y x dy dx dy dx arctg 2 arctg x = 2 C. 2

Размер: px
Начинать показ со страницы:

Download "y x dy dx dy dx arctg 2 arctg x = 2 C. 2"

Транскрипт

1 МГАПИ ТИПОВОЙ РАСЧЕТ Задание на домашнюю контрольную работу Раздел «Дифференциальные уравнения» Вариант 6 Задача Найти общий интеграл дифференциального уравнения ' = Решение Разделяем переменные: + 4 ' =, + d + 4 =, d + d d = Интегрируем обе части уравнения: d d =, arctg = arctg + C, arctg arctg = C Получили общий интеграл: arctg arctg = C

2 Задача Найти решение дифференциального уравнения начальному условию ( 0) = ' = e cos, удовлетворяющее Решение Это линейное неоднородное уравнение Сначала найдем решение соответствующего однородного уравнения, разделяя переменные и интегрируя: ' = 0, d =, d d = d, d = ln ln C, = Ce d, = + Общее решение исходного неоднородного уравнения будем искать в виде: Производная: ' ' Подставляем: = C e + C e ' = cos, ' = cos, = cos = sin + C ' e + C e C e = e cos, C e e C C d A Общее решение: ( sin ) = + A e, где A - произвольная постоянная Найдем постоянную A из начального условия ( 0) = : = C e 0 0 = sin 0 + A e =, A =

3 = sin + e Искомое решение Задача 4 Найти решение дифференциального уравнения начальному условию ( 0) = ' e + =, удовлетворяющее Решение Это уравнение Бернулли Решение ищем в виде произведения двух функций: ' = u ' v + uv ' Получаем: + + =, ( u ' v uv ') uv e u v u ' v uv ' uv e u v + + =, u ' v + u ( v ' + v) = e u v (*) = uv, Выбираем функцию v как частное решение следующего уравнения: v ' + v = 0, dv = v, d dv = d, v dv = d, v ln v =, v = e 4

4 Подставляем найденную функцию v = e в уравнение (*), получаем: u e e u e u ' = e u, du = e u, d du = e d u ' =, Интегрируем: du = u u e d, = e u =, e + C u = e + C C, Тогда общее решение равно: ( 0) = Получаем: e = uv = Найдем постоянную C из начального условия e + C 0 e ( 0) =, C 0 0 e + C = = Решение задачи Коши: e = = e e 5

5 Задача 5 Найти общее решение дифференциального уравнения ' '' + = 9 Решение Так как в уравнение явно не входит функция, делаем замену: Приходим к уравнению: z = ', тогда z ' = '' z z ' + = 9 Это линейное неоднородное уравнение первого порядка Сначала решаем соответствующее однородное уравнение: z z ' + = 0, dz z =, d dz d =, z Интегрируем dz d =, z ln z = ln + ln C, C z = Тогда общее решение неоднородного уравнения будем искать в виде C ' C z = Подставляем: C z = Производная C ' C C + = 9, C ' = 9, C = d = + C 9 6

6 Получаем решение + C z = = + C Возвращаемся к функции, получаем уравнение: ' C = + Интегрируем: C = + d = + C + C ln Нашли общее решение: = + C ln + C Задача 6 Найти решение дифференциального уравнения 4 условиям =, ' = 4 '' 6 =, удовлетворяющее начальным Решение Так как уравнение не содержит в явном виде переменной, делаем замену ' = p = p, '' = p ' p Подставляем: p p ' = 6, dp p = d pdp = 6, 6 d, pdp = p = + C, 4, 6 d, p = + C p = ± + C 4 7

7 Получили ' = ± 4 + C Найдем постоянную C и знак перед корнем из начального условия 4 =, ' = 4 = 4 + C, 4 64 = + C, 6 6 C = 0 Значит, / ' = 4 = Интегрируем полученное уравнение: / ' =, / d = d / d = d / C, = = + C ( + C ),, =, Найдем постоянную = =, C = 0 4 ( + C ) = : 4 C из начального условия 8

8 = Искомое решение: '' 8 ' = + e 6e, Задача 9 Найти решение дифференциального уравнения 7 удовлетворяющее начальным условиям 0 = 0, ' 0 = 0 Решение Это линейное неоднородное уравнение второго порядка с постоянными коэффициентами Сначала решим соответствующее однородное уравнение '' + ' = 0 Составляем соответствующее характеристическое уравнение: k, + 8k + 7 = 0, D = 64 8 = 6 k 8 ± 6 = = 7, Тогда общее решение однородного уравнения имеет вид: = C e + C e 7 оо Найдем частное решение неоднородного уравнения по виду правой части ) f = + e Будем искать его в виде 7 A B e корень характеристического уравнения Найдем производные: ' = A + A + B e, = A + A + A + B e = A + A + B e '' Подставляем в уравнение: ( + + ) + ( + + ) + ( + ) = ( + ) 4A + 4A + 4B + 8A + 6A + 6B + 7A + 7B = ( 7 + ), ( 4A + 6A + 7A) + ( 4A + 4B + 8A + 6B + 7B) = 7 +, 7A + ( A + 7B) = 7 + = + Умножили на, так как 4A 4A 4B e 8 A A B e 7 A B e 7 e, 9 k = -

9 Приравниваем коэффициенты при степенях справа и слева: 7A = 7, A + 7B = ; A =, B = 0 Получили e = ) f 7 6e = Будем искать его в виде Ae характеристического уравнения Найдем производные: 7 = Умножили на, так как 7 7 = ( ), ' A 7A e Подставляем в уравнение: '' 7A 7A 49A e 4A 49A e 7 7 = + = + A + A e + A A e + Ae = e , 4A + 49A + 8A 56A + 7A = 6,, 6A = 6, A = k = - корень Получили = e 7 Тогда общее решение исходного неоднородного уравнения равно: = + + = C e + C e + e + e 7 7 он оо Найдем постоянные, решения: C C из начальных условий: 0 = 0, ' 0 = 0 Вычислим производную 0

10 7 7 ' ' = C e + C e + e + e = он = 7C e C e + e + e + e 7 e Подставляем: он (0) = C + C = 0, он '(0) = 7C C + = 0 C + C = 0, 7C + C = C =, C = Подставляем: e e e e 7 7 = + + Задача 0 Найти общее решение дифференциального уравнения '' + 5 ' + 4 = 0sin + 0cos Решение Это линейное неоднородное уравнение второго порядка Сначала решаем соответствующее однородное уравнение '' + 5 ' + 4 = 0 Составим и решим характеристическое уравнение:

11 k, + 5k + 4 = 0, D = = 9, k 5 ± = = 4, Получаем C e C e 4 о о = + Найдем частное решение неоднородного уравнения по виду правой части: ч н = Asin + B cos Находим производные: ' = Acos B sin ч н '' = 4Asin 4B cos ч н Подставляем: 4Asin 4B cos + 5 Acos Bsin + 4 Asin + B cos = 0sin + 0cos, 4Asin 4B cos + 0Acos 0Bsin + 4Asin + 4B cos = 0sin + 0cos, 4A 0B + 4A sin + 4B + 0A + 4B cos = 0sin + 0 cos, 0B sin + 0Acos = 0sin + 0cos, B =, A = ч н = sin cos Искомое решение: C e C e 4 o н = о о + ч н = + + sin cos

12 Задача Найти общее решение дифференциального уравнения ''' '' + ' = Решение Это линейное неоднородное уравнение третьего порядка Сначала решаем соответствующее однородное уравнение ''' '' + ' = 0 Составим и решим характеристическое уравнение: k k k + = 0, ( k ) k,, = 0 = Получаем = C e + C e + C e оо Найдем частное решение неоднородного уравнения по виду правой части f = Частное решение ищем в виде ч н A B C D = Находим производные: = A + B + C, '' 6 = A + B, ''' 6 = A ' ч н ч н ч н Подставляем: A A B A B C A B C D = , A A B A B C A B C D = , Приравниваем коэффициенты при одинаковых степенях справа и слева: A =, 9A B = 9, 8A + 6B C = 8, 6A 6B + C D = 6

13 A =, B = 0, C = 0, D = 0 То есть: ч н = Тогда общее решение исходного неоднородного уравнения имеет вид: = + = C e + C e + C e o н о о ч н Задача Найти решение системы дифференциальных уравнений d =, dt d = 4, dt удовлетворяющее начальным условиям 0 =, 0 = Решение Запишем систему в следующем виде: ' =, ' = 4 Дифференцируем первое уравнение по t, получаем: '' = ' ' Подставляем из второго уравнения ' : 4

14 '' = ' 4, '' = ' 9 + Из первого уравнения выражаем = ' и подставляем: '' = ' ', '' ' ' = 0, '' + ' + = 0 Решаем получившееся уравнение Составляем характеристическое уравнение: k ( k ) k, + k + = 0, + =, = t t t C e C te = + Получаем Подставляем в = ', чтобы найти вторую неизвестную функцию: t t t t ' t t t t t = C e + C te C e + C te = C e + C te + C e C e + C te = t t t t t t = Ce + Cte Ce = Ce + Cte Ce Общее решение: t t t = Ce + Cte, ( t) = C e + C te C e t t t Найдем неизвестные постоянные из начальных условий: 5 0 = 0 =

15 t = C =, ( t) = C C = C =, C = 0 Получаем нужное решение задачи Коши: t = e t = e t t, 6


Контрольная работа выполнена на сайте МатБюро. Решение задач по математике, статистике, теории вероятностей

Контрольная работа выполнена на сайте  МатБюро. Решение задач по математике, статистике, теории вероятностей Контрольная работа выполнена на сайте wwwmatburoru МатБюро Решение задач по математике статистике теории вероятностей МАТЕМАТИЧЕСКИЙ АНАЛИЗ РГР 8 ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ Задание Найти общий интеграл

Подробнее

Решение типового варианта ИДЗ «Дифференциальные уравнения». Найдём производную данной функции.

Решение типового варианта ИДЗ «Дифференциальные уравнения». Найдём производную данной функции. Решение типового варианта ИДЗ «Дифференциальные уравнения» Задание Убедиться, что функция = (ln + C) удовлетворяет уравнению = Найдём производную данной функции = ln + C + = ln + C + Подставим данное выражение

Подробнее

Решение типового варианта «Дифференциальные уравнения и системы дифференциальных уравнений»

Решение типового варианта «Дифференциальные уравнения и системы дифференциальных уравнений» типового варианта «Дифференциальные уравнения и системы дифференциальных уравнений» Задание Выясните, являются ли функции ( ) e и e решениями дифференциального уравнения d ( ) d 0 на промежутке ( ; )..

Подробнее

Контрольная работа Дифференциальные уравнения Вариант 5

Контрольная работа Дифференциальные уравнения Вариант 5 Решить уравнения: 0 Преобразуем уравнение: Контрольная работа Дифференциальные уравнения Вариант 0 Уравнение с разделяющимися переменными: ( ) d ( ) arcsin arcsin d Ответ: arcsin d d d Так как f, то заданное

Подробнее

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ Московский государственный университет приборостроения и информатики кафедра высшей

Подробнее

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ Образцы решения уравнений из «Сборника типовых заданий по курсу высшей математики» Кузнецова Л.А. Авторы: Смирнов А.Н., Беловодский В.Н., кафедра компьютерных систем мониторинга,

Подробнее

1 Типовой расчет по теме «Дифференциальные уравнения» разработан преподавателями. кафедры «Высшая математика»

1 Типовой расчет по теме «Дифференциальные уравнения» разработан преподавателями. кафедры «Высшая математика» Типовой расчет по теме «Дифференциальные уравнения» разработан преподавателями кафедры «Высшая математика» Руководство к решению типового расчета выполнила преподаватель Тимофеева ЕГ Определение: Уравнение

Подробнее

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ Министерство образования и науки ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ Московский государственный университет приборостроения и информатики (МИРЭА) кафедра высшей

Подробнее

( ) = sin x. 4 4 n. n 1 1 π π. n! 4

( ) = sin x. 4 4 n. n 1 1 π π. n! 4 Решение практической работы 5 ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ И РЯДЫ Задача 6.. Разложить в ряд по степеням х (с указанием области сходимости ряда) = e si. Решение. Запишем = e si как = ( i + ) ( i+ ) = ((

Подробнее

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ МИНИСТЕРСТВО ТРАНСПОРТА РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «РОССИЙСКИЙ УНИВЕРСИТЕТ ТРАНСПОРТА (МИИТ)» КАФЕДРА «МАТЕМАТИКА» ЛГ ХАЛИЛОВА

Подробнее

МЕТОДИЧЕСКИЕ УКАЗАНИЯ К РАСЧЕТНЫМ ЗАДАНИЯМ ПО КУРСУ ВЫСШЕЙ МАТЕМАТИКИ «ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ. РЯДЫ. КРАТНЫЕ ИНТЕГРАЛЫ» ЧАСТЬ III

