

Подробнее

Поурочное планирование по химии, 11 класс,

Поурочное планирование по химии, 11 класс, Поурочное планирование по химии, 11 класс, (1часа в неделю, всего 34 часа), УМК О. С. Габриеляна Тема урока Элементы содержания Требования к уровню подготовки обучающихся Эксперимент Домашнее задание Дата

Подробнее

Биологические мембраны. Транспорт веществ

Биологические мембраны. Транспорт веществ Биологические мембраны. Транспорт веществ Биологическая мембрана составная часть клетки, отгораживающая ее от окружающей среды Функции мембран Барьерная. Обеспечивает автономность клетки, селективный,

Подробнее

ХИМИЧЕСКОЕ РАВНОВЕСИЕ. Общие представления

ХИМИЧЕСКОЕ РАВНОВЕСИЕ. Общие представления СКОРОСТЬ ХИМИЧЕСКОЙ РЕАКЦИИ. ХИМИЧЕСКОЕ РАВНОВЕСИЕ Общие представления Формирование понятий о скорости химической реакции и химическом равновесии необходимо для понимания учащимися фундаментальных законов

Подробнее

Как устроены липосомы (1 балл)?

Как устроены липосомы (1 балл)? Как устроены липосомы (1 балл)? Липосомы (от греч. lipos - жир и sоma - тело) (липидные везикулы) искусственно получаемые частицы, образованные одним или несколькими концентрическими замкнутыми липидными

Подробнее

Календарно-тематическое планирование Предмет: Химия

Календарно-тематическое планирование Предмет: Химия Календарно-тематическое планирование Предмет: Химия Класс: 8 Часов в неделю: 2 Всего часов за год: 72 I триместр. Всего недель: 10,6, всего часов: 22. урока 1 Раздел, тема урока Кол-во часов на тему Введение

Подробнее

Глава 3 Биологические мембраны

Глава 3 Биологические мембраны Глава 3 Биологические мембраны 1. CS Биологическая мембрана состоит из: a) липидного слоя; b) липидов и белков; c) липидов и полисахаридов; d) белков и олигосахаридов; e) гликокаликса. 2. CS Самосборка

Подробнее

РАЗДЕЛ IV. НАУКИ О ЖИВОМ

РАЗДЕЛ IV. НАУКИ О ЖИВОМ РАЗДЕЛ IV. НАУКИ О ЖИВОМ ЗАДАЧА 1 Вещество F, γ-лактон 2,3-дегидро-L-гулоновой кислоты (L-аскорбиновая кислота, витамин С), без сомнения, всем вам хорошо известно. Это вещество играет очень важную биологическую

Подробнее

Государственное профессиональное образовательное учреждение «Новокузнецкий техникум пищевой промышленности»

Государственное профессиональное образовательное учреждение «Новокузнецкий техникум пищевой промышленности» Государственное профессиональное образовательное учреждение «Новокузнецкий техникум пищевой промышленности» МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПО ХИМИИ и задания для выполнения контрольных работ для студентов, обучающихся

Подробнее

На изучение курса химии выделено: В 11 классе 34 часа ( 1 час в неделю) В 12 классе - 34 часа ( 1 час в неделю)

На изучение курса химии выделено: В 11 классе 34 часа ( 1 час в неделю) В 12 классе - 34 часа ( 1 час в неделю) Пояснительная записка. Рабочая программа для 11-12 классов по химии составлена на основе : *Федерального компонента государственного стандарта общего образования, утвержденный приказом Министерства образования

Подробнее

ВОПРОСЫ КАНДИДАТСКОГО ЭКЗАМЕНА ПО СПЕЦИАЛЬНОСТИ «БИОТЕХНОЛОГИЯ ПИЩЕВЫХ ПРОДУКТОВ И БИОЛОГИЧЕСКИ АКТИВНЫХ ВЕЩЕСТВ»

ВОПРОСЫ КАНДИДАТСКОГО ЭКЗАМЕНА ПО СПЕЦИАЛЬНОСТИ «БИОТЕХНОЛОГИЯ ПИЩЕВЫХ ПРОДУКТОВ И БИОЛОГИЧЕСКИ АКТИВНЫХ ВЕЩЕСТВ» ВОПРОСЫ КАНДИДАТСКОГО ЭКЗАМЕНА ПО СПЕЦИАЛЬНОСТИ «БИОТЕХНОЛОГИЯ ПИЩЕВЫХ ПРОДУКТОВ И БИОЛОГИЧЕСКИ АКТИВНЫХ ВЕЩЕСТВ» 1. История, современное состояние и перспективы развития пищевой биотехнологии. 2. Объекты

Подробнее

Биофизика мембранных процессов в клетке

Биофизика мембранных процессов в клетке Биофизика мембранных процессов в клетке Биофизика мембран изучает: Структуру биологических мембран Транспорт веществ через мембраны Генерацию и распространение нервного импульса Процессы рецепции и преобразование

Подробнее

Пояснительная записка Цели Изучение химии в старшей школе на базовом уровне направлено на достижение следующих целей: освоение знаний

Пояснительная записка Цели Изучение химии в старшей школе на базовом уровне направлено на достижение следующих целей: освоение знаний Пояснительная записка Рабочая программа составлена на основе Федерального компонента государственного Стандарта среднего (полного) общего образования по химии (базовый уровень), использована программа

Подробнее

МАТЕМАТИЧЕСКИЙ АНАЛИЗ ФУНКЦИОНАЛЬНЫХ ЗАВИСИМОСТЕЙ ВЯЗКОСТИ БИОЛОГИЧЕСКИХ СИСТЕМ

МАТЕМАТИЧЕСКИЙ АНАЛИЗ ФУНКЦИОНАЛЬНЫХ ЗАВИСИМОСТЕЙ ВЯЗКОСТИ БИОЛОГИЧЕСКИХ СИСТЕМ УДК 510 + 577 Наука ЮУрГУ: материалы 67-й научной конференции МАТЕМАТИЧЕСКИЙ АНАЛИЗ ФУНКЦИОНАЛЬНЫХ ЗАВИСИМОСТЕЙ ВЯЗКОСТИ БИОЛОГИЧЕСКИХ СИСТЕМ В.И. Сафонов, О.А. Миняева Выполнен статистический анализ экспериментальных

Подробнее

Молекулы белков представляют собой линейные полимеры, состоящие из L-аминокислот (которые являются мономерами) и, в некоторых случаях, из

Молекулы белков представляют собой линейные полимеры, состоящие из L-аминокислот (которые являются мономерами) и, в некоторых случаях, из АМИНОКИСЛОТЫ Аминокислоты органические бифункциональные соединения, в состав которых входят карбоксильные группы СООН и аминогруппы -NH2. Простейший представитель аминоуксусная кислота H2N-CH2-COOH (глицин)

Подробнее

Разные классы коллоидных систем. Аэрозоли, порошки, суспензии, эмульсии, их свойства. Коллоидные ПАВ.

Разные классы коллоидных систем. Аэрозоли, порошки, суспензии, эмульсии, их свойства. Коллоидные ПАВ. Кафедра общей химии Разные классы коллоидных систем. Аэрозоли, порошки, суспензии, эмульсии, их свойства. Коллоидные ПАВ. Эмульсии Эмульсии это дисперсные системы, состоящие из двух (или нескольких) жидких

Подробнее

Рабочая программа по химии 11 класс. На учебный год (базовый уровень 1 час в неделю) Учитель Саенко Е.А

Рабочая программа по химии 11 класс. На учебный год (базовый уровень 1 час в неделю) Учитель Саенко Е.А Рабочая программа по химии класс На 204-205 учебный год (базовый уровень час в неделю) Учитель Саенко Е.А Пояснительная записка Рабочая программа составлена на основе Федерального компонента государственного

Подробнее

В) моносахариды; Г) глицерин и жирные кислоты.

В) моносахариды; Г) глицерин и жирные кислоты. Контрольная работа по биологии «Молекулярный уровень» 9 класс 1 вариант 1. Мономер ДНК А) аминокислота; Б) нуклеотид; В) моносахариды; Г) глицерин и жирные кислоты. 2. Где располагается наследственный

Подробнее

Лекция 1. Синтез наночастиц при контролируемом осаждении. Рис. 1. Коллоидные растворы золота, полученные М. Фарадеем

Лекция 1. Синтез наночастиц при контролируемом осаждении. Рис. 1. Коллоидные растворы золота, полученные М. Фарадеем Лекция 1. Синтез наночастиц при контролируемом осаждении Получение наночастиц при осаждении в водных или органических растворах является одним из самых простых и доступных способов синтеза наночастиц.

Подробнее

Тема 1. Химический состав клетки Задания части А

Тема 1. Химический состав клетки Задания части А Тема 1. Химический состав клетки Задания части А Выберите один ответ, который является наиболее правильным 1. Назовите органические соединения, которые содержатся в клетке в наибольшем количестве (в %

Подробнее

Планируемые результаты освоения учебного предмета знать/понимать: важнейшие химические понятия основные законы химии основные теории химии

Планируемые результаты освоения учебного предмета знать/понимать: важнейшие химические понятия основные законы химии основные теории химии 1 Планируемые результаты освоения учебного предмета В результате изучения химии на базовом уровне ученик должен знать/понимать: важнейшие химические понятия: вещество, химический элемент, атом, молекула,

Подробнее

ЭКЗАМЕНАЦИОННЫЕ БИЛЕТЫ ГОСУДАРСТВЕННОЙ ИТОГОВОЙ АТТЕСТАЦИИ ПО ХИМИИ ПО ПРОГРАММАМ ОСНОВНОГО ОБЩЕГО ОБРАЗОВАНИЯ. Билет 1. Билет 2. Билет 3.

ЭКЗАМЕНАЦИОННЫЕ БИЛЕТЫ ГОСУДАРСТВЕННОЙ ИТОГОВОЙ АТТЕСТАЦИИ ПО ХИМИИ ПО ПРОГРАММАМ ОСНОВНОГО ОБЩЕГО ОБРАЗОВАНИЯ. Билет 1. Билет 2. Билет 3. ЭКЗАМЕНАЦИОННЫЕ БИЛЕТЫ ГОСУДАРСТВЕННОЙ ИТОГОВОЙ АТТЕСТАЦИИ ПО ХИМИИ ПО ПРОГРАММАМ ОСНОВНОГО ОБЩЕГО ОБРАЗОВАНИЯ Билет 1 1. Периодическая система химических элементов Д. И. Менделеева и строение атомов:

Подробнее

Углеводами называют вещества с общей формулой C x (H 2 O) y, где x и y натуральные числа. Название «углеводы» говорит о том, что в их молекулах

Углеводами называют вещества с общей формулой C x (H 2 O) y, где x и y натуральные числа. Название «углеводы» говорит о том, что в их молекулах Углеводами называют вещества с общей формулой C x (H 2 O) y, где x и y натуральные числа. Название «углеводы» говорит о том, что в их молекулах водород и кислород находятся в том же отношении, что и в

Подробнее

Современные принципы аппаратурного оформления тепломассообменных процессов

Современные принципы аппаратурного оформления тепломассообменных процессов Магистерская программа 150400.32 Современные принципы аппаратурного оформления тепломассообменных процессов Руководитель программы д.т.н., проф. Коновалов В. И. Брыкина Е. В., Романова Е.В. ИССЛЕДОВАНИЕ

Подробнее

Пояснительная записка Цели. Изучение химии в старшей школе на базовом уровне направлено на достижение следующих целей: освоение знаний

Пояснительная записка Цели. Изучение химии в старшей школе на базовом уровне направлено на достижение следующих целей: освоение знаний Пояснительная записка Рабочая программа составлена на основе Федерального компонента государственного Стандарта среднего (полного) общего образования по химии (базовый уровень), использована программа

Подробнее

Систематизацию материала о химической реакции следует начать с понятия «химическая реакция», признаков и условий протекания реакций:

Систематизацию материала о химической реакции следует начать с понятия «химическая реакция», признаков и условий протекания реакций: МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ БЛОК «ХИМИЧЕСКАЯ РЕАКЦИЯ» Достаточно многочисленными и разнообразными по уровню сложности являются задания экзаменационной работы, с помощью которых проверяют усвоение элементов

Подробнее

ХИТОЗАН ОТ TIENS Часто задаваемые вопросы (FAQ)

ХИТОЗАН ОТ TIENS Часто задаваемые вопросы (FAQ) Часто задаваемые вопросы (FAQ) Вопрос 1: Хитозан от TIENS обладает многими другими преимуществами для здоровья. Может ли он помочь при детоксикации организма? Ответ: Хитозан от TIENS очищает организм и

Подробнее

8. Темплатный синтез пористых материалов

8. Темплатный синтез пористых материалов 8. Темплатный синтез пористых материалов Одним из способов получения материалов с порами заданного размера и формы является темплатный синтез. Наиболее часто под темплатным или матричным синтезом понимают

Подробнее

Московский Государственный Университет имени М. В. Ломоносова Физико - химический факультет. Высокомолекулярные соединения

Московский Государственный Университет имени М. В. Ломоносова Физико - химический факультет. Высокомолекулярные соединения 1. 1. Основные свойства высокомолекулярных соединений, отличающие их от свойств низкомолекулярных веществ. 2. Термодинамика полимеризации виниловых мономеров. Понятие о полимеризационнодеполимеризационном

Подробнее

УЧЕБНО-МЕТОДИЧЕСКИЙ КОМПЛЕКС ДИСЦИПЛИНЫ

УЧЕБНО-МЕТОДИЧЕСКИЙ КОМПЛЕКС ДИСЦИПЛИНЫ ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ Государственное образовательное учреждение Высшего профессионального образования «Уральский государственный университет им. А.М. Горького» Физический факультет Кафедра

Подробнее

Растворы электролитов

Растворы электролитов 3 Растворы электролитов Жидкие растворы подразделяют на растворы электролитов, способные проводить электрический ток, и растворы неэлектролитов, которые не электропроводны. В неэлектролитах растворенное

Подробнее

СОДЕРЖАНИЕ. Предисловие ко второму изданию...5

СОДЕРЖАНИЕ. Предисловие ко второму изданию...5 СОДЕРЖАНИЕ Предисловие ко второму изданию...5 Глава 1. Введение...11 1.1. Вступление...11 1.2. Появление нанотехнологии...14 1.3. Подходы «снизу вверх» и «сверху вниз»...18 1.4. Основные проблемы нанотехнологии...19

Подробнее

Наномастерская. Ступени молекулярной грамотности

Наномастерская. Ступени молекулярной грамотности От атомов и электронов до ДНК и белков Наномастерская 1. Электроны, атомы и связи 2. Молекулярная геометрия. Межмолекулярные взаимодействия 4. Взаимодействие молекулы в клетке 5. Агрегатные состояния вещества

Подробнее

Белки, их строение, свойства, биологические функции.

Белки, их строение, свойства, биологические функции. Белки, их строение, свойства, биологические функции. 1 Цели: познакомить учащихся с белками как высокомолекулярными соединениями; дать представления об уровнях организации белковых молекул, механизме образования

Подробнее

«Химические основы биологических процессов»

«Химические основы биологических процессов» «Химические основы биологических процессов» * Часть II. ХИМИЧЕСКАЯ ЭНЗИМОЛОГИЯ Текущие и рубежные вопросы. ТЕМА 1 1. Роль водородных связей в стабилизации структуры белка. Примеры. Величины свободных энергий.

Подробнее

ПРОГРАММА ВСТУПИТЕЛЬНОГО ЭКЗАМЕНА ПО ХИМИИ СОДЕРЖАНИЕ ПРОГРАММЫ

ПРОГРАММА ВСТУПИТЕЛЬНОГО ЭКЗАМЕНА ПО ХИМИИ СОДЕРЖАНИЕ ПРОГРАММЫ ПРОГРАММА ВСТУПИТЕЛЬНОГО ЭКЗАМЕНА ПО ХИМИИ Поступающий в вуз должен показать знание основных теоретических положений химии как одной из важнейших естественных наук, которые лежат в основе научного понимания

Подробнее

ОБРАЗОВАТЕЛЬНЫЙ СТАНДАРТ ОСНОВНОГО ОБЩЕГО ОБРАЗОВАНИЯ ПО ХИМИИ

ОБРАЗОВАТЕЛЬНЫЙ СТАНДАРТ ОСНОВНОГО ОБЩЕГО ОБРАЗОВАНИЯ ПО ХИМИИ ОБРАЗОВАТЕЛЬНЫЙ СТАНДАРТ ОСНОВНОГО ОБЩЕГО ОБРАЗОВАНИЯ ПО ХИМИИ Изучение химии в основной школе направлено на достижение следующих целей: освоение важнейших знаний о химической символике, химических понятиях,

Подробнее

Тестовые вопросы для проведения промежуточной аттестации в форме дифференцированного зачета по учебной дисциплине Химия

Тестовые вопросы для проведения промежуточной аттестации в форме дифференцированного зачета по учебной дисциплине Химия МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ КРАСНОДАРСКОГО КРАЯ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ СРЕДНЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «НОВОРОССИЙСКИЙ КОЛЛЕДЖ РАДИОЭЛЕКТРОННОГО ПРИБОРОСТРОЕНИЯ»

Подробнее

Пояснительная записка Цели Изучение химии в старшей школе на базовом уровне направлено на достижение следующих целей: освоение знаний

Пояснительная записка Цели Изучение химии в старшей школе на базовом уровне направлено на достижение следующих целей: освоение знаний Пояснительная записка Рабочая программа составлена на основе Федерального компонента государственного Стандарта среднего (полного) общего образования по химии (базовый уровень), использована программа

Подробнее

Программы испытаний по химии

Программы испытаний по химии Программы испытаний по химии Предмет и задачи химии. Место химии среди естественных наук. Атомно-молекулярное учение. Молекулы. Атомы. Постоянство состава вещества. относительная атомная и относительная

Подробнее

Дата проведения Тема урока Основное содержание урока Эксперимент

Дата проведения Тема урока Основное содержание урока Эксперимент КАЛЕНДАРНО- ТЕМАТИТЧЕСКОЕ ПЛАНИРОВАНИЕ уроков химии в XI классе ( базовый уровень) урока Дата проведения Тема урока Основное содержание урока Эксперимент 1 17 Тема 1. Строение вещества (17 ч.) 1 4.09 Атом

Подробнее

ОГЛАВЛЕНИЕ. Предисловие Глава 1 Молекулярное строение, основные свойства и классификация ПАВ... 8 Адсорбция... 9 Мицеллообразование...

ОГЛАВЛЕНИЕ. Предисловие Глава 1 Молекулярное строение, основные свойства и классификация ПАВ... 8 Адсорбция... 9 Мицеллообразование... ОГЛАВЛЕНИЕ Предисловие.......................................... 5 Теоретическая часть Глава 1 Молекулярное строение, основные свойства и классификация ПАВ.................................. 8 Адсорбция................................................

Подробнее

Номенклатура Изомерия Свойства Получение Белки

Номенклатура Изомерия Свойства Получение Белки Номенклатура Изомерия Свойства Получение Белки Аминокислоты органические бифункциональные соединения, в состав которых входят карбоксильные группы СООН и аминогруппы -NH 2. Общая формула предельных аминокислот

Подробнее

Почему идут химические реакции

Почему идут химические реакции ХИМИЯ Лекция 04 Как и почему происходят химические реакции. Химические кинетика и равновесие Е.А. Ананьева, к.х.н., доцент, кафедра «Общая Химия» НИЯУ МИФИ Почему идут химические реакции Химические реакции

Подробнее

Билеты по химии для 8 класса. (по учебнику О.С. Габриелян) Оглавление Билет

Билеты по химии для 8 класса. (по учебнику О.С. Габриелян) Оглавление Билет Билеты по химии для 8 класса. (по учебнику О.С. Габриелян) Оглавление Билет 1... 3 Билет 2... 3 Билет 3... 3 Билет 4... 3 Билет 5... 3 Билет 6... 3 Билет 7... 3 Билет 8... 3 Билет 9... 3 Билет 10... 4

Подробнее

Календарно-тематическое планирование Предмет: химия

Календарно-тематическое планирование Предмет: химия Календарно-тематическое планирование Предмет: химия Класс: 11 Часов в неделю: 2 Всего часов за год: 68 I триместр. Всего недель: 10,6, всего часов: 22. п/п Раздел. Тема урока Тема 1. Строение атома и периодический

Подробнее

Терапия наночастицами: новый способ лечения рака. Марк Э.Дэвис*, Чжо (Джорджия) Чэнь и Дун М.Шинь

Терапия наночастицами: новый способ лечения рака. Марк Э.Дэвис*, Чжо (Джорджия) Чэнь и Дун М.Шинь Терапия наночастицами: новый способ лечения рака Марк Э.Дэвис*, Чжо (Джорджия) Чэнь и Дун М.Шинь Химическая технология, Калифорнийский институт технологии, Пасадена, Калифорния, 91125, США. Уиншипский

Подробнее

Оглавление. От автора

Оглавление. От автора Оглавление От автора ТЕОРЕТИЧЕСКАЯ ХИМИЯ Тема 1. Основные понятия и определения химии 1.1. Атом, ион, химический элемент, молекула 1.2. Вещество. Явления физические и химические. Простые и сложные вещества.

Подробнее

СТАНДАРТ ОСНОВНОГО ОБЩЕГО ОБРАЗОВАНИЯ ПО ХИМИИ

СТАНДАРТ ОСНОВНОГО ОБЩЕГО ОБРАЗОВАНИЯ ПО ХИМИИ СТАНДАРТ ОСНОВНОГО ОБЩЕГО ОБРАЗОВАНИЯ ПО ХИМИИ Изучение химии на ступени основного общего образования направлено на достижение следующих целей: освоение важнейших знаний об основных понятиях и законах

Подробнее

Планируемые результаты курса химии класс.

Планируемые результаты курса химии класс. Планируемые результаты курса химии.10-11 класс. Выпускник научится: характеризовать основные методы познания: наблюдение, измерение, эксперимент; описывать свойства твердых, жидких, газообразных веществ,

Подробнее

ЭЛЕКТРОЛИТИЧЕСКАЯ ДИССОЦИАЦИЯ

ЭЛЕКТРОЛИТИЧЕСКАЯ ДИССОЦИАЦИЯ Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Комсомольский-на-Амуре государственный технический

Подробнее

Билеты для переводного экзамена по химии в 8 классе

Билеты для переводного экзамена по химии в 8 классе Билеты для переводного экзамена по химии в 8 классе Билет 1 1. Предмет химии. Вещества. Вещества простые и сложные. Свойства веществ. 2. Кислоты. Их классификация и свойства. Билет 2 1. Превращения веществ.

Подробнее

Жиры. Жиры сложные эфиры глицерина и высших одноосновных карбоновых кислот (так называемых ЖИРНЫХ кислот).

Жиры. Жиры сложные эфиры глицерина и высших одноосновных карбоновых кислот (так называемых ЖИРНЫХ кислот). Жиры. Жиры сложные эфиры глицерина и высших одноосновных карбоновых кислот (так называемых ЖИРНЫХ кислот). Общее название таких соединений триглицериды или триацилглицерины, где ацил остаток карбоновой

Подробнее

В настоящей работе исследовались в этом качестве двухосновная янтарная и одноосновная гликолевая карбоновые кислоты, которые разрешены к применению в

В настоящей работе исследовались в этом качестве двухосновная янтарная и одноосновная гликолевая карбоновые кислоты, которые разрешены к применению в Введение Искусственный аминополисахарид хитозан, получаемый из хитина, обладает ценными свойствами, которые привлекают внимание специалистов из разных областей деятельности [1, ]. Материалы из этого полимера

Подробнее

БЛОК 2 Клетка как биологическая система.

БЛОК 2 Клетка как биологическая система. 1. К макроэлементам относятся: БЛОК 2 Клетка как биологическая система. 1) кислород, углерод, водород, азот 2) кислород, железо, золото 3) углерод, водород, бор 4) селен, азот, кислород 1) 2. Органоид,

Подробнее

ТЕОРИЯ СТРОЕНИЯ ВЕЩЕСТВА. ОСНОВНЫЕ ЗАКОНЫ ХИМИИ

ТЕОРИЯ СТРОЕНИЯ ВЕЩЕСТВА. ОСНОВНЫЕ ЗАКОНЫ ХИМИИ ПРОГРАММА ПО ХИМИИ ТЕОРИЯ СТРОЕНИЯ ВЕЩЕСТВА. ОСНОВНЫЕ ЗАКОНЫ ХИМИИ Теория строения вещества Атом. Молекула. Химический элемент. Вещество. Молекулярные и структурные формулы. Состав атомных ядер. Строение

Подробнее

ГИДРОЛИЗ ОРГАНИЧЕСКИХ И НЕОРГАНИЧЕСКИХ ВЕЩЕСТВ

ГИДРОЛИЗ ОРГАНИЧЕСКИХ И НЕОРГАНИЧЕСКИХ ВЕЩЕСТВ ГИДРОЛИЗ ОРГАНИЧЕСКИХ И НЕОРГАНИЧЕСКИХ ВЕЩЕСТВ Гидро лиз ( от древне греческого «ὕδωρ» вода и «λύσις» разложение) один из видов химических реакций, где при взаимодействии веществ с водой происходит разложение

Подробнее

1.2. Современные представления о строении атома Химическая связь и строение вещества Химическая реакция. НЕОРГАНИЧЕСКАЯ ХИМИЯ

1.2. Современные представления о строении атома Химическая связь и строение вещества Химическая реакция. НЕОРГАНИЧЕСКАЯ ХИМИЯ Атомно-молекулярное учение. Молекулы. Атомы. Химический элемент, простое вещество, сложное вещество. Знаки химических элементов и химические формулы. Расчет массовой доли химического элемента в веществе

Подробнее

Химическое равновесие в растворах

Химическое равновесие в растворах МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ НОВОСИБИРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ СПЕЦИАЛИЗИРОВАННЫЙ УЧЕБНО-НАУЧНЫЙ ЦЕНТР Химическое равновесие в растворах Новосибирск 01 КИСЛОТНО-ОСНОВНОЕ

Подробнее

0 Ф. Дайте объяснение следующему факту. 1.Какая хозяйка поступила неправильно? 2. В чём заключается её ошибка? З.К каким последствиям может привести?

0 Ф. Дайте объяснение следующему факту. 1.Какая хозяйка поступила неправильно? 2. В чём заключается её ошибка? З.К каким последствиям может привести? Задания для контроля знаний обучающихся по химии Разрушение слоя озона атмосферы, озоновые «дыры». Стратосферный озон Оз образуется, когда молекула кислорода, поглощая коротковолновую радиацию Солнца,

Подробнее

4. Процессы самосборки в наносистемах. Связывание наночастиц в блоки.

4. Процессы самосборки в наносистемах. Связывание наночастиц в блоки. 4. Процессы самосборки в наносистемах. Связывание наночастиц в блоки. Размер современных микроэлектронных устройств вплотную приближается к пределу использования процессов литографии, что влечет за собой

Подробнее

Поэтому актуальность представленной диссертационной работы не подлежит

Поэтому актуальность представленной диссертационной работы не подлежит ОТЗЫВ о диссертационной работе Мясниковой Дины Андреевны на тему «Получение, свойства и применение для определения биологически активных органических соединений пленок {целлюлоза-ионная жидкость}», представленной

Подробнее

Оглавление. От автора

Оглавление. От автора Оглавление От автора ОБЩАЯ ХИМИЯ Глава 1. Основные понятия, определения и законы химии 1.1. Вещество, его физические и химические свойства 1.2. Физические и химические явления 1.3. Закон сохранения массы

Подробнее

ПРОГРАММА ВСТУПИТЕЛЬНЫХ ЭКЗАМЕНОВ ПО ХИМИИ В САРАТОВСКИЙ ГОСУДАРСТВЕННЫЙ МЕДИЦИНСКИЙ УНИВЕРСИТЕТ В 2009 ГОДУ 1. Предмет химии, ее задачи.

ПРОГРАММА ВСТУПИТЕЛЬНЫХ ЭКЗАМЕНОВ ПО ХИМИИ В САРАТОВСКИЙ ГОСУДАРСТВЕННЫЙ МЕДИЦИНСКИЙ УНИВЕРСИТЕТ В 2009 ГОДУ 1. Предмет химии, ее задачи. ПРОГРАММА ВСТУПИТЕЛЬНЫХ ЭКЗАМЕНОВ ПО ХИМИИ В САРАТОВСКИЙ ГОСУДАРСТВЕННЫЙ МЕДИЦИНСКИЙ УНИВЕРСИТЕТ В 2009 ГОДУ 1. Предмет химии, ее задачи. Место химии среди естественных наук, взаимосвязь наук с химией.

Подробнее

водород углерод кислород Малеиновая кислота 11-цис-ретиналь (зрительный пигмент)

водород углерод кислород Малеиновая кислота 11-цис-ретиналь (зрительный пигмент) В живых организмах присутствует огромное количество разнообразных соединений, которые практически не встречаются в неживой природе и которые называют органическими соединениями. Каркасы молекул этих соединений

Подробнее

Химия класс. ФК ГОС (базовый уровень)

Химия класс. ФК ГОС (базовый уровень) Химия 10 11 класс ФК ГОС (базовый уровень) Основное содержание учебного предмета Методы познания в химии Научные методы познания веществ и химический явлений. Роль эксперимента и теории в химии. Моделирование

Подробнее

Элементный и молекулярный состав живой материи

Элементный и молекулярный состав живой материи Лекция 2 Химический состав живой материи, химические связи, имеющие большое значение для взаимодействия «биологических молекул». Аминокислоты, их свойства и классификация. Пептидная связь, ее свойства.

Подробнее

Правило октета. Почему образуется связь? Ковалентная химическая связь, разновидности и механизмы образования. Характеристики ковалентной связи

Правило октета. Почему образуется связь? Ковалентная химическая связь, разновидности и механизмы образования. Характеристики ковалентной связи Правило октета. Почему образуется связь? Ковалентная химическая связь, разновидности и механизмы образования. Характеристики ковалентной связи (полярность и энергия связи). Ионная связь. Металлическая

Подробнее

Меры по повышению эффективности разложения алюминатных растворов

Меры по повышению эффективности разложения алюминатных растворов которых основная часть оксида алюминия и оксида кремния связана в натриевый гидроалюмосиликат. При обескремнивании таких же растворов в аналогичных условиях в присутствии 2,5 г/дм 3 оксида кальция выделяются

Подробнее

НИЖЕГОРОДСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМ. Н.И. ЛОБАЧЕВСКОГО ФИЗИЧЕСКИЙ ФАКУЛЬТЕТ. Билет.

НИЖЕГОРОДСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМ. Н.И. ЛОБАЧЕВСКОГО ФИЗИЧЕСКИЙ ФАКУЛЬТЕТ. Билет. 1. Кратко определите понятия: ионный кристалл, молярность, ингибитор 2. Основной вопрос: H, U, G, F образования веществ и химической реакции 1. Кратко определите понятия: альдегид, энергия кристаллической

Подробнее

Вопросы для контроля в семестре

Вопросы для контроля в семестре Вопросы для контроля в семестре 1. Что означает относящийся к созданию нанообъектов термин "Top down"? 2. Что означает относящийся к созданию нанообъектов термин "Bottom up"? 3. Какой принцип стабилизации

Подробнее

, а давление в фазе 1 превышало давление в фазе 2 на величину давления Лапласа 2σ/r, обусловленную кривизной поверхности раздела фаз: (2)

, а давление в фазе 1 превышало давление в фазе 2 на величину давления Лапласа 2σ/r, обусловленную кривизной поверхности раздела фаз: (2) Лекция 8. Размерные эффекты физических свойств. Зависимость р насыщенного пара и Т плавления частицы от её размера. Применимость уравнения Томсона-Гиббса. Связь между размером наночастицы, с одной стороны,

Подробнее

Рабочая программа по учебному предмету «Химия» для классов.

Рабочая программа по учебному предмету «Химия» для классов. Приложение 10 к Приказу 311/1 от 28.08.2015 г. «Об утверждении основных общеобразовательных программ основного общего образования (ФГОС), основного общего образования, среднего общего образования» Рабочая

Подробнее

Пояснительная записка. Планируемые результаты обучения.

Пояснительная записка. Планируемые результаты обучения. 1 Пояснительная записка Настоящая программа разработана на основе Примерных программ основного общего образования по химии (базовый уровень), соответствующих федеральному компоненту государственного стандарта

Подробнее

PH Control. Тройное Действие - Whole Wellness Club ph Контроль. Важность ph Баланса Организма

PH Control. Тройное Действие - Whole Wellness Club ph Контроль. Важность ph Баланса Организма Тройное Действие - Whole Wellness Club ph Контроль Стиль нашей современной жизни продолжает приносить больше и больше проблем нашему здоровью и благополучию. В большинстве своем наша диета включает в себя

Подробнее

Тема урока: «Пластический и энергетический обмен»

Тема урока: «Пластический и энергетический обмен» Тема урока: «Пластический и энергетический обмен» Цель урока: Сформировать понятия: метаболизм, пластический обмен и энергетический обмен. Задачи: Образовательные: сформировать теоретические знания о пластическом

Подробнее

Раздел 4. КОЛЛОИДНЫЕ РАСТВОРЫ ПОВЕРХНОСТНО-АКТИВНЫХ ВЕЩЕСТВ

Раздел 4. КОЛЛОИДНЫЕ РАСТВОРЫ ПОВЕРХНОСТНО-АКТИВНЫХ ВЕЩЕСТВ Раздел 4. КОЛЛОИДНЫЕ РАСТВОРЫ ПОВЕРХНОСТНО-АКТИВНЫХ ВЕЩЕСТВ К поверхностно-активным веществам /ПАВ/ относятся органические вещества, молекулы которых дифильны, то есть состоят из полярной группы (- NН

Подробнее

MyTestXPro Тест: "Электролитическая диссоциация". Задание 1. Задание 2. Выберите несколько из 4 вариантов ответа: Задание 3

MyTestXPro Тест: Электролитическая диссоциация. Задание 1. Задание 2. Выберите несколько из 4 вариантов ответа: Задание 3 MyTestXPro Тест: "Электролитическая диссоциация". Тестируемый: Дата: Задание 1 В растворе азотистой кислоты HNO 2 имеются частицы: катионы водорода анионы кислотного остатка катионы металла не распавшиеся

Подробнее

Программа краткосрочного повышения квалификации преподавателей и научных работников высшей школы. по направлению «ФУНКЦИОНАЛЬНЫЕ НАНОМАТЕРИАЛЫ»

Программа краткосрочного повышения квалификации преподавателей и научных работников высшей школы. по направлению «ФУНКЦИОНАЛЬНЫЕ НАНОМАТЕРИАЛЫ» Государственное образовательное учреждение высшего профессионального образования Российский химико-технологический университет им. Д.И. Менделеева УТВЕРЖДАЮ Ректор РХТУ им. Д.И. Менделеева В.А. Колесников

Подробнее

ЛЕКЦИЯ 5 МЕТОДЫ ПОЛУЧЕНИЯ И ОЧИСТКИ КОЛЛОИДНО-ДИСПЕРСНЫХ СИСТЕМ

ЛЕКЦИЯ 5 МЕТОДЫ ПОЛУЧЕНИЯ И ОЧИСТКИ КОЛЛОИДНО-ДИСПЕРСНЫХ СИСТЕМ ЛЕКЦИЯ 5 МЕТОДЫ ПОЛУЧЕНИЯ И ОЧИСТКИ КОЛЛОИДНО-ДИСПЕРСНЫХ СИСТЕМ Практически любое вещество может быть получено в коллоидном состоянии при соблюдении следующих условий: 1. частицы дисперсных систем доводятся

Подробнее

Современное состояние и тенденции развития технологии получения лекарств. Биофармация как теоретическая основа фармацевтической технологии.

Современное состояние и тенденции развития технологии получения лекарств. Биофармация как теоретическая основа фармацевтической технологии. 2 Современное состояние и тенденции развития технологии получения лекарств. Основные понятия и термины технологии получения лекарств. Государственное нормирование производства лекарственных препаратов

Подробнее

ЛЕКЦИЯ 12 (ЭЛЕКТИВ) ЭЛЕКТРОКИНЕТИЧЕСКИЕ ЯВЛЕНИЯ В ДИСПЕРСНЫХ СИСТЕМАХ И РАСТВОРАХ ВМС

ЛЕКЦИЯ 12 (ЭЛЕКТИВ) ЭЛЕКТРОКИНЕТИЧЕСКИЕ ЯВЛЕНИЯ В ДИСПЕРСНЫХ СИСТЕМАХ И РАСТВОРАХ ВМС ЛЕКЦИЯ 12 (ЭЛЕКТИВ) ЭЛЕКТРОКИНЕТИЧЕСКИЕ ЯВЛЕНИЯ В ДИСПЕРСНЫХ СИСТЕМАХ И РАСТВОРАХ ВМС По причинам возникновения электрокинетические явления делятся на две группы: явления, при которых относительное движение

Подробнее

Витамины, ферменты, гормоны.

Витамины, ферменты, гормоны. Витамины, ферменты, гормоны. Автор: Горшунова Т.А. Учитель ОУ Троицкая средняя общеобразовательная школа, с. Троицкое Сызранского района Самарской области, 2011г. Витамины (от лат. vita жизнь) - низкомолекулярные

Подробнее