ЛИНЕЙНАЯ И ВЕКТОРНАЯ АЛГЕБРА. АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ. Методические указания к выполнению индивидуальных

Размер: px
Начинать показ со страницы:

Download "ЛИНЕЙНАЯ И ВЕКТОРНАЯ АЛГЕБРА. АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ. Методические указания к выполнению индивидуальных"

Транскрипт

1 ЛИНЕЙНАЯ И ВЕКТОРНАЯ АЛГЕБРА АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ Методические указания к выполнению индивидуальных домашних заданий

2 ЭЛЕМЕНТЫ ЛИНЕЙНОЙ АЛГЕБРЫ m n называется прямоугольная табли- Матрицей размера ца чисел Матрицы и действия с матрицами a a a m a a a a m n a n a имеющая m строк и n столбцов Элементы a матрицы снабжаются двумя индексами, ij первый из которых обозначает номер строки, второй - номер столбца, на пересечении которых стоит элемент a Если матрица имеет n строк и n столбцов, то матрицу называют квадратной Матрицы одинакового размера можно складывать При этом суммой матриц a ij ) mn и B b ij ) mn называют матрицу C ij ) mn, для которой ij ) aij bij ) mn Например, матрицу 8 Произведением матрицы b ) aij ) ij B ) b ij mn mn a ij, mn ij ) на число называют, каждый элемент которой Например, mn Задача Даны матрицы и B : 9

3 7 ; B Найти матрицы: a) B, б) B 8 Решение а) B б) 8 ; B ; 8 ; 9 B ; ; B Произведением А В матрицы размером m n на матрицу B размером n k называют матрицу C размером m k, каждый элемент которой ai b j ai b j a b, где ij i n n j i,m ; j, k То есть элемент j ой строки и j го столбца матрицы произведения C равен сумме произведений элементов i ой строки матрицы на соответствующие элементы j го столбца матрицы В Если определено произведение А В, то это не значит, что определено произведение А В Это произведение может не иметь смысла Если выполняется А В=В А, то матрицы называются пере-

4 становочными, или коммутирующими Отметим сразу же, что обычно B B Задача Даны матрицы C и B : C ; B Найти матрицуc B Решение C B ) ) ) ) ) ) Обратные матрицы ) Квадратная матрица называется обратимой, если существует матрица такая, что E Эту матрицу называют обратной к матрице и обозначают Условием существования матрицы, обратной к квадратной матрице, является ее невырожденность условие, где - определитель, составленный из элементов матрицы ) Алгебраическим дополнением называется произведение числа элемента матрицы ij i j ) на минор a ij M - определи- ij

5 тель, получающийся при вычеркиванием i -ой строки и j -го столбца Например, некоторые элементы матрицы имеет следующие алгебраические дополнения: ) ; 8 ) ; 7 ) ; 9 ) Если квадратная матрица - не вырождена, то обратная матрица Задача Решить систему уравнений матричным способом:,, Решение Составим матрицы: - матрица коэффициентов при неизвестных; X - матрица неизвестных;

6 B - матрица свободных членов Тогда матричная запись рассматриваемой системы уравнений будет иметь вид X B Решение матричного уравнения X B, где обратная матрица Найдем определитель матрицы : 9 Алгебраические дополнения ij : ) ; ) ; ) ; ) ; ) ; ) ; ) ; ) ; )

7 7 Обратная матрица 9 Решение матричного уравнения: ) ) ) ) ) ) ) ) ) 9 9 X Ответ: ; ; Задача Решить систему уравнений методом Крамера:,, Решение Из предыдущей задачи главный определитель системы 9 Найдѐм определитель, который получается из определителя заменой первого столбца столбцом свободных членов 9 ) 9 ) ) Найдѐм определитель, который получается из определителя заменой второго столбца столбцом свободных членов, тогда

8 ) 9 9 Аналогично: 9 ) 9 ) 9 8 По формулам Крамера решение системы: 9, 8, 9 9 Ответ: ; ; Задача Решить систему уравнений методом Гаусса:,, Решение Составим расширенную матрицу системы: слева от черты коэффициенты при неизвестных, справа свободные члены Приведем расширенную матрицу системы с помощью элементар- ных преобразований со строками к виду: Обозначим строки матрицы через i Элементарные преобразования строк следующие: Поменять местами строки i j i Строку разделить или умножить на число i ; ; Линейная комбинация строк Тогда, i j 8

