ЛЕКЦИЯ 7 ЛИНЕЙНЫЕ ПРОСТРАНСТВА. ЛИНЕЙНЫЙ И ОРТОГОНАЛЬНЫЙ ОПЕРАТОР. ПРЕОБРАЗОВАНИЕ КООРДИНАТ

Размер: px
Начинать показ со страницы:

Download "ЛЕКЦИЯ 7 ЛИНЕЙНЫЕ ПРОСТРАНСТВА. ЛИНЕЙНЫЙ И ОРТОГОНАЛЬНЫЙ ОПЕРАТОР. ПРЕОБРАЗОВАНИЕ КООРДИНАТ"

Транскрипт

1 ЛЕКЦИЯ 7 ЛИНЕЙНЫЕ ПРОСТРАНСТВА ЛИНЕЙНЫЙ И ОРТОГОНАЛЬНЫЙ ОПЕРАТОР ПРЕОБРАЗОВАНИЕ КООРДИНАТ 7 Линейные пространства Базис линейного пространства 7 Линейный оператор: определение действия над линейным оператором Координаты вектора6 73 Преобразование координат Изменение матрицы линейного оператора при переоде к новому базису Ортогональный оператор и замена базиса8

2 7 ЛИНЕЙНЫЕ ПРОСТРАНСТВА БАЗИС ЛИНЕЙНОГО ПРОСТРАНСТВА В математике существует много объектов над которыми можно проводить линейные действия (сложение и умножение на число)- векторы матрицы функции и тд (см ЛЕКЦИЯ ) Эти действия имеют одинаковые свойства - коммутативность ассоциативность существование нулевого элемента и тд Это позволяет перейти к общему взгляду на линейные действия которые выполняются над совокупностью каки-либо элементов и подчиняются определённым аксиомам Это взгляд выражается в понятии линейного пространства ОПРЕДЕЛЕНИЕ Линейным пространством L называется множество элементов x y z если: x y L указан закон (правило) наождения суммы элементов: z x y : z L x L R указан закон (правило) наождения произведения элемента на число: z x x : z L 3 Операции сложения и умножения на число удовлетворяют аксиомам: ) x y y x - коммутативность сложения ) ( x y) z x ( y z) - ассоциативность сложения 3) O L : x O x - существование нулевого элемента 0 L 4) x L ( x) L : ( x) x O - существование противоположного элемента ( x) L 5) L : x x- существование единичного элемента L 6) x x - ассоциативность умножения на число 7) ( ) x x x - дистрибутивность 8) ( x y) x y Непосредственно из определения линейного пространства следуют его свойства СВОЙСТВА ЛИНЕЙНОГО ПРОСТРАНСТВА Существует единственный нулевой элемент линейного пространства Для x L существует единственный противоположный элемент 3 x L : 0 x O где 0 R O L 4 x L : ( ) x x x - противоположный элемент 5 0 : О О О - нулевой элемент пространства ПРИМЕРЫ ЛИНЕЙНЫХ ПРОСТРАНСТВ: Множество все вещественны чисел R Множество все матриц 3 Множество все многочленов P x: P ( x) x x R 0 i

3 4 3 A - -мерное пространство арифметически векторов (см ЛЕКЦИЯ ) Элементом этого пространства является любой упорядоченный набор из 3 вещественны чисел: где А - вектор (точка) этого пространства - координаты вектора (точки) А 5 Множество все свободны векторов (см ЛЕКЦИЯ ЗАМЕЧАНИЕ) ОПРЕДЕЛЕНИЕ Линейное пространство называется евклидовым Е если в нём задано скалярное произведение векторов: определено действие сопоставляющее каждым двум векторам x y Е число x y ОПРЕДЕЛЕНИЕ Длиной (модулем нормой) вектора x Е называется число x ( x ) равное корню из квадрата скалярного произведения вектора x : x ЗАМЕЧАНИЕ Тогда операция нормирования вектора (те приведение длины вектора к ) : x 0 Ранее (см ЛЕКЦИЯ 4) было введено понятие линейной зависимости и независимости арифметически векторов Аналогично можно ввести понятие линейной зависимости (независимости) обобщённы векторов (точек элементов) линейного пространства L : ОПРЕДЕЛЕНИЕ Совокупность векторов L называется линейно независимой если и линейная комбинация R i равна нулю только при 0 ПРИМЕР Рассмотрим P -линейное пространство многочленов -й степени P x P ( x ) x x R : 0 i Совокупность его элементов (обобщённы векторов) x x является линейно независимой Действительно рассмотрим и линейную комбинацию: Очевидно что x x 3 x x ОПРЕДЕЛЕНИЕ Совокупность векторов L называется линейно зависимой если существует отя бы одно котором и линейная комбинация равна нулю: при i 0 : i

4 0 i i : i 0 ПРИМЕР Рассмотрим P -линейное пространство многочленов -й степени P x P ( x ) x x R : 0 i Совокупность его элементов (обобщённы векторов) x линейно независимой - см ПРИМЕР x является Рассмотрим совокупность x 3 x x и докажем что она линейно зависима Рассмотрим и линейную комбинацию: при например при x 3) x x ( 3 4 ( x 3) x 3 x Значит элементы x 3 x x - линейно зависимы Понятие линейной зависимости (независимости) векторов является одним из основополагающи понятий курса линейной алгебры и позволяет дать определение размерности и базиса линейного пространства ОПРЕДЕЛЕНИЕ Линейное пространство L называется - мерным если в нём существует линейно независимы векторов а любые (+) векторов являются линейно зависимыми Обозначение: L ( L ) Число называется размерностью линейного пространства L : dim L ПРИМЕР 3 Пространство P многочленов P x : P ( x ) x x 0 i R является 3- мерным: dim P 3 - см ПРИМЕР и ПРИМЕР ОПРЕДЕЛЕНИЕ Базисом -мерного линейного пространства L называется любая упорядоченная совокупность (система) линейно независимы векторов этого пространства ЗАМЕЧАНИЕ )Если базис состоит из конечного числа векторов то пространство - конечномерно ) Если для m N найдётся m линейно независимы векторов этого пространства то это пространство называется бесконечномерным

5 ПРИМЕР 4 Совокупность x x является базисом пространства P многочленов P x P ( x ) x x R : 0 i 3 ПРИМЕР 5 ) Рассмотрим любые три некомпланарны вектора в R например p q 03 r 0 - они линейно независимы и являются 3 базисом в R Для доказательства этого факта составим линейную комбинацию эти векторов p q 3r и найдём что p q r i p q 3r ( ) (03) 3(0) Эта запись равносильна однородной системе уравнений: Посчитаем определитель этой системы: значит эта система имеет единственное решение - тривиальное те 3 0 Если мы рассмотрим систему из 4- векторов p q 03 r 0 s 8 54 то она будет уже линейно зависимой и вектор s 8 54 можно выразить через базисные вектора p q 03 r 0 Для этого нужно найти значения i 0 : s p q 3r или решить равносильную этой записи систему линейны уравнений Решением этой системы было найдено ранее (см ЛЕКЦИЯ 5 ПРИМЕР 4): 3 3 ) Рассмотрим любые два неколлинеарны вектора в R например p 0 q 0 - они линейно независимы и являются базисом в R 3) Рассмотрим любой ненулевой вектор в R например p 3 - он является базисом в R : 0

6 7 ЛИНЕЙНЫЙ ОПЕРАТОР: ОПРЕДЕЛЕНИЕ ДЕЙСТВИЯ НАД ЛИНЕЙНЫМ ОПЕРАТОРОМ КООРДИНАТЫ ВЕКТОРА В математике много примеров когда под действием некоторого преобразования (например один объект (прообраз) переодит в другой (образ) сораняя при этом линейные действия над изменённым объектом (прообразом) Рассмотрим поворот все векторов вокруг начала координат на некоторый угол Обозначим это преобразование буквой тогда каждому вектору будет соответствовать его образ - вектор При этом ( ) а если то ( ) РИСОбраз вектора суммы: ( ) Перейдём к определению линейного оператора действующего в некотором линейном пространстве L ОПРЕДЕЛЕНИЕ В пространстве L задан линейный оператор если установлено правило (задан закон) по которому каждому вектору L сопоставляется вполне определённый (единственный) вектор у : у L при этом выполнено: ( ) ( ) R ТЕОРЕМА Если L -базис линейного (-мерного) пространства L то для x L существует единственная система чисел такая что Доказательство

7 По определению линейного пространства (см п 7) для x L совокупность из (+) векторов является линейно зависимой те не все равные нулю такие что Предположим что Тогда Так как вектора п7) то : = ( ) ( ) ( ) 0 линейно независимы (см определение базиса ( ) ( ) ( ) Теорема доказана ОПРЕДЕЛЕНИЕ Выражение будем называть разложением вектора x по базису Коэффициенты i будем называть координатами вектора в этом базисе Рассмотрим образ вектора : у Он также является вектором а совокупность из (+) векторов у является линейно зависимой те у у у R не все равные нулю такие что у у у у Теперь применим оператор непосредственно к вектору : у ( x x x ) ( ) ( ) ( Так как L то вектора L а значит могут быть разложенными по базису k : Таким образом мы получаем что те k k k k у у у = x x x у у у В матричном виде эта запись выглядит следующим образом: )

8 где у у у у у Y у А x x Х x x x x или -столбец координат вектора Y A X у -матрица оператора -столбец координат вектора ЗАМЕЧАНИЕ )Отметим что при применении одного и того же оператора к различным наборам базисны векторов мы будем получать различные матрицы этого оператора ) Линейный оператор матрица A которого невырожденная называется невырожденным оператором 73 ПРЕОБРАЗОВАНИЕ КООРДИНАТ ИЗМЕНЕНИЕ МАТРИЦЫ ЛИНЕНОГО ОПЕРАТОРА ПРИ ПЕРЕХОДЕ К НОВОМУ БАЗИСУ ОРТОГОНАЛЬНЫЙ ОПЕРАТОР И ЗАМЕНА БАЗИСА 73 ПРЕОБРАЗОВАНИЕ КООРДИНАТ В предыдущем пункте мы отмечали (см ЗАМЕЧАНИЕ) что матрица оператора зависит от выбранного базиса - у одного и того же оператора в разны базиса будут разные матрицы Далее мы рассмотрим вопрос о том как будут меняться координаты некоторого вектора при переоде от одного базиса к другому Фиксируем в некотором линейном -мерном пространстве L два различны базиса:

9 Рассмотрим вектор L x и его разложение по данным базисам: Каждый базисный вектор разложим по базису : Подставим полученные разложения: е Учитывая что получим: В матричном виде эта запись выглядит следующим образом: x x x или Х Т Х где Х - столбец координат вектора x в базисе Т - матрица переода от базиса к базису Х - столбец координат вектора x в базисе ЗАМЕЧАНИЕ ) Отметим что

10 Т - матрица переода от базиса к базису составляется из столбцов координат векторов базиса в базисе ) Матрица переода от одного базиса к другому является невырожденной 3) Любую невырожденную матрицу порядка можно рассматривать как матрицу переода от одного базиса к другому в -мерном пространстве 4)Так как матрица переода от одного базиса к другому невырожденная то у неё существует обратная матрица и можно выразить координаты в "новом" базисе через координаты в "старом" базисе : Х Т Х ПРИМЕР 5 Рассмотрим преобразование поворота на некоторый угол в плоскости Oxy Найдём матрицу этого преобразования Формулы связи "новы" и "стары" координат: cos si y y si x cos y или x cos si x y si cos y cos si тогда нетрудно найти T si cos cos si cos si y T и si cos y si x cos y 73 ИЗМЕНЕНИЕ МАТРИЦЫ ЛИНЕЙНОГО ОПЕРАТОРА ПРИ ПЕРЕХОДЕ К НОВОМУ БАЗИСУ ОРТОГОНАЛЬНЫЙ ОПЕРАТОР И ЗАМЕНА БАЗИСА Рассмотрим: оператор в некотором -мерном линейном пространстве L - базис этого пространства А - матрица оператора : Y A X - новый базис пространства L T - матрица переода от базиса к базису Y Т Y Покажем как изменится матрица оператора : Х Т Х при переоде в базис

11 Для этого рассмотрим равенство откуда где Y A X A T X T Y A T X T Y T A T X T T Y T A T X E Y Y Y T A T X A X А T A T - матрица оператора в новом базисе ОПРЕДЕЛЕНИЕ Матрица A называется подобной матрице В если существует невырожденная матрица С такая что А С В С ЗАМЕЧАНИЕ Матрицы оператора при переоде от одного базиса к другому - подобные: матрица А подобна матрице A (где А T A T T - матрица переода от базиса к базису ) ОПРЕДЕЛЕНИЕ Квадратная матрица A называется ортогональной если её транспонированная матрица равна обратной: A T A Ортогональной матрице отвечает ортогональный оператор ЗАМЕЧАНИЕ )Определитель ортогональной матрицы всегда равен ) Ортогональный оператор переводит один ортонормированный базис (вектора этого базиса попарно перпендикулярны и имеют единичную длину) в другой ортонормированный базис


Линейная алгебра Модуль 1. Линейные и евклидовы пространства. Линейные операторы в линейном пространстве Лекция 1.1

Линейная алгебра Модуль 1. Линейные и евклидовы пространства. Линейные операторы в линейном пространстве Лекция 1.1 Линейная алгебра Модуль 1. Линейные и евклидовы пространства. Линейные операторы в линейном пространстве Лекция 1.1 Аннотация Вещественное линейное пространство, аксиомы и примеры. Линейно зависимые и

Подробнее

Линейная алгебра. Лекция 1.1

Линейная алгебра. Лекция 1.1 Московский Государственный Технический Университет им. Н.Э. Баумана Факультет Фундаментальные науки Кафедра Высшая математика Линейная алгебра Модуль 1. Линейные и евклидовы пространства. Линейные операторы

Подробнее

Линейная алгебра. Лекция 1.2

Линейная алгебра. Лекция 1.2 Московский Государственный Технический Университет им. Н.Э. Баумана Факультет Фундаментальные науки Кафедра Высшая математика Линейная алгебра Модуль 1. Линейные и евклидовы пространства. Линейные операторы

Подробнее

Линейная алгебра Модуль 1. Линейные и евклидовы пространства. Линейные операторы в линейном пространстве Лекция 1.2

Линейная алгебра Модуль 1. Линейные и евклидовы пространства. Линейные операторы в линейном пространстве Лекция 1.2 Линейная алгебра Модуль 1. Линейные и евклидовы пространства. Линейные операторы в линейном пространстве Лекция 1.2 Аннотация Линейное подпространство, его свойства и примеры. Линейная оболочка, ее свойства

Подробнее

Линейные пространства

Линейные пространства ГЛАВА V. Линейные пространства Лекция 9 по дисциплине «Линейная алгебра и аналитическая геометрия» поток гр. ПМ(б), ПО(б) Лекция 9 1. ОПРЕДЕЛЕНИЯ И АКСИОМЫ Определение 1. Множество R линейное (векторное)

Подробнее

Линейные пространства

Линейные пространства Линейные пространства Лекция 1-2 по дисциплине «Линейная алгебра и аналитическая геометрия» поток гр. ПМ(б), ПО(б) Лекция 1-2 1. ОПРЕДЕЛЕНИЯ И АКСИОМЫ Определение 1. Множество R называется линейным или

Подробнее

2 Два вектора x, y R n будем считать равными тогда и только тогда, когда x k = y k для всех k = 1,..., n.

2 Два вектора x, y R n будем считать равными тогда и только тогда, когда x k = y k для всех k = 1,..., n. ГЛАВА 6. ЛИНЕЙНЫЕ ПРОСТРАНСТВА 1 1. Пространства R n и C n. Пространство R n это множество всех упорядоченных наборов x = (x 1, x 2,..., x n ) вещественных чисел, n 1 фиксированное целое число. Элементы

Подробнее

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Высшая математика»

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Высшая математика» Московский государственный технический университет имени НЭ Баумана Факультет «Фундаментальные науки» Кафедра «Высшая математика» Е Б Павельева В Я Томашпольский Линейная алгебра Методические указания

Подробнее

Линейная алгебра Модуль 1. Линейные и евклидовы пространства. Линейные операторы в линейном пространстве Лекция 1.4

Линейная алгебра Модуль 1. Линейные и евклидовы пространства. Линейные операторы в линейном пространстве Лекция 1.4 Линейная алгебра Модуль 1. Линейные и евклидовы пространства. Линейные операторы в линейном пространстве Лекция 1.4 Аннотация Собственные векторы и собственные значения линейного оператора, их свойства.

Подробнее

Базис. Координаты вектора в базисе

Базис. Координаты вектора в базисе Тема 0 Базис Существование и единственность разложения вектора по базису Координатное представление векторов Действия с векторами в координатном представлении Необходимое и достаточное условие линейной

Подробнее

Линейная алгебра. Лекция 1.4

Линейная алгебра. Лекция 1.4 Московский Государственный Технический Университет им. Н.Э. Баумана Факультет Фундаментальные науки Кафедра Высшая математика Линейная алгебра Модуль 1. Линейные и евклидовы пространства. Линейные операторы

Подробнее

Линейная алгебра Лекция 7. Векторы

Линейная алгебра Лекция 7. Векторы Линейная алгебра Лекция 7 Векторы Введение В математике есть два рода величин скаляры и векторы Скаляр это число, а вектор интуитивно понимается как объект, имеющий величину и направление Векторное исчисление

Подробнее

Линейная алгебра. Лекция 2.1

Линейная алгебра. Лекция 2.1 Московский Государственный Технический Университет им. Н.Э. Баумана Факультет Фундаментальные науки Кафедра Высшая математика Линейная алгебра Модуль 2. Линейные операторы в евклидовом пространстве.квадратичные

Подробнее

Линейная алгебра Модуль 2. Линейные операторы в евклидовом пространстве. Квадратичные формы Лекция 2.1

Линейная алгебра Модуль 2. Линейные операторы в евклидовом пространстве. Квадратичные формы Лекция 2.1 Линейная алгебра Модуль 2. Линейные операторы в евклидовом пространстве. Квадратичные формы Лекция 2.1 Аннотация Сопряженные и самосопряженные операторы, их свойства и примеры. Ортогональная матрица и

Подробнее

1. Требования к знаниям, умениям, навыкам

1. Требования к знаниям, умениям, навыкам ПРИЛОЖЕНИЯ Требования к знаниям умениям навыкам Страницы даны по учебнику «Математика в экономике» [] Дополнительные задачи по данному курсу можно найти в учебных пособиях [ 6] Векторы Владеть понятиями:

Подробнее

ЛИНЕЙНАЯ АЛГЕБРА ВМЕСТЕ С MAPLE

ЛИНЕЙНАЯ АЛГЕБРА ВМЕСТЕ С MAPLE ЛИНЕЙНАЯ АЛГЕБРА ВМЕСТЕ С MAPLE Усов В.В. 1 Симметричные и ортогональные матрицы и операторы 1.1 Определения. Основные свойства Действительная матрица A M n n называется симметричной (симметрической),

Подробнее

10. Линейные операторы

10. Линейные операторы 35 0 Линейные операторы До сих пор мы рассматривали в линейном пространстве L скалярные функции векторного аргумента - линейные комбинации векторов Теперь мы сосредоточимся на рассмотрении векторных функций

Подробнее

ЗАДАЧИ. для самостоятельного решения Системы линейных уравнений и их решение методом Гаусса. 1. Найдите функцию ( )

ЗАДАЧИ. для самостоятельного решения Системы линейных уравнений и их решение методом Гаусса. 1. Найдите функцию ( ) ЗАДАЧИ для самостоятельного решения Системы линейных уравнений и их решение методом Гаусса x bx + c f x = +, если известны ее значения в трех указанных x точках: Найдите функцию ( ) а) f ( ) f ( ) f (

Подробнее

Линейная алгебра Модуль 1. Линейные и евклидовы пространства. Линейные операторы в линейном пространстве Лекция 1.3

Линейная алгебра Модуль 1. Линейные и евклидовы пространства. Линейные операторы в линейном пространстве Лекция 1.3 Линейная алгебра Модуль 1. Линейные и евклидовы пространства. Линейные операторы в линейном пространстве Лекция 1.3 Аннотация Ортонормированный базис, его свойства и примеры. Процесс ортогонализации Грама

Подробнее

Лекция 1.2. Геометрические векторы, линейная зависимость, базис. Скалярное, векторное и смешанное произведения векторов

Лекция 1.2. Геометрические векторы, линейная зависимость, базис. Скалярное, векторное и смешанное произведения векторов Лекция.. Геометрические векторы, линейная зависимость, базис. Скалярное, векторное и смешанное произведения векторов Аннотация: Вводится понятие линейной независимости системы геометрических векторов.

Подробнее

Линейная алгебра. Лекция 13. ЛИНЕЙНЫЕ ОТОБРАЖЕНИЯ

Линейная алгебра. Лекция 13. ЛИНЕЙНЫЕ ОТОБРАЖЕНИЯ Линейная алгебра Лекция 3 ЛИНЕЙНЫЕ ОТОБРАЖЕНИЯ Линейное (векторное) пространство Определение Множество элементов произвольной природы X называется линейным (или векторным) пространством если для любых

Подробнее

ТЕМА 1. ЭЛЕМЕНТЫ ВЕКТОРНОЙ И ЛИНЕЙНОЙ АЛГЕБРЫ

ТЕМА 1. ЭЛЕМЕНТЫ ВЕКТОРНОЙ И ЛИНЕЙНОЙ АЛГЕБРЫ МЕТОДИЧЕСКИЕ УКАЗАНИЯ К РАСЧЕТНЫМ ЗАДАНИЯМ ПО КУРСУ ВЫСШЕЙ МАТЕМАТИКИ «ЭЛЕМЕНТЫ ЛИНЕЙНОЙ АЛГЕБРЫ И АНАЛИТИЧЕСКОЙ ГЕОМЕТРИИ ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИИ ОДНОГО ПЕРЕМЕННОГО» ЧАСТЬ I ТЕМА ЭЛЕМЕНТЫ

Подробнее

Тема 2-3: Базис и размерность линейного пространства

Тема 2-3: Базис и размерность линейного пространства Тема 2-3: Базис и размерность линейного пространства А. Я. Овсянников Уральский федеральный университет Институт математики и компьютерных наук кафедра алгебры и дискретной математики алгебра и геометрия

Подробнее

12. ЛИНЕЙНЫЕ ПРОСТРАНСТВА

12. ЛИНЕЙНЫЕ ПРОСТРАНСТВА ЛИНЕЙНЫЕ ПРОСТРАНСТВА ОПРЕДЕЛЕНИЕ И ПРИМЕРЫ ЛИНЕЙНЫХ ПРОСТРАНСТВ Аксиомы линейного пространства Линейным векторным пространством называется множество V произвольных элементов, называемых векторами, в котором

Подробнее

Занятие 1. Векторный анализ Краткое теоретическое введение. Физические величины, Z. для определения которых K

Занятие 1. Векторный анализ Краткое теоретическое введение. Физические величины, Z. для определения которых K Занятие 1. Векторный анализ. 1.1. Краткое теоретическое введение. Физические величины, Z Z (M) для определения которых K достаточно задать одно число Y K (положительное или Y отрицательное) называются

Подробнее

Элементы линейной алгебры

Элементы линейной алгебры Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Московский государственный университет путей сообщения» Институт экономики и финансов Кафедра «Математика»

Подробнее

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование»

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ Московский государственный технический университет имени Н.Э. Баумана Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» À.Í. Êàíàòíèêîâ,

Подробнее

ЛЕКЦИЯ N5. Скалярное, векторное, смешанное произведение векторов, арифметические векторные пространства, евклидовы пространства.

ЛЕКЦИЯ N5. Скалярное, векторное, смешанное произведение векторов, арифметические векторные пространства, евклидовы пространства. ЛЕКЦИЯ N5. Скалярное, векторное, смешанное произведение векторов, арифметические векторные пространства, евклидовы пространства..скалярное произведение векторов..... Векторное произведение двух векторов...

Подробнее

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование»

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ Московский государственный технический университет имени Н.Э. Баумана Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» À.Í. Êàíàòíèêîâ, À.Ï. Êðèùåíêî

Подробнее

Ликбез по курсу Алгебра для студентов специальностей Математика и Механика, 1-ый семестр

Ликбез по курсу Алгебра для студентов специальностей Математика и Механика, 1-ый семестр Ликбез по курсу Алгебра для студентов специальностей Математика и Механика, 1-ый семестр лектор Панов АН 1 Основные определения и формулировки основных теорем Вопрос 11 Что такое перестановка и что такое

Подробнее

Аналитическая геометрия Модуль 1. Матричная алгебра. Векторная алгебра

Аналитическая геометрия Модуль 1. Матричная алгебра. Векторная алгебра Аналитическая геометрия Модуль 1 Матричная алгебра Векторная алгебра Текст 4 (самостоятельное изучение) Аннотация Линейная зависимость векторов Критерии линейной зависимости двух, трех и четырех векторов

Подробнее

Линейная алгебра Модуль 2. Линейные операторы в евклидовом пространстве. Квадратичные формы Лекция 2.3

Линейная алгебра Модуль 2. Линейные операторы в евклидовом пространстве. Квадратичные формы Лекция 2.3 Линейная алгебра Модуль 2. Линейные операторы в евклидовом пространстве. Квадратичные формы Лекция 2.3 Аннотация Приведение квадратичной формы к каноническому виду методом ортогонального преобразования.

Подробнее

ГЛАВА 6. ЛИНЕЙНЫЕ ПРОСТРАНСТВА

ГЛАВА 6. ЛИНЕЙНЫЕ ПРОСТРАНСТВА 66 ГЛАВА 6 ЛИНЕЙНЫЕ ПРОСТРАНСТВА Определение линейного пространства В гл 5 n-мерное векторное пространство было определено как упорядоченная система n чисел Для n-мерных векторов были введены операции

Подробнее

( x) Заметим, что мы можем отождествить линейную функцию с линейным отображением L в одномерное арифметическое пространство.

( x) Заметим, что мы можем отождествить линейную функцию с линейным отображением L в одномерное арифметическое пространство. 79 Линейные функции Определение и примеры линейных функций Определение Будем говорить, что на линейном пространстве L задана функция от одного вектора, если каждому вектору x L сопоставлено число ( x)

Подробнее

9. Линейные пространства

9. Линейные пространства 9 Линейные пространства 3 Нам часто приходится рассматривать некоторые множества объектов, для которых установлены так называемые линейные операции: сложение элементов множества и умножение элемента множества

Подробнее

Линейная алгебра. Лекция 2.3

Линейная алгебра. Лекция 2.3 Московский Государственный Технический Университет им. Н.Э. Баумана Факультет Фундаментальные науки Кафедра Высшая математика Линейная алгебра Модуль 2. Линейные операторы в евклидовом пространстве.квадратичные

Подробнее

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ДЛЯ ПРОВЕДЕНИЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ (МОДУЛЮ). Общие сведения

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ДЛЯ ПРОВЕДЕНИЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ (МОДУЛЮ). Общие сведения ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ДЛЯ ПРОВЕДЕНИЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ (МОДУЛЮ). Общие сведения. Кафедра Информатики, вычислительной техники и информационной безопасности. Направление

Подробнее

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование»

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ Московский государственный технический университет имени Н.Э. Баумана Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» À.Í. Êàíàòíèêîâ,

Подробнее

2. Перечислить все линейные подпространства трехмерного векторного пространства.

2. Перечислить все линейные подпространства трехмерного векторного пространства. Тема Комплексные числа и многочлены cosϕ + i siϕ Упростить cosψ i siψ ( i 3 ( cosϕ + Вычислить i siϕ ( i( cosϕ i siϕ 3 3 Найти z, если z = ( i 4 Найти комплексные числа, сопряженные своим квадратам 5 Найти

Подробнее

Лекция 3: Скалярное произведение векторов

Лекция 3: Скалярное произведение векторов Лекция 3: Скалярное произведение векторов Уральский федеральный университет, Институт математики и компьютерных наук, кафедра алгебры и дискретной математики Вступительные замечания В этой лекции вводится

Подробнее

. Результат изобразить на комплексной плоскости.. Результат изобразить на комплексной плоскости.. Результат изобразить на комплексной плоскости.

. Результат изобразить на комплексной плоскости.. Результат изобразить на комплексной плоскости.. Результат изобразить на комплексной плоскости. Тема. Комплексные числа и многочлены. Вычислить ( ) 0 + i. Вычислить ( ) 6 i i. Вычислить i + 70 00 i. Вычислить i 5. Вычислить 6. Вычислить 7i 7. Решить уравнение z + i 0 8. Решить уравнение z + 6 0 9.

Подробнее

Решение типовых задач к разделу «Матрицы»

Решение типовых задач к разделу «Матрицы» Решение типовых задач к разделу «Матрицы» Вычислить сумму матриц и Р е ш е н и е 8 8 9 + + + + Вычислить произведение матрицы на число Р е ш е н и е Вычислить произведение матриц и Р е ш е н и е 8 Вычислить

Подробнее

МНОГОМЕРНАЯ ГЕОМЕТРИЯ

МНОГОМЕРНАЯ ГЕОМЕТРИЯ МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РФ Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования ПЕНЗЕНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ (ПГУ) О.В. Якунина МНОГОМЕРНАЯ

Подробнее

Свойства собственных векторов линейного оператора.

Свойства собственных векторов линейного оператора. Свойства собственных векторов линейного оператора. 1. Если λ 1,..., λ k (k n) различные собственные числа оператора ϕ, тогда соответствующие собственные векторы x 1,..., x k линейно независимы. Доказательство:

Подробнее

Системы линейных уравнений и матрицы второго и третьего порядков.

Системы линейных уравнений и матрицы второго и третьего порядков. Системы линейных уравнений и матрицы второго и третьего порядков. Введение: Рассмотрим систему уравнений вида: { a 11 x 1+a 12 x 2+...+a 1n x n=b 1... a m1 x 1 +a m2 x 2 +...+a mn x n =b m} Обозначим систему

Подробнее

Лекции подготовлены доц. Мусиной М.В. Векторы. Линейные операции над векторами.

Лекции подготовлены доц. Мусиной М.В. Векторы. Линейные операции над векторами. Лекции подготовлены доц Мусиной МВ Векторы Линейные операции над векторами Определение Направленный отрезок (или что то же упорядоченную пару точек) мы будем называть вектором Обозначение: AB Нулевой вектор

Подробнее

АЛГЕБРА (ЧАСТЬ 2) Материалы для практических занятий и самостоятельной работы для студентов направлений и

АЛГЕБРА (ЧАСТЬ 2) Материалы для практических занятий и самостоятельной работы для студентов направлений и МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Курганский государственный университет» Кафедра

Подробнее

Тема 04. Скалярное произведение векторов. Координатное представление скалярного произведения. Векторное. Определение Определение 04.2.

Тема 04. Скалярное произведение векторов. Координатное представление скалярного произведения. Векторное. Определение Определение 04.2. Тема 04 Скалярное произведение векторов Координатное представление скалярного произведения Векторное произведение векторов Координатное представление векторного произведения Смешанное произведение тройки

Подробнее

Линейная алгебра с приложениями

Линейная алгебра с приложениями Федеральное агентство по образованию ГОУ ВПО «Уральский государственный технический университет УПИ» Институт образовательных информационных технологий РМ Минькова Линейная алгебра с приложениями Учебно-методическое

Подробнее

Демонстрационный вариант Найдите общее и базисное решения системы уравнений: выбрав в качестве базисных переменных x и x.

Демонстрационный вариант Найдите общее и базисное решения системы уравнений: выбрав в качестве базисных переменных x и x. Демонстрационный вариант 01 1. Найдите общее и базисное решения системы уравнений: x + x + 3x = 26, 2x 12x x = 22, x + 3x + 2x = 20, выбрав в качестве базисных переменных x и x. 2. Найдите базис системы

Подробнее

определения которых K Y отрицательное) называются скалярами. Два скаляра X X одинаковой размерности Рис. 1.

определения которых K Y отрицательное) называются скалярами. Два скаляра X X одинаковой размерности Рис. 1. Занятие 1. Векторный анализ. Краткое теоретическое введение. Физические величины, для Z Z ϕ (M) определения которых K достаточно задать одно число Y K (положительное или Y отрицательное) называются скалярами.

Подробнее

Ликбез по курсу Алгебра для студентов 1 курса, 1-ый семестр

Ликбез по курсу Алгебра для студентов 1 курса, 1-ый семестр Ликбез по курсу Алгебра для студентов 1 курса, 1-ый семестр лектор Панов АН 1 Наиболее часто задаваемые вопросы Вопрос 11 Что такое перестановка и что такое знак перестановки? Ответ Перестановка это множество

Подробнее

7. Понятие линейного пространства

7. Понятие линейного пространства 7 Понятие линейного пространства 1 Определение и примеры Пусть L некоторое множество, элементы которого можно складывать и умножать на действительные числа (например, множество матриц одинакового размера,

Подробнее

Лекция 4. Операции над векторами: сложение и умножение на число. AB = AC + CB. (a + b) + c = a + (b + c);

Лекция 4. Операции над векторами: сложение и умножение на число. AB = AC + CB. (a + b) + c = a + (b + c); Лекция 4 1. ВЕКТОРЫ Вектор направленный отрезок. Равные векторы: имеют одинаковые длины и совпадающие направления (параллельны и направлены в одну стороны) Противоположные векторы: имеют одинаковые длины

Подробнее

Лекция 6. Геометрические векторы.

Лекция 6. Геометрические векторы. Лектор Гущина Елена Николаевна, кафедра Высшей математики 2. Лекция 6. Геометрические векторы. Вектор как направленный отрезок. Сложение векторов и умножение вектора на число. Свойства линейных операций.

Подробнее

8. Дать определение ортогональной скалярной проекции вектора на направление.

8. Дать определение ортогональной скалярной проекции вектора на направление. 1. Дать определение равенства геометрический векторов. Два геометрических вектора называют равными, если: они коллинеарны и однонаправлены; их длины совпадают. 2. Дать определение суммы векторов и умножения

Подробнее

Пояснения к введению в ГАРМОНИЧЕСКИЙ АНАЛИЗ Умнов А.Е, Умнов Е.А. (Верс. 29апр2018г)

Пояснения к введению в ГАРМОНИЧЕСКИЙ АНАЛИЗ Умнов А.Е, Умнов Е.А. (Верс. 29апр2018г) Пояснения к введению в ГАРМОНИЧЕСКИЙ АНАЛИЗ Умнов АЕ Умнов ЕА Верс 9апр08г Данный документ имеет своей целью проиллюстрировать некоторые способы применения понятий и методов рассмотренных ранее в курсах

Подробнее

ЛЕКЦИЯ 2 ЧИСЛЕННОЕ РЕШЕНИЕ СЛАУ

ЛЕКЦИЯ 2 ЧИСЛЕННОЕ РЕШЕНИЕ СЛАУ ЛЕКЦИЯ 2 ЧИСЛЕННОЕ РЕШЕНИЕ СЛАУ Как правило, при решении большинства практических задач задача решения систем линейных алгебраических уравнений (СЛАУ) встречается в виде некоторой вспомогательной подзадачи.

Подробнее

Введение в линейную алгебру

Введение в линейную алгебру Введение в линейную алгебру Матрицы. Определение. Таблица m n чисел вида m m n n mn состоящая из m строк и n столбцов называется матрицей. Элементы матрицы нумеруются аналогично элементам определителя

Подробнее

a b, a если векторы имеют противоположное направление, то

a b, a если векторы имеют противоположное направление, то ВЕКТОРЫ В ПРОСТРАНСТВЕ R 3 4 Геометрические векторы 4Основные понятия Геометрическим вектором или просто вектором называется направленный отрезок Вектор как правило обозначают B, при этом точки и B обозначают

Подробнее

y = равносильно системе двух равенств: , a обозначают, соответственно, матрицу

y = равносильно системе двух равенств: , a обозначают, соответственно, матрицу Тензоры Тензоры объединяют целый ряд понятий, находящих применение в физике и математике, в частности, в аналитической геометрии Частными случаями тензоров являются векторы, линейные операторы, квадратичные

Подробнее

ФУНКЦИОНАЛЬНЫЙ АНАЛИЗ В ЗАДАЧАХ УПРАВЛЕНИЯ

ФУНКЦИОНАЛЬНЫЙ АНАЛИЗ В ЗАДАЧАХ УПРАВЛЕНИЯ ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ Государственное образовательное учреждение высшего профессионального образования СЕВЕРО-ЗАПАДНЫЙ ГОСУДАРСТВЕННЫЙ ЗАОЧНЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ АФАНАСЬЕВА О.В. ПОТАПЕНКО

Подробнее

ВТОРОЕ ЗАДАНИЕ. 1. Евклидовы и унитарные пространства 1. Пусть в линейном пространстве заданы две операции скалярного умножения.

ВТОРОЕ ЗАДАНИЕ. 1. Евклидовы и унитарные пространства 1. Пусть в линейном пространстве заданы две операции скалярного умножения. ВТОРОЕ ЗАДАНИЕ Евклидовы и унитарные пространства Пусть в линейном пространстве заданы две операции скалярного умножения ( xy, ) и ( xy, ) Показать, что для любых чисел λ 0, µ 0, одновременно не равных

Подробнее

Н.А. Зинченко, Н.Н. Мотькина, А.Г. Сокольский АЛГЕБРА (ВВЕДЕНИЕ В ЛИНЕЙНУЮ АЛГЕБРУ) Учебное пособие

Н.А. Зинченко, Н.Н. Мотькина, А.Г. Сокольский АЛГЕБРА (ВВЕДЕНИЕ В ЛИНЕЙНУЮ АЛГЕБРУ) Учебное пособие Н.А. Зинченко, Н.Н. Мотькина, А.Г. Сокольский АЛГЕБРА (ВВЕДЕНИЕ В ЛИНЕЙНУЮ АЛГЕБРУ) Учебное пособие Белгород, 2017 ББК 22.144 З 63 Печатается по решению редакционно-издательского совета НИУ «БелГУ» от

Подробнее

Аналитическая геометрия

Аналитическая геометрия Аналитическая геометрия Краткий конспект лекций Составитель В.А.Чуриков Кандидат физ.-мат. наук, доцент кафедры Высшей математики Томского политехнического университета. E-mail: vachurikov@list.ru. vachurikov@tpu.ru

Подробнее

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «ЮЖНЫЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ» И.А.

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «ЮЖНЫЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ» И.А. ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «ЮЖНЫЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ» И.А. ЧЕРНЯВСКАЯ ЛИНЕЙНАЯ АЛГЕБРА (решебник) Ростов-на-Дону 008 Рецензенты: кандидат

Подробнее

Лекция 4. Скалярное произведение. Определение. Скалярным произведением (СП) двух векторов a и b называется число

Лекция 4. Скалярное произведение. Определение. Скалярным произведением (СП) двух векторов a и b называется число Лекция 4 Скалярное произведение φ Определение. Углом φ между ненулевыми векторами и называется тот из углов, образованных этими векторами, отложенными от единого начала, который лежит в пределах от до

Подробнее

Министерство образования и науки Российской Федерации

Министерство образования и науки Российской Федерации Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Комсомольский-на-Амуре государственный технический

Подробнее

Глава 4. Матрицы. Лекция Основные понятия.

Глава 4. Матрицы. Лекция Основные понятия. Лекция 0. Глава 4. Матрицы. В этой главе мы рассмотрим основные виды матриц, операции над ними, понятие ранга матрицы и их приложения к решению систем линейных алгебраических уравнений. 4.. Основные понятия.

Подробнее

V и λ R ) выполняются равенства

V и λ R ) выполняются равенства Линейные преобразования Определение линейного преобразования Пусть V линейное пространство Если указано правило по которому каждому вектору x из V ставится в соответствие единственный вектор y из V то

Подробнее

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование»

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ Московский государственный технический университет имени Н.Э. Баумана Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» À.Í. Êàíàòíèêîâ,

Подробнее

Если в качестве базисных переменных выбрать x, x, то общее решение: x R, x = x, x = x ; базисное решение: x = 0, x = 8 7, x = 58 7.

Если в качестве базисных переменных выбрать x, x, то общее решение: x R, x = x, x = x ; базисное решение: x = 0, x = 8 7, x = 58 7. 01 1. Найдите общее и базисное решения системы уравнений: x + x + 3x = 26, 2x 12x x = 22, x + 3x + 2x = 20, выбрав в качестве базисных переменных x и x. Ответ: Если в качестве базисных переменных выбрать

Подробнее

Линейные пространства

Линейные пространства Линейные пространства по дисциплине «Линейная алгебра и аналитическая геометрия» поток гр. ПМ(б), ПО(б) 4. МАТРИЦА СИСТЕМЫ ВЕКТОРОВ Пусть дана система векторов x 1 a 11, a 21,, a n1, x 2 a 12, a 22,, a

Подробнее

11. Задача о собственных векторах

11. Задача о собственных векторах Задача о собственных векторах 59 Линейные преобразования Вновь вернёмся к линейным преобразованиям A : L L как частному случаю линейных отображений В этом случае пространства совпадают и мы в обеих пространствах

Подробнее

ЛЕКЦИЯ 4 ЭЛЕМЕНТАРНЫЕ ПРЕОБРАЗОВАНИЯ МАТРИЦ. РАНГ МАТРИЦЫ

ЛЕКЦИЯ 4 ЭЛЕМЕНТАРНЫЕ ПРЕОБРАЗОВАНИЯ МАТРИЦ. РАНГ МАТРИЦЫ ЛЕКЦИЯ ЭЛЕМЕНТАРНЫЕ ПРЕОБРАЗОВАНИЯ МАТРИЦ РАНГ МАТРИЦЫ Элементарные преобразования матриц Эквивалентные матрицы Получение обратной матрицы с помощью элементарных преобразований Линейная зависимость (независимость)

Подробнее

АЛГЕБРА модуль 3: Квадратичные и билинейные формы

АЛГЕБРА модуль 3: Квадратичные и билинейные формы АЛГЕБРА модуль 3: Квадратичные и билинейные формы 1 Квадратичные формы Мы рассматриваем конечномерные векторные пространства над полем k, где 0. Определение 1.1 Функция f : V k на векторном пространстве

Подробнее

2. Дать определение линейно зависимой и линейно независимой систе- мы векторов

2. Дать определение линейно зависимой и линейно независимой систе- мы векторов 1Дать определение линейного (векторного) пространства. Множество R элементов x, y, z,... любой природы называется линейным (или векторным) пространством, если выполнены следующие три требования: 1. z=x+y.

Подробнее

Линейная алгебра: учебно-методический материал для подготовки к зачету

Линейная алгебра: учебно-методический материал для подготовки к зачету Федеральное государственное образовательное учреждение высшего профессионального образования Финансовая академия при правительстве Российской Федерации (ФИНАКАДЕМИЯ) Кафедра «Математика» ОБСУЖДЕНО Протокол

Подробнее

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование»

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ Московский государственный технический университет имени Н.Э. Баумана Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» À.Í. Êàíàòíèêîâ,

Подробнее

R. Геометрический смысл

R. Геометрический смысл Рабочий учебно-тематический план изучения дисциплины «Линейная алгебра» для профиля «Бухгалтерский учет, анализ и аудит», 1 триместр, лектор -- профессор, д.ф.м.н. Тищенко А.В. Наименовани е Содержание

Подробнее

1 Билинейная и квадратичная формы.

1 Билинейная и квадратичная формы. 1 Билинейная и квадратичная формы. Пусть ϕ(x, y) числовая функция, заданная на линейном пространстве, то есть ϕ : L L R. Если ϕ(x, y) линейна по каждому из своих аргументов, то её называют билинейной формой.

Подробнее

6. Векторы. Линейные операции на множестве векторов 1. Определение вектора. Основные отношения на множестве векторов

6. Векторы. Линейные операции на множестве векторов 1. Определение вектора. Основные отношения на множестве векторов Векторная алгебра Раздел математики, в котором изучаются свойства операций над векторами, называется векторным исчислением. Векторное исчисление подразделяют на векторную алгебру и векторный анализ. В

Подробнее

Образцы базовых задач по ЛА

Образцы базовых задач по ЛА Образцы базовых задач по ЛА Метод Гаусса Определенные системы линейных уравнений Решите систему линейных уравнений методом Гаусса x 6 y 6 8, 6 x 6 y 6 Решите систему линейных уравнений методом Гаусса 6

Подробнее

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Московский государственный институт электроники и математики (технический университет)

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Московский государственный институт электроники и математики (технический университет) МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Московский государственный институт электроники и математики (технический университет) Кафедра алгебры и математической логики ЛИНЕЙНЫЕ ОПЕРАТОРЫ Методические

Подробнее

1. Векторные пространства и линейные операторы

1. Векторные пространства и линейные операторы ЛИНЕЙНАЯ АЛГЕБРА 1 Векторные пространства и линейные операторы Определение 1 Множество V называется векторным пространством (над полем действительных чисел R), если его элементы можно складывать между

Подробнее

Тема 2-15: Ортогональность

Тема 2-15: Ортогональность Тема 2-15: Ортогональность А. Я. Овсянников Уральский федеральный университет Институт математики и компьютерных наук кафедра алгебры и дискретной математики алгебра и геометрия для механиков (2 семестр)

Подробнее

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование»

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ Московский государственный технический университет имени Н.Э. Баумана Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» À.Í. Êàíàòíèêîâ, À.Ï. Êðèùåíêî

Подробнее

называется произведением матрицы A размера компонентам сомножителей матричного произведения иллюстрирует рис

называется произведением матрицы A размера компонентам сомножителей матричного произведения иллюстрирует рис Тема 06 Произведение матриц и его свойства Обращение квадратных матриц и его свойства Детерминант квадратной матрицы -го порядка и его свойства Миноры дополнительные миноры и алгебраические дополнения

Подробнее

11. Скалярное произведение векторов

11. Скалярное произведение векторов Уральский федеральный университет, Институт математики и компьютерных наук, кафедра алгебры и дискретной математики Определение скалярного произведения векторов Материал этого параграфа, как и предыдущего,

Подробнее

Предполагается, что для этих двух операций выполнены аксиомы линейного пространства: 1) x + y = y + x коммутативность операции сложения; 2) (x+y)+z =

Предполагается, что для этих двух операций выполнены аксиомы линейного пространства: 1) x + y = y + x коммутативность операции сложения; 2) (x+y)+z = 2. Общие линейные и евклидовы пространства Говорят, что множество X является линейным пространством над полем вещественных чисел, или просто вещественным линейным пространством, если для любых элементов

Подробнее

13. Билинейные и квадратичные функции

13. Билинейные и квадратичные функции 95 Билинейные и квадратичные функции Билинейная функция Определение Билинейной функцией (билинейной формой) на линейном пространстве L называется функция от двух векторов из L линейная по каждому из своих

Подробнее

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное агентство по образованию Московский государственный институт электроники и математики (технический университет) Кафедра алгебры и математической

Подробнее

Пространство арифметических векторов. Лекции 2-3

Пространство арифметических векторов. Лекции 2-3 Пространство арифметических векторов Лекции 2-3 1 Пространство Rn арифметических векторов Рассмотрим множество упорядоченных наборов из n чисел x ( x 1, x 2, x ). Каждый такой набор x n будем называть

Подробнее

ЭЛЕМЕНТЫ ЛИНЕЙНОЙ АЛГЕБРЫ Матрицы и действия над ними Матрицей размера m n называется прямоугольная таблица, имеющая m строк и n столбцов. ...

ЭЛЕМЕНТЫ ЛИНЕЙНОЙ АЛГЕБРЫ Матрицы и действия над ними Матрицей размера m n называется прямоугольная таблица, имеющая m строк и n столбцов. ... ы ЭЛЕМЕНТЫ ЛИНЕЙНОЙ АЛГЕБРЫ Матрицы и действия над ними Матрицей размера m называется прямоугольная таблица, имеющая m строк и столбцов m m m суммы двух Суммой двух ( ) и ( ) строк и столбцов называется

Подробнее

1. Векторы Даны координаты векторов a, b, c, x в правом ортонормированном k. Показать, что векторы a, b,

1. Векторы Даны координаты векторов a, b, c, x в правом ортонормированном k. Показать, что векторы a, b, Векторы Даны координаты векторов a b c в правом ортонормированном базисе i j k Показать что векторы a b c тоже образуют базис и найти координаты вектора в базисе a b c ) ( ) a ( ) b ( ) c ( ) ) ( ) a (

Подробнее

ЛИНЕЙНЫЕ ПРОСТРАНСТВА. ЛИНЕЙНЫЕ ОПЕРАТОРЫ

ЛИНЕЙНЫЕ ПРОСТРАНСТВА. ЛИНЕЙНЫЕ ОПЕРАТОРЫ ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ Государственное образовательное учреждение высшего профессионального образования «НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ» АИ Шерстнёва ОВ

Подробнее

И называется число находимое следующим образом:

И называется число находимое следующим образом: Определители. Теория матриц и определителей является введением в линейную алгебру. Наиважнейшим применением этой теории является решение систем линейных уравнений. Понятие определителя ввел в году немецкий

Подробнее

ЭЛЕМЕНТЫ АЛГЕБРЫ. 1. Арифметическое пространство

ЭЛЕМЕНТЫ АЛГЕБРЫ. 1. Арифметическое пространство . ЭЛЕМЕНТЫ АЛГЕБРЫ 1. Арифметическое пространство 1. Понятие арифметического пространства Из школьного курса математики известно, что если на плоскости или в пространстве задана система декартовых координат,

Подробнее

Лекция IV. IV.1. Линейная зависимость векторов. α 1 a 1 +α 2 a α n a n.

Лекция IV. IV.1. Линейная зависимость векторов. α 1 a 1 +α 2 a α n a n. Лекция IV IV Линейная зависимость векторов Линейной комбинацией векторов a, a 2,, a n называется сумма произведений этих векторов на произвольные числа: α a +α 2 a 2 ++α n a n Линейная комбинация называется

Подробнее