МЕТОДИЧЕСКИЕ УКАЗАНИЯ К РАСЧЕТНЫМ ЗАДАНИЯМ ПО КУРСУ ВЫСШЕЙ МАТЕМАТИКИ «ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ. РЯДЫ. КРАТНЫЕ ИНТЕГРАЛЫ» ЧАСТЬ III МЕТОДИЧЕСКИЕ УКАЗАНИЯ К РАСЧЕТНЫМ ЗАДАНИЯМ ПО КУРСУ ВЫСШЕЙ МАТЕМАТИКИ «ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ РЯДЫ КРАТНЫЕ ИНТЕГРАЛЫ» ЧАСТЬ III ТЕМА ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ОГЛАВЛЕНИЕ

Подробнее

В.И. Иванов. Министерство образования Российской Федерации. Российский государственный университет нефти и газа имени И.М. Губкина

В.И. Иванов. Министерство образования Российской Федерации. Российский государственный университет нефти и газа имени И.М. Губкина Министерство образования Российской Федерации Российский государственный университет нефти и газа имени ИМ Губкина ВИ Иванов Методические указания к изучению темы «ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ» (для студентов

Подробнее

В.И. Иванов. Министерство образования Российской Федерации. Российский государственный университет нефти и газа имени И.М. Губкина

В.И. Иванов. Министерство образования Российской Федерации. Российский государственный университет нефти и газа имени И.М. Губкина Министерство образования Российской Федерации Российский государственный университет нефти и газа имени ИМ Губкина ВИ Иванов Методические указания к изучению темы «ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ» (для студентов

Подробнее

Дифференциальные уравнения Контрольная работа Вариант 19 Часть 1

Дифференциальные уравнения Контрольная работа Вариант 19 Часть 1 Дифференциальные уравнения Решение контрольных на wwwmatburoru Дифференциальные уравнения Контрольная работа Вариант Часть Задание Построить интегральные кривые при помощи изоклин ( d ( d 0 Решение d d

Подробнее

ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ

ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ Министерство образования и науки Российской Федерации НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ СТРОИТЕЛЬНЫЙ УНИВЕРСИТЕТ Кафедра прикладной механики и математики ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ

Подробнее

Линейные уравнения первого порядка, уравнение Бернулли. Уравнение в полных дифференциалах

Линейные уравнения первого порядка, уравнение Бернулли. Уравнение в полных дифференциалах ПРАКТИЧЕСКОЕ ЗАНЯТИЕ 1 Линейные уравнения первого порядка, уравнение Бернулли Уравнение в полных дифференциалах Линейным дифференциальным уравнением первого порядка называется уравнение + p( = q( Если

Подробнее

3. ЗАДАЧА КОШИ ДЛЯ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ, ДОПУСКАЮЩИХ ПОНИЖЕНИЕ ПОРЯДКА Задача Коши

3. ЗАДАЧА КОШИ ДЛЯ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ, ДОПУСКАЮЩИХ ПОНИЖЕНИЕ ПОРЯДКА Задача Коши ЗАДАЧА КОШИ ДЛЯ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ, ДОПУСКАЮЩИХ ПОНИЖЕНИЕ ПОРЯДКА Задача Коши Обыкновенным дифференциальным уравнением n-го порядка называется уравнение ( n ) ( n) F (, y,,, y, y ) = 0, () где

Подробнее

( ) ( ) 1 x (*) 2. Проинтегрировать обе части равенства, то есть: 3. Найти полученные интегралы.

( ) ( ) 1 x (*) 2. Проинтегрировать обе части равенства, то есть: 3. Найти полученные интегралы. Памятка для практических занятий по теме «Обыкновенные дифференциальные уравнения» Решение различных задач методом математического моделирования сводится к отысканию неизвестной функции из уравнения, содержащего

Подробнее

Лекция 2. Дифференциальные уравнения 2-го порядка (ДУ-2). Общий вид дифференциального уравнения порядка n запишется:

Лекция 2. Дифференциальные уравнения 2-го порядка (ДУ-2). Общий вид дифференциального уравнения порядка n запишется: Лекция Дифференциальные уравнения -го порядка (ДУ-) Общий вид дифференциального уравнения порядка n запишется: ( n) F,,,,, = 0 ( ) Уравнение -го порядка ( n = ) примет вид F(,,, ) = 0 Подобные уравнения

Подробнее

1. ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ПЕР- ВОГО ПОРЯДКА 1.1. Основные понятия

1. ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ПЕР- ВОГО ПОРЯДКА 1.1. Основные понятия . ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ПЕР- ВОГО ПОРЯДКА.. Основные понятия Дифференциальным уравнением называется уравнение, в которое неизвестная функция входит под знаком производной или дифференциала.

Подробнее

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ. Методические указания и задания по выполнению расчетно-графических работ для студентов специальности 5В Информатика

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ. Методические указания и задания по выполнению расчетно-графических работ для студентов специальности 5В Информатика Некоммерческое акционерное общество АЛМАТИНСКИЙ УНИВЕРСИТЕТ ЭНЕРГЕТИКИ И CВЯЗИ Кафедра высшей математики ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ Методические указания и задания по выполнению расчетно-графических работ

Подробнее

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ МИНИСТЕРСТВО ТРАНСПОРТА РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ УЛЬЯНОВСКОЕ ВЫСШЕЕ АВИАЦИОННОЕ УЧИЛИЩЕ ГРАЖДАНСКОЙ АВИАЦИИ (ИНСТИТУТ)

Подробнее

Цель работы: научиться решать дифференциальные уравнения первого порядка. Содержание работы. Основные понятия.

Цель работы: научиться решать дифференциальные уравнения первого порядка. Содержание работы. Основные понятия. Практическая работа 8 Решение дифференциальных уравнений первого порядка. Цель работы: научиться решать дифференциальные уравнения первого порядка. Содержание работы. Основные понятия. 1 Дифференциальные

Подробнее

Дифференциальные уравнения

Дифференциальные уравнения Московский государственный технический университет им Н Э Баумана Соболев СК Дифференциальные уравнения Методические указания к решению задач Москва МГТУ им Баумана 008 СК Соболев Дифференциальные уравнения

Подробнее

1 x y. y y. x y ТЕМА 7 «ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ПЕРВОГО ПОРЯДКА»

1 x y. y y. x y ТЕМА 7 «ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ПЕРВОГО ПОРЯДКА» ТЕМА 7 «ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ПЕРВОГО ПОРЯДКА» Задача 1. Найти общее решение дифференциального уравнения с разделяющимися переменными: 1. d d d d 1 1 0.. d d d. d d d 5. 6d 6d d d 6. d d 0 7. 8. (

Подробнее

, обращающая уравнение в тождество. Определение. Общим решением дифференциального уравнения первого порядка называется функция y ( x, c)

, обращающая уравнение в тождество. Определение. Общим решением дифференциального уравнения первого порядка называется функция y ( x, c) II ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ Дифференциальные уравнения первого порядка Определение Соотношения, в которых неизвестные переменные и их функции находятся под знаком производной или дифференциала, называются

Подробнее

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ. ТЕСТОВЫЕ ЗАДАНИЯ

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ. ТЕСТОВЫЕ ЗАДАНИЯ Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Тамбовский государственный технический университет»

Подробнее

А. Н. Филиппов, Т. С. Филиппова,

А. Н. Филиппов, Т. С. Филиппова, Министерство образования и науки Российской Федерации РГУ нефти и газа имени И.М.Губкина Кафедра «Высшая математика» А. Н. Филиппов, Т. С. Филиппова, Методические указания к выполнению типового расчета

Подробнее

Так как y, то уравнение примет вид x и найдем его решение. x 2 Отсюда. x dy C1 2 и получим общее решение уравнения 2

Так как y, то уравнение примет вид x и найдем его решение. x 2 Отсюда. x dy C1 2 и получим общее решение уравнения 2 Лекции -6 Глава Обыкновенные дифференциальные уравнения Основные понятия Различные задачи техники естествознания экономики приводят к решению уравнений в которых неизвестной является функция одной или

Подробнее

9 Если q(x) = 0, то уравнение называется однородным, если q(x) 0, то уравнение неоднородное

9 Если q(x) = 0, то уравнение называется однородным, если q(x) 0, то уравнение неоднородное Практическая работа 19 Решение дифференциальных уравнений первого порядка. Цель работы: закрепить навыки решения дифференциальных уравнений первого порядка. Содержание работы. Основные понятия. 1 Дифференциальные

Подробнее

Министерство образования и науки Украины ХАРЬКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ СТРОИТЕЛЬСТВА И АРХИТЕКТУРЫ

Министерство образования и науки Украины ХАРЬКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ СТРОИТЕЛЬСТВА И АРХИТЕКТУРЫ Министерство образования и науки Украины ХАРЬКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ СТРОИТЕЛЬСТВА И АРХИТЕКТУРЫ Направления подготовки бакалавров: 60600; 605050;60500; 60006 МЕТОДИЧЕСКИЕ УКАЗАНИЯ

Подробнее

Если мы разделим его относительно производной, то получим уравнение: (1) , что это условие 2 будет удовлетворяться (т.е. ( x0, C0

Если мы разделим его относительно производной, то получим уравнение: (1) , что это условие 2 будет удовлетворяться (т.е. ( x0, C0 . Дифференциальные уравнения первого порядка. Опр. Дифференциальным уравнением первого порядка называется уравнение, связывающее независимую переменную, искомую функцию и ее первую производную. В самом

Подробнее

Контрольная работа 2. Решение: Находим необходимые частные производные. Подставим найденные частные производные в

Контрольная работа 2. Решение: Находим необходимые частные производные. Подставим найденные частные производные в Контакты: тел. 8-96-966-7-8, Icq: 447-64-7, Контрольная работа. Дана функция z =. Показать, что. Решение: Находим необходимые частные производные z e e z e e e z e e e e Подставим найденные частные производные

Подробнее

I. Дифференциальные уравнения 1-го порядка

I. Дифференциальные уравнения 1-го порядка Пособие предназначено для студентов - курсов МАТИ-РГТУ, изучающих в рамках курса высшей математики тему «Дифференциальные уравнения». В нем рассматриваются основные приемы решения обыкновенных дифференциальных

Подробнее

Обыкновенные дифференциальные уравнения

Обыкновенные дифференциальные уравнения КЫРГЫЗСКО-РОССИЙСКИЙ СЛАВЯНСКИЙ УНИВЕРСИТЕТ ЕСТЕСТВЕННО-ТЕХНИЧЕСКИЙ ФАКУЛЬТЕТ Кафедра математики ЛГЛелевкина ТАШемякина Обыкновенные дифференциальные уравнения Учебное пособие по математическому анализу

Подробнее

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ Министерство образования и науки Российской Федерации Государственное образовательное учреждение высшего профессионального образования «МАТИ» - Российский государственный технологический университет им.

Подробнее

Тема 1. Дифференциальные уравнения первого порядка. F (x, y, y ) = 0, (1.1)

Тема 1. Дифференциальные уравнения первого порядка. F (x, y, y ) = 0, (1.1) 1 Тема 1. Дифференциальные уравнения первого порядка 1.0. Основные определения и теоремы Дифференциальное уравнение первого порядка: независимая переменная; y = y() искомая функция; y = y () ее производная.

Подробнее

Гл. 11. Дифференциальные уравнения.

Гл. 11. Дифференциальные уравнения. Гл.. Дифференциальные уравнения.. Дифференциальные уравнения. Определение. Дифференциальным уравнением называется уравнение, связывающее независимую переменную, её функцию и производные различных порядков

Подробнее

2. Дифференциальные уравнения первого порядка, разрешенные относительно производной Теорема существования и единственности решения.

2. Дифференциальные уравнения первого порядка, разрешенные относительно производной Теорема существования и единственности решения. Дифференциальные уравнения первого порядка разрешенные относительно производной Теорема существования и единственности решения В общем случае дифференциальное уравнение первого порядка имеет вид F ( )

Подробнее

Тема 3. Линейные дифференциальные уравнения с постоянными коэффициентами

Тема 3. Линейные дифференциальные уравнения с постоянными коэффициентами 1 Тема 3. Линейные дифференциальные уравнения с постоянными коэффициентами 3.1 Линейное однородное уравнение Дифференциальное уравнение вида y (n) + a n 1 y (n 1) +... + a 1 y + a 0 y = 0, (3.1) где a

Подробнее

РЕШЕНИЕ ОБЫКНОВЕННЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ

РЕШЕНИЕ ОБЫКНОВЕННЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ ФГБОУ ВПО «Саратовский государственный университет им НГ Чернышевского» РЕШЕНИЕ ОБЫКНОВЕННЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ ОВ Сорокина Учебное пособие для студентов нематематических направлений подготовки

Подробнее

3. СИСТЕМЫ ЛИНЕЙНЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ С ПОСТОЯННЫМИ КОЭФФИЦИЕНТАМИ. 1. Приведение к одному уравнению n -го порядка

3. СИСТЕМЫ ЛИНЕЙНЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ С ПОСТОЯННЫМИ КОЭФФИЦИЕНТАМИ. 1. Приведение к одному уравнению n -го порядка СИСТЕМЫ ЛИНЕЙНЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ С ПОСТОЯННЫМИ КОЭФФИЦИЕНТАМИ Приведение к одному уравнению -го порядка С практической точки зрения очень важны линейные системы с постоянными коэффициентами

Подробнее

ГАОУ ВПО ДАГЕСТАНСКИЙ ГОСУДАРСТВЕННЫЙ ИНСТИТУТ НАРОДНОГО ХОЗЯЙСТВА. Бабичева Т.А. Кафедра высшей математики УЧЕБНОЕ ПОСОБИЕ ПО ДИСЦИПЛИНЕ

ГАОУ ВПО ДАГЕСТАНСКИЙ ГОСУДАРСТВЕННЫЙ ИНСТИТУТ НАРОДНОГО ХОЗЯЙСТВА. Бабичева Т.А. Кафедра высшей математики УЧЕБНОЕ ПОСОБИЕ ПО ДИСЦИПЛИНЕ ГАОУ ВПО ДАГЕСТАНСКИЙ ГОСУДАРСТВЕННЫЙ ИНСТИТУТ НАРОДНОГО ХОЗЯЙСТВА Бабичева ТА Кафедра высшей математики УЧЕБНОЕ ПОСОБИЕ ПО ДИСЦИПЛИНЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ Махачкала УДК 5(75) ББК я 7 Учебное пособие

Подробнее

Кафедра высшей математики ВЫСШАЯ МАТЕМАТИКА

Кафедра высшей математики ВЫСШАЯ МАТЕМАТИКА Министерство образования Республики Беларусь Учреждение образования «Могилевский государственный университет продовольствия» Кафедра высшей математики ВЫСШАЯ МАТЕМАТИКА Методические указания к решению

Подробнее

Дифференциальные уравнения

Дифференциальные уравнения ~ ~ Дифференциальные уравнения Общие сведения о дифференциальных уравнений Задача на составление дифференциальных уравнений Определение: дифференциальным уравнением называется такое уравнение, которое

Подробнее

ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ. В. М. Сафро, А. В. Скачко, Е. С. Чумерина

ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ. В. М. Сафро, А. В. Скачко, Е. С. Чумерина МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ПУТЕЙ СООБЩЕНИЯ МИИТ Кафедра «Прикладная математика-1» МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ПУТЕЙ СООБЩЕНИЯ МИИТ Кафедра «Прикладная математика-1» В. М. Сафро,

Подробнее

СИСТЕМЫ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ (СДУ) Основные понятия. Нормальные системы

СИСТЕМЫ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ (СДУ) Основные понятия. Нормальные системы СИСТЕМЫ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ (СДУ Основные понятия Нормальные Системой называется совокупность в каждое из которых входят независимая переменная искомые функции и их производные Всегда предполагается

Подробнее

Дифференциальные уравнения

Дифференциальные уравнения Глава 1 Дифференциальные уравнения 1.1 Понятие о дифференциальном уравнении 1.1.1 Задачи, приводящие к дифференциальным уравнениям. В классической физике каждой физической величине ставится в соответствие

Подробнее

Дифференциальные уравнения

Дифференциальные уравнения Министерство образования Российской Федерации МАТИ - РОССИЙСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ им К Э ЦИОЛКОВСКОГО Кафедра Высшая математика Дифференциальные уравнения Методические указания

Подробнее

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ для технических направлений

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ для технических направлений С. Н. КУБЫШКИНА, Е. Ю. АРЛАНОВА ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ для технических направлений Практикум Самара 2017 МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РФ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ

Подробнее

( n) const) P однородная функция любого ненулевого порядка 5). Q. P однородная функция 1 порядка. = - общее решение ЛОДУ. y = y + y подставить в ЛОДУ

( n) const) P однородная функция любого ненулевого порядка 5). Q. P однородная функция 1 порядка. = - общее решение ЛОДУ. y = y + y подставить в ЛОДУ Уфимский государственный нефтяной технический университет. Вариант 500. Дифференциальное уравнение P (, ) d Q(, ) d 0 порядка, если: будет однородным уравнением первого Ответы: ). P и Q однородные функции

Подробнее

МАТЕМАТИКА ПОСОБИЕ. по изучению дисциплины и. выполнению контрольных работ по темам. «Дифференциальные уравнения» и «Ряды»

МАТЕМАТИКА ПОСОБИЕ. по изучению дисциплины и. выполнению контрольных работ по темам. «Дифференциальные уравнения» и «Ряды» МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ГРАЖДАНСКОЙ АВИАЦИИ ------------------------------------------------------------------------------------------------- О.Г. Илларионова, В.А. Ухова МАТЕМАТИКА

Подробнее

Консультационный тренинговый центр «Резольвента»

Консультационный тренинговый центр «Резольвента» ООО «Резольвента», wwwresolventaru, resolventa@listru, (495) 509-8-10 Консультационный тренинговый центр «Резольвента» Доктор физико-математических наук, профессор К Л САМАРОВ МАТЕМАТИКА Учебно-методическое

Подробнее

y неоднородного уравнения:

y неоднородного уравнения: 1 Найти общее решение дифференциального уравнения ( 4 + + = 1 6 - это линейное неоднородное ДУ 4-го порядка с постоянными коэффициентами и правой частью специального неоднородного уравнения: = ˆ +. ( 4

Подробнее

ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ. 1. Основные понятия теории дифференциальных уравнений

ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ. 1. Основные понятия теории дифференциальных уравнений ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ Основные понятия теории дифференциальных уравнений n Опр Дифференциальным уравнением F,,,, называется уравненние, содержащее независимую переменную х, функцию ух

Подробнее

Кафедра «Высшая математика 2» ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ. ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ

Кафедра «Высшая математика 2» ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ. ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ Белорусский национальный технический университет Кафедра «Высшая математика» ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ Методические указания

Подробнее

1) Найти общее решение дифференциального уравнения (из контрольной УПИ, 2007)

1) Найти общее решение дифференциального уравнения (из контрольной УПИ, 2007) ) Найти общее решение дифференциального уравнения y + y (из контрольной УПИ, 007) - линейное неоднородное ДУ 3-го порядка. Общее решение уравнения представляет собой сумму общего решения ŷ соответствующего

Подробнее

Методические указания для выполнения семестровой работы по теме «Дифференциальные уравнения»

Методические указания для выполнения семестровой работы по теме «Дифференциальные уравнения» МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ВОЛЖСКИЙ ПОЛИТЕХНИЧЕСКИЙ ИНСТИТУТ (ФИЛИАЛ) ФЕДЕРАЛЬНОГО ГОСУДАРСТВЕННОГО ОБРАЗОВАТЕЛЬНОГО УЧРЕЖДЕНИЯ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «ВОЛГОГРАДСКИЙ

Подробнее

РГРТУ. ТИПОВОЙ РАСЧЕТ «Дифференциальные уравнения. Системы дифференциальных уравнений» Задание 1. Решить дифференциальное уравнение с разделяющимися

РГРТУ. ТИПОВОЙ РАСЧЕТ «Дифференциальные уравнения. Системы дифференциальных уравнений» Задание 1. Решить дифференциальное уравнение с разделяющимися ТИПОВОЙ РАСЧЕТ «Дифференциальные уравнения Системы дифференциальных уравнений» Задание Решить дифференциальное уравнение с разделяющимися переменными d d 0 d d 0 d ( х ) d 5 6d 6d d d 6 ( 5)d d 0 7 8 9

Подробнее

Глава 2 ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ

Глава 2 ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ Глава ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ Дифференциальные уравнения первого порядка Введем основные понятия теории дифференциальных уравнений первого порядка Если искомая функция зависит от одной переменной то

Подробнее

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ Общие понятия Дифференциальные уравнения имеют многочисленные и самые разнообразные приложения в механике физике астрономии технике и в других разделах высшей математики (например

Подробнее

Линейные уравнения 1-го порядка

Линейные уравнения 1-го порядка [Ф] Филиппов АВ Сборник задач по дифференциальным уравнениям Москва-Ижевск: НИЦ «Регулярная и хаотическая динамика» 00 URL: http://librarbsuaz/kitablar/846pdf [М] Матвеев НМ Сборник задач и упражнений

Подробнее

Глава 1. ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ Основные понятия и определения

Глава 1. ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ Основные понятия и определения Глава ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ Основные понятия и определения Дифференциальным уравнением называется уравнение связывающее независимую переменную х искомую функцию ( у f (х и производные искомой функции

Подробнее

Контрольные работы по дифференциальным уравнениям

Контрольные работы по дифференциальным уравнениям ПРИДНЕСТРОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ им ТГ ШЕВЧЕНКО Физико-математический факультет Кафедра математического анализа Контрольные работы по дифференциальным уравнениям (направление «Прикладная математика

Подробнее

Глава 2. Дифференциальные уравнения 1-го порядка

Глава 2. Дифференциальные уравнения 1-го порядка Глава Дифференциальные уравнения -го порядка Основные понятия Определение Дифференциальное уравнение вида ( n) F, ( ),,, 0 () называют обыкновенным дифференциальным уравнением Оно содержит известную функцию

Подробнее

Дифференциальные уравнения высших порядков, допускающие понижение порядка

Дифференциальные уравнения высших порядков, допускающие понижение порядка Занятие 13 Дифференциальные уравнения высших порядков, допускающие понижение порядка 13.1 Задача и теорема Коши Задачей Коши для дифференциального уравнения порядка n, разрешённого относительно старшей

Подробнее

Лекция2. Дифференциальные уравнения первого порядка

Лекция2. Дифференциальные уравнения первого порядка Лекция. Дифференциальные уравнения первого порядка Уравнения с разделяющимися переменными... Однородные уравнения... 3 Линейные уравнения первого порядка.... 7 Линейные однородные дифференциальные уравнения....

Подробнее

ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ПЕРВОГО ПОРЯДКА Основные понятия. Дифференциальные уравнения с разделяющимися переменными

ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ПЕРВОГО ПОРЯДКА Основные понятия. Дифференциальные уравнения с разделяющимися переменными ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ПЕРВОГО ПОРЯДКА Основные понятия Дифференциальные уравнения с разделяющимися переменными Многие задачи науки и техники приводятся к дифференциальным уравнениям Рассмотрим

Подробнее

Обыкновенные дифференциальные уравнения.

Обыкновенные дифференциальные уравнения. Обыкновенные дифференциальные уравнения Решение различных геометрических физических инженерных и финансовых задач часто приводят к уравнениям которые связывают независимые переменные характеризующие ту

Подробнее

Тема: Однородные уравнения. Линейные уравнения. Уравнения Бернулли

Тема: Однородные уравнения. Линейные уравнения. Уравнения Бернулли Математический анализ Раздел: Дифференциальные уравнения Тема: Однородные уравнения Линейные уравнения Уравнения Бернулли Лектор Рожкова СВ 07 год 8 Однородные уравнения Функция M, называется однородной

Подробнее

Линейные дифференциальные уравнения 1-го порядка. Уравнение Бернулли. Методические указания для практических занятий

Линейные дифференциальные уравнения 1-го порядка. Уравнение Бернулли. Методические указания для практических занятий Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Сибирский государственный индустриальный университет»

Подробнее

p p dx dx dy dx dy + 2 y = = 0 смещение C 2 = 1. Таким образом, частное решение данного ДУ = x+ 1) Найти решение ДУ y ( y

p p dx dx dy dx dy + 2 y = = 0 смещение C 2 = 1. Таким образом, частное решение данного ДУ = x+ 1) Найти решение ДУ y ( y +, ) Найти решение ДУ ( ) удовлетворяющее начальным условиям,. Данное уравнение не содержит в явном виде независимой переменной x ; интегрируем его методом понижения порядка. Суть метода заключается в

Подробнее

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ: СТАНДАРТНЫЕ ЗАДАЧИ С ОСНОВНЫМИ ПОЛОЖЕНИЯМИ ТЕОРИИ

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ: СТАНДАРТНЫЕ ЗАДАЧИ С ОСНОВНЫМИ ПОЛОЖЕНИЯМИ ТЕОРИИ ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ ВОЛГОГРАДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ Л. Н. Феофанова ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ: СТАНДАРТНЫЕ ЗАДАЧИ С ОСНОВНЫМИ ПОЛОЖЕНИЯМИ ТЕОРИИ Учебное пособие

Подробнее

Учебный план дисциплины.

Учебный план дисциплины. Учебный план дисциплины. Студенты дневного отделения изучают математику на I и II курсах. Общий объем учебных часов на дисциплину 6 часов. Во втором семестре изучаются следующие разделы: линейная алгебра,

Подробнее

ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ

ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ Министерство образования и науки Российской Федерации Санкт-Петербургский государственный архитектурно-строительный университет В Б СМИРНОВА, Л Е МОРОЗОВА ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ Учебное

Подробнее

Алашеева Е.А. Дифференциальные уравнения КОНСПЕКТ ЛЕКЦИЙ

Алашеева Е.А. Дифференциальные уравнения КОНСПЕКТ ЛЕКЦИЙ ФЕДЕРАЛЬНОЕ АГЕНСТВО СВЯЗИ Федеральное государственное образовательное бюджетное учреждение высшего профессионального образования ПОВОЛЖСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ТЕЛЕКОММУНИКАЦИЙ И ИНФОРМАТИКИ Кафедра

Подробнее

Методические указания к решению контрольной работы 2 по дисциплине «Математика» для студентов первого курса строительных специальностей

Методические указания к решению контрольной работы 2 по дисциплине «Математика» для студентов первого курса строительных специальностей Методические указания к решению контрольной работы по дисциплине «Математика» для студентов первого курса строительных специальностей Кафедра высшей математики А.В. Капусто Минск 07 07 Кафедра «Высшая

Подробнее

8. ЛИНЕЙНЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ВТОРОГО ПОРЯДКА С ПЕРЕМЕННЫМИ КОЭФФИЦИЕНТАМИ Основные понятия

8. ЛИНЕЙНЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ВТОРОГО ПОРЯДКА С ПЕРЕМЕННЫМИ КОЭФФИЦИЕНТАМИ Основные понятия 8 ЛИНЕЙНЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ВТОРОГО ПОРЯДКА С ПЕРЕМЕННЫМИ КОЭФФИЦИЕНТАМИ 8 Основные понятия Линейным дифференциальным уравнением -го порядка с переменными коэффициентами называется уравнение

Подробнее

z( 2; 1) = = 15

z( 2; 1) = = 15 9 Вариант Типовой расчет по математике Функции многих переменных. Дифференциальные уравнения. модуль Задание 1) В этом задании в каждом варианте даны функции u трёх переменных, y, z и уравнение в частных

Подробнее

1.Дифференциальные уравнения высших порядков, общие понятия.

1.Дифференциальные уравнения высших порядков, общие понятия. ЛЕКЦИЯ N Дифференциальные уравнения высших порядков, методы решения Задача Коши Линейные дифференциальные уравнения высших порядков Однородные линейные уравнения Дифференциальные уравнения высших порядков,

Подробнее

Лекция 1. Дифференциальные уравнения 1-го порядка. Основные виды дифференциальных уравнений 1-го порядка и их решение.

Лекция 1. Дифференциальные уравнения 1-го порядка. Основные виды дифференциальных уравнений 1-го порядка и их решение. Лекция Дифференциальные уравнения -го порядка Основные виды дифференциальных уравнений -го порядка и их решение Дифференциальные уравнения является одним из самых употребительных средств математического

Подробнее

Решением дифференциального уравнения называется функция y y(x)

Решением дифференциального уравнения называется функция y y(x) Глава Обыкновенные дифференциальные уравнения Основные понятия Различные задачи техники естествознания экономики приводят к решению уравнений в которых неизвестной является функция одной или нескольких

Подробнее

Романова Л.Д., Ланцова В.А., Романова Е.Г. Контрольные задания по высшей математике и методические указания к их выполнению

Романова Л.Д., Ланцова В.А., Романова Е.Г. Контрольные задания по высшей математике и методические указания к их выполнению Федеральное агентство по образованию Пензенский государственный университет Кафедра Высшей и прикладной математики Романова ЛД, Ланцова ВА, Романова ЕГ Контрольные задания по высшей математике и методические

Подробнее

МАТЕМАТИКА МЕТОДИЧЕСКИЕ УКАЗАНИЯ К ВЫПОЛНЕНИЮ КОНТРОЛЬНЫХ РАБОТ 7, 8

МАТЕМАТИКА МЕТОДИЧЕСКИЕ УКАЗАНИЯ К ВЫПОЛНЕНИЮ КОНТРОЛЬНЫХ РАБОТ 7, 8 Министерство образования и науки РФ Ачинский филиал федерального государственного автономного образовательного учреждения высшего профессионального образования «Сибирский федеральный университет» МАТЕМАТИКА

Подробнее

Контрольная работа 1. дифференциальному уравнению первого порядка. Р е ш е н и е. Найдем первую производную от заданной функции

Контрольная работа 1. дифференциальному уравнению первого порядка. Р е ш е н и е. Найдем первую производную от заданной функции Контрольная работа 1 Задание 1 Показать, что функция удовлетворяет обыкновенному дифференциальному уравнению первого порядка Р е ш е н и е Найдем первую производную от заданной функции ( После подстановки

Подробнее

4. ЭЛЕМЕНТЫ ВАРИАЦИОННОГО ИСЧИСЛЕНИЯ. 4.1 Основные понятия. называется переменная величина, зависящая от функции y ( x)

4. ЭЛЕМЕНТЫ ВАРИАЦИОННОГО ИСЧИСЛЕНИЯ. 4.1 Основные понятия. называется переменная величина, зависящая от функции y ( x) ЭЛЕМЕНТЫ ВАРИАЦИОННОГО ИСЧИСЛЕНИЯ Основные понятия Пусть M - некоторое множество функций Функционалом J = J ( y называется переменная величина зависящая от функции y ( если каждой функции y( M по некоторому

Подробнее

Тема5. «Численное интегрирование обыкновенных дифференциальных уравнений.»

Тема5. «Численное интегрирование обыкновенных дифференциальных уравнений.» Министерство образования Республики Беларусь Министерство образования Республики Беларусь Тема5. «Численное интегрирование обыкновенных дифференциальных уравнений.» Кафедра теоретичской и прикладной математики.

Подробнее

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ НАЦИОНАЛЬНАЯ МЕТАЛЛУРГИЧЕСКАЯ АКАДЕМИЯ УКРАИНЫ

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ НАЦИОНАЛЬНАЯ МЕТАЛЛУРГИЧЕСКАЯ АКАДЕМИЯ УКРАИНЫ МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ НАЦИОНАЛЬНАЯ МЕТАЛЛУРГИЧЕСКАЯ АКАДЕМИЯ УКРАИНЫ МЕТОДИЧЕСКИЕ УКАЗАНИЯ к решению задач по дисциплине Высшая математика и варианты контрольных заданий Разделы Интегральное

Подробнее

6. УРАВНЕНИЯ В ЧАСТНЫХ ПРОИЗВОДНЫХ ПЕРВОГО ПОРЯДКА Решения линейного однородного уравнения в частных производных первого порядка

6. УРАВНЕНИЯ В ЧАСТНЫХ ПРОИЗВОДНЫХ ПЕРВОГО ПОРЯДКА Решения линейного однородного уравнения в частных производных первого порядка 6 УРАВНЕНИЯ В ЧАСТНЫХ ПРОИЗВОДНЫХ ПЕРВОГО ПОРЯДКА 6 Решения линейного однородного уравнения в частных производных первого порядка Линейным однородным уравнением первого порядка в частных производных называется

Подробнее

Некоммерческое акционерное общество АЛМАТИНСКИЙ УНИВЕРСИТЕТ ЭНЕРГЕТИКИ И СВЯЗИ. Кафедра высшей математики МАТЕМАТИКА 2

Некоммерческое акционерное общество АЛМАТИНСКИЙ УНИВЕРСИТЕТ ЭНЕРГЕТИКИ И СВЯЗИ. Кафедра высшей математики МАТЕМАТИКА 2 Некоммерческое акционерное общество АЛМАТИНСКИЙ УНИВЕРСИТЕТ ЭНЕРГЕТИКИ И СВЯЗИ Кафедра высшей математики МАТЕМАТИКА Методические указания и задания по выполнению расчетно-графической работы для студентов

Подробнее

КУРС ЛЕКЦИЙ ПО ОБЫКНОВЕННЫМ ДИФФЕРЕНЦИАЛЬНЫМ УРАВНЕНИЯМ.

КУРС ЛЕКЦИЙ ПО ОБЫКНОВЕННЫМ ДИФФЕРЕНЦИАЛЬНЫМ УРАВНЕНИЯМ. КУРС ЛЕКЦИЙ ПО ОБЫКНОВЕННЫМ ДИФФЕРЕНЦИАЛЬНЫМ УРАВНЕНИЯМ. ЛЕКЦИЯ Вводные замечания Дифференциальные уравнения занимают в математике особое место. Математическое исследование разнообразных природных явлений

Подробнее

Дифференциальные уравнения (лекция 10)

Дифференциальные уравнения (лекция 10) Дифференциальные уравнения лекция 0 Линейные неоднородные уравнения высших порядков Лектор Шерстнёва Анна Игоревна 6. Линейные неоднородные уравнения -го порядка. Метод вариации произвольных постоянных

Подробнее

21-е занятие. Ряды Тейлора. Суммирование степенных рядов Матем. анализ, прикл. матем., 3-й семестр

21-е занятие. Ряды Тейлора. Суммирование степенных рядов Матем. анализ, прикл. матем., 3-й семестр -е занятие. Ряды Тейлора. Суммирование степенных рядов Матем. анализ, прикл. матем., 3-й семестр Найти разложения функции в степенной ряд по степеням, вычислить радиус сходимости степенного ряда: A f()

Подробнее

(иногда эту форму записи называют дифференциальной формой уравнения) Удобна тем, что переменные можно рассматривать как равноправные

(иногда эту форму записи называют дифференциальной формой уравнения) Удобна тем, что переменные можно рассматривать как равноправные Основные типы ДУ 1. Уравнения с разделенными переменными ДУ (3) всегда можно записать в виде M (, d N(, d 0 (иногда эту форму записи называют дифференциальной формой уравнения) Удобна тем, что переменные

Подробнее

Решение контрольной работы выполнено на сайте Переходите на сайт, смотрите больше примеров или закажите свою работу

Решение контрольной работы выполнено на сайте  Переходите на сайт, смотрите больше примеров или закажите свою работу https://www.matburo.ru/sub_vuz.php?p=vzfevm Задача. Найти неопределенный интеграл: ВЗФЭИ. Контрольная работа Решение. Интегрируем по частям: ( 3) d. + e + u = + 3 du = d + + + e ( + 3) d = = e ( + 3 )

Подробнее

Кафедра высшей математики 3 А.В. Капусто

Кафедра высшей математики 3 А.В. Капусто Методические указания к самостоятельной подготовке за второй семестр по дисциплине «Математика» для студентов первого курса строительных специальностей Кафедра высшей математики А.В. Капусто Минск 09 Содержание.

Подробнее

5. ЛИНЕЙНЫЕ ОДНОРОДНЫЕ УРАВНЕНИЯ С ПОСТОЯННЫМИ КОЭФФИЦИЕНТАМИ

5. ЛИНЕЙНЫЕ ОДНОРОДНЫЕ УРАВНЕНИЯ С ПОСТОЯННЫМИ КОЭФФИЦИЕНТАМИ 5 ЛИНЕЙНЫЕ ОДНОРОДНЫЕ УРАВНЕНИЯ С ПОСТОЯННЫМИ КОЭФФИЦИЕНТАМИ Рассмотрим линейное уравнение ( ) ( ) ( ) L[ ] p p p p f () () коэффициенты которого p p p постоянные вещественные числа а правая часть f ()

Подробнее

И.В. Ребро, С.Ю. Кузьмин, Н.Н. Короткова, Д.А. Мустафина ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ

И.В. Ребро, С.Ю. Кузьмин, Н.Н. Короткова, Д.А. Мустафина ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ИВ Ребро, СЮ Кузьмин, НН Короткова, ДА Мустафина ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ ВОЛГОГРАДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ВОЛЖСКИЙ ПОЛИТЕХНИЧЕСКИЙ ИНСТИТУТ

Подробнее

Линейные дифференциальные уравнения второго порядка с постоянными коэффициентами

Линейные дифференциальные уравнения второго порядка с постоянными коэффициентами МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное автономное образовательное учреждение высшего образования Национальный исследовательский Нижегородский государственный

Подробнее

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ФГОУ ВПО «КУБАНСКИЙ ГОСУДАРСТВЕННЫЙ АГРАРНЫЙ УНИВЕРСИТЕТ» КАФЕДРА ВЫСШЕЙ МАТЕМАТИКИ В.Д. ГУНЬКО, Л.Ю. СУХОВЕЕВА, В.М. СМОЛЕНЦЕВ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ПРИМЕРЫ И ТИПОВЫЕ ЗАДАНИЯ Учебное пособие Краснодар

Подробнее