9 9 ~ 9 9 ~ 9 ~ ~ Из третьей строки последней матрицы находим: Из второй строки находим: 9, откуда Из первой строки находим:, откуда Ответ: ; ; Задача Решить систему уравнений методом Гаусса:, Решение Составим расширенную матрицу системы: 7 ~ ~ Из третьей строки последней матрицы: R Из второй строки имеем Откуда, Из первой строки находим: Откуда, Ответ:,, R Система имеет бесконечное множество решений совместная неопределенная система)

10 Задача Решить систему уравнений методом Гаусса: 8, Решение Составим расширенную матрицу из коэффициентов матрицы: ~ ~ 8 Из последней строки находим Так как деление на ноль невозможно, то данная система не имеет решений Ответ: система не имеет решений несовместная система) ЭЛЕМЕНТЫ ВЕКТОРНОЙ АЛГЕБРЫ Векторы и линейные операции над ними В геометрии вектором называют направленный отрезок B с начальной А и конечной В точками, который можно перемещать параллельно самому себе Длиной или модулем) АВ вектора АВ называется число, равное длине отрезка АВ, изображающего вектор Векторы, параллельные одной прямой, называются коллинеарными рис)

11 Рис Векторы, параллельные одной плоскости, называются компланарными рис) Рис Если вектор a изображается направленным отрезком АВ, то вектор, изображаемый направленным отрезком ВА, называется вектором, противоположным вектору a и обозначается - a рис) Рис Если в прямоугольной системе координат точки А и В име- ; ; и B ; ;, то координаты векто- ют координаты

12 ра АВ находятся как разности соответствующих координат конца В и начала А этого вектора, те АВ ;, ; а модуль его определяется как расстояние между двумя точками: АВ ) ) ) Для векторов вводятся следующие линейные операции: сложения и умножения на число Если векторы заданы своими координа- a a ; a ; a в в ; в ; в, то: тами и ) при сложении двух векторов их соответствующие координаты a в a в ; a в ; a в ; складываются: ) при умножении вектора a на число его координаты умножа- a a ; a ; a ются на это число: Скалярное, векторное и смешанное произведения векторов Скалярным произведением a b двух ненулевых векторов а и в называется число, равное произведению длин этих векторов на косинус угла между ними: a b a b os, где - угол между векторами а и в рис) Рис Пусть заданы два вектора в координатной форме a a ; a ; a и b b b ; b ;

13 Скалярное произведение двух ненулевых векторов в координатной форме равно сумме произведений соответствующих координат этих векторов: a b a b a b a b Косинус угла между векторами вычисляется по формуле: a b ab a b ab os a b a a a b b b Условием перпендикулярности ненулевых векторов а и в является равенство нулю их скалярного произведения: a b a b Векторным произведением двух векторов а и в называется вектор с a b, который: ) имеет модуль, численно равный площади параллелограмма, построенного на векторах а и в : a b a b sin S ; ) перпендикулярен к плоскости этого параллелограмма; ) направлен в такую сторону, с которой кратчайший поворот от а к в рассматривается совершающимся против часовой стрелки такое расположение векторов а, в и с называется правой тройкой векторов) рис) пар Рис

14 Векторное произведение ненулевых векторов a b вычисляется через координаты данных векторов а и в следующим образом: i j k a a a a a a a b a a a i j k b b b b b b b b b Равенство нулю векторного произведения двух ненулевых векторов является условием их коллинеарности, те a b a b Смешанное произведение трех векторов а, в и с, которое обозначается a b) или a b, есть скаляр, абсолютная величина которого равна объему параллелепипеда, построенного на векторах а, в и с, как на ребрах Смешанное произведение трех векторов вычисляется в координатной форме по формуле: a a a ab b b b Равенство нулю смешанного произведения трех ненулевых векторов является условием их компланарности: a, b, P ab Задача Определить внутренние углы и B треугольника BC вершинами в точках ; ;), B;;), C;; ) Решение Внутренний угол - это угол между векторами B и C, который вычисляется через скалярное произведение векторов по формуле: ˆ B C os B C Координаты векторов: B ;; ), C ;; )

15 os ˆ ) ) ) ) ) ) 7 Отсюда, aros 7 Аналогично, находя предварительно B ; ;), BC ;; ), получим ˆ ) ) 7 os B ) ) 7 7 Отсюда B aros 7 Задача Вычислить площадь треугольника с вершинами в точках 7;;), B;;), C;; ) и высоту BD рис) Решение Рис Найдем координаты векторов B ; ;), C ;; ) Площадь треугольника вычисляется через векторное произведение векторов по формуле: S BC B C Векторное произведение

16 B C i j k i j k i j k ; ; ) Тогда S ) ) BC кв ед) SBC С другой стороны S BC a h, отсюда высота h a Так как a C ) ) 9 7, 9 то высота h 7 7 Задача Вычислить объем пирамиды с вершинами в точках ;;), B;;), C ;;), D;;8 ) и высоту, опущенную из точки D на основание BC рис7) Решение Найдем координаты векторов B ; C; D : B ;;); C ;;); D ;;8)

17 Рис7 Объем пирамиды вычисляется через смешанное произведение векторов по формуле: V пир B C D Смешанное произведение векторов B C D Следовательно, V пир куб ед) С другой стороны V S H Откуда высота пирамиды BC V H, где площадь треугольника S BC B C S BC Векторное произведение 7

18 B C i j k i j k 8i j k 8;;) Тогда, S BC квед ) V 8 Следовательно, высота пирамиды H = / S BC АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ Уравнения плоскости Пусть задан вектор N ; B; C), перпендикулярный к плоскости вектор нормали) и точка M ; ; - произвольная фиксированная точка плоскости Возьмем на плоскости произвольную нефиксированную точку M,, - текущая точка) рис8) Рис8 8

19 Вектор M M ; ; ), лежащий в плоскости, перпендикулярен вектору нормали N, значит их скалярное произведение N M M, следовательно B C Полученное уравнение уравнение плоскости, проходящей через точку M, перпендикулярно вектору N Пример Составить уравнение плоскости, проходящей через точку M ;; и перпендикулярно вектору M M, если M ;;, M ; ; рис9) Решение Пусть M,, - текущая точка искомой плоскости Найдем координаты векторов ) ; ;) MM ; ; M M ; ; ) Вектор M M принадлежит плоскости и перпендикулярен вектору M M, значит их скалярное произведение M M M M ; - уравнение плоскости 9

20 Рис9 Рассмотрим плоскость, проходящую через три точки, не лежащие на одной прямой: M ; ;, M; ;, M; ; - рис) Точка M ; ; - текущая точка плоскости Рис Три вектора: M M ; ; ),, M M M ; ; M ; ; ), )

21 лежат в одной плоскости, значит компланарны, и их смешанное произведение равно нулю: M M MM MM Запишем смешанное произведение в координатной форме, получим: через три точки - уравнение плоскости, проходящей Пример Найти уравнение плоскости, проходящей через три точки M ; ;, M ; ;, M ;; рис) Рис ; - текущая точка плоскости Найдем координаты трех компланарных векторов: M M ; ; ), M M ;; ), Решение Пусть точка M ; M M ;; ) Смешанное произведение векторов равно нулю: M M M M M M

22 9 8 - уравнение плоскости M M M Расстояние от точки ; Пусть плоскость задана общим уравнением B C D M ; до плоскости рис) вы- B C D числяют по формуле d B C Рис Пример Найти расстояние от точки ; ; M до плоскости

23 Решение Воспользуемся формулой расстояния от точки до плоскости, получим: d Угол между плоскостями равен углу между их векторами нормалей рис) Пусть даны две плоскости: плоскость с нормалью N ; B ; C) плоскость с нормалью N ; B ; ) C Рис Косинус угла между плоскостями вычисляется по формуле: N N os N N Пример Найти угол между плоскостями

24 : 8 ; : Решение Векторы нормалей имеют координаты: N ;8; ); N ; ;) N N os N N 8 8 ) ) 9 ; Отсюда, aros aros ; 9 aros 9 9 Уравнения прямой в пространстве Рассмотрим в пространстве прямую a, проходящую через точку M ; ; параллельно вектору l m; n; p), который называется направляющим вектором прямой а рис) Рис

25 Пусть точка M ; ; - текущая точка прямой Вектор ) ; ; M M лежит на прямой и коллинеарен вектору l Из условия коллинеарности двух векторов, имеем: p n m Эти уравнения - канонические уравнения прямой в пространстве Если в канонических уравнениях ввести параметр t: t p n m, получим параметрические уравнения прямой:,,, pt nt mt t p t n t m Прямую можно задать как линию пересечения двух плоскостей рис): Рис

26 - общие уравнения прямой в про- B C D B C D странстве Уравнения прямой, проходящей через две точки ; M и ; M ; ; : Угол между прямыми равен острому углу между их направляющими векторами рис) и вычисляется по формуле: l l os l l Рис Пример Прямая a задана общими уравнениями а) Написать для этой прямой канонические и параметрические уравнения; б) Найти угол между прямой a и прямой a,заданной уравнениями

27 8 7 Решение а) Выберем одну из точек, через которую пройдет указанная прямая, заданная пересечением плоскостей Исходная система имеет бесчисленное множество решений, одно из которых получим придавая одной из переменных конкретное значение Пусть, тогда значения других неизвестных находим из системы, Решением этой системы является пара чисел, В результате получим точку M ; ; ), через которую проходит искомая прямая В качестве направляющего вектора прямой можно взять вектор l N N, где N ; ; ), N ;; ) - нормальные векторы плоскостей, линией пересечения которых является прямая Таким образом, i j k l i j k l ;;) Запишем канонические уравнения прямой a : t Получим из канонических параметрические уравнения прямой: t, t, t, t, t t, 7

28 : б) Направляющий вектор прямой a l ;; ), направляющий вектор прямой a : l ;8;7 ) Угол между прямыми a и a равен острому углу между их направляющими векторами: l os l l l aros ) ) Угол между прямой и плоскостью Пусть заданы прямая a и плоскость рис7): Прямая a : направляющим вектором m n p l m; n; p) Плоскость : B C D с вектором нормали N ; B; C) Рис7 8

29 Угол между прямой а и плоскостью вычисляется по форму- N l ле: sin os N l Чтобы найти точку пересечения прямой и плоскости, нужно mt параметрические уравнения прямой nt подставить в pt уравнение плоскости B C D и найти параметр t, соответствующий точке пересечения Пример Найти а) угол между прямой и плоскостью; б) точку пересечения прямой и плоскости 7, Решение N ; ; ) - нормаль к плоскости; l ;; ) - направляющий вектор прямой а) sin N l N l ) 9 Отсюда, arsin t 7 б) Подставим параметрические уравнения прямой t в t уравнение плоскости, t 7) t ) t ), t, t - параметр точки пересечения прямой и плоскости

30 Подставим значение параметра t в параметрические уравне- ния, получим: M ;; m Координаты точки пересечения Уравнение прямой на плоскости Каноническое уравнение прямой на плоскости:, где l m; n) - направляющий вектор прямой n Общее уравнение прямой на плоскости: B C, где N ; B) - вектор нормали прямой Уравнение прямой с угловым коэффициентом kb рис8), где k tg - угловой коэффициент прямой; угол угол между прямой и осью ОХ; b отрезок, отсекаемый прямой на оси OY Рис8

31 Уравнение прямой, проходящей через две точки M ; ; ) и M ; ) : Пример Даны точки А;), В-;), С;) Найти: а) уравнение медианы D; б) уравнение высоты E; в) угол между медианой D и высотой E; г) уравнение прямой, проходящей через точку С, параллельно прямой АВ рис9) Рис9 Решение а) Точка D - середина отрезка ВС, найдем ее координаты: D ; ; ;,

32 Прямая D проходит через две точки Еѐ уравнение имеет вид: ; ;, 7 ;, 7 - уравнение прямой D б) Высота перпендикулярна ВС Пусть точка Е имеет координаты E ; ) Тогда векторы E BC, следовательно, их скалярное произведение E BC 8 ) ) ; 8 - уравнение высоты АЕ в) Угол между медианой D и высотой АЕ это угол между их векторами нормалей N 7; ); N 8; ) N os N N N ) ) 8 Отсюда, aros г) Прямая СК параллельна прямой АВ Пусть точка K имеет координаты K ; ) Тогда векторы CK и B коллинеарны Отсюда, ; ; ; - уравнение прямой СК, параллельной АВ


ЛИНЕЙНАЯ АЛГЕБРА И АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ

ЛИНЕЙНАЯ АЛГЕБРА И АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ Государственное образовательное учреждение высшего профессионального образования «Московский авиационный институт (национальный исследовательский университет)» Кафедра «Высшая математика» ЛИНЕЙНАЯ АЛГЕБРА

Подробнее

Решение типовых задач , разложив его по. Пример 2. Вычислить определитель, приведя его к треугольному виду:

Решение типовых задач , разложив его по. Пример 2. Вычислить определитель, приведя его к треугольному виду: Пример Вычислить определитель Решение типовых задач 5 5 7, разложив его по 9 9 элементам первой строки 7 5 7 5 5 6 9 9 9 9 Пример Вычислить определитель, приведя его к треугольному виду: 5 7 Обозначим

Подробнее

Введение в линейную алгебру

Введение в линейную алгебру Введение в линейную алгебру Матрицы. Определение. Таблица m n чисел вида m m n n mn состоящая из m строк и n столбцов называется матрицей. Элементы матрицы нумеруются аналогично элементам определителя

Подробнее

называется определителем второго порядка, соответствующим данной матрице, и обозначается символом

называется определителем второго порядка, соответствующим данной матрице, и обозначается символом ОПРЕДЕЛИТЕЛИ Пусть дана матрица Число называется определителем второго порядка, соответствующим данной матрице, и обозначается символом = = - Определитель второго порядка содержит две строки и два столбца,

Подробнее

ЛИНЕЙНАЯ И ВЕКТОРНАЯ АЛГЕБРА, АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ. Сборник тестов по высшей математике

ЛИНЕЙНАЯ И ВЕКТОРНАЯ АЛГЕБРА, АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ. Сборник тестов по высшей математике МИНИСТЕРСТВО СВЯЗИ И ИНФОРМАТИЗАЦИИ РЕСПУБЛИКИ БЕЛАРУСЬ Учреждение образования «БЕЛОРУССКАЯ ГОСУДАРСТВЕННАЯ АКАДЕМИЯ СВЯЗИ» Кафедра математики и физики ЛИНЕЙНАЯ И ВЕКТОРНАЯ АЛГЕБРА, АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ

Подробнее

ТЕМА 1. ЭЛЕМЕНТЫ ВЕКТОРНОЙ И ЛИНЕЙНОЙ АЛГЕБРЫ

ТЕМА 1. ЭЛЕМЕНТЫ ВЕКТОРНОЙ И ЛИНЕЙНОЙ АЛГЕБРЫ МЕТОДИЧЕСКИЕ УКАЗАНИЯ К РАСЧЕТНЫМ ЗАДАНИЯМ ПО КУРСУ ВЫСШЕЙ МАТЕМАТИКИ «ЭЛЕМЕНТЫ ЛИНЕЙНОЙ АЛГЕБРЫ И АНАЛИТИЧЕСКОЙ ГЕОМЕТРИИ ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИИ ОДНОГО ПЕРЕМЕННОГО» ЧАСТЬ I ТЕМА ЭЛЕМЕНТЫ

Подробнее

Методические указания к контрольным работам

Методические указания к контрольным работам Методические указания к контрольным работам Контрольная работа «Переаттестация» Тема. Элементы аналитической геометрии на плоскости. Прямая на плоскости Расстояние между двумя точками M ( ) и ( ) плоскости

Подробнее

1. Определители. 2. Действия над матрицами. Обратная матрица Определитель второго порядка задается равенством

1. Определители. 2. Действия над матрицами. Обратная матрица Определитель второго порядка задается равенством Определители Определитель второго порядка задается равенством Определитель третьего порядка задается равенством Свойства определителей Определитель равен нулю если он содержит две одинаковые или пропорциональные

Подробнее

1. ЭЛЕМЕНТЫ ЛИНЕЙНОЙ АЛГЕБРЫ

1. ЭЛЕМЕНТЫ ЛИНЕЙНОЙ АЛГЕБРЫ ЭЛЕМЕНТЫ ЛИНЕЙНОЙ АЛГЕБРЫ ЗАНЯТИЕ МАТРИЦЫ И ДЕЙСТВИЯ НАД НИМИ Дать определение матрицы Классификация матриц по размерам Что такое нулевая и единичная матрицы? При каких условиях матрицы считаются равными?

Подробнее

Чистопольский филиал «Восток» Кафедра Естественнонаучных дисциплин. Методические указания по дисциплине Математика часть 1

Чистопольский филиал «Восток» Кафедра Естественнонаучных дисциплин. Методические указания по дисциплине Математика часть 1 Министерство образования и науки Российской Федерации федеральное государственное бюджетное образовательное учреждение высшего образования «Казанский национальный исследовательский технический университет

Подробнее

Лекция 28 Глава 1. Векторная алгебра

Лекция 28 Глава 1. Векторная алгебра Лекция 8 Глава Векторная алгебра Векторы Величины, которые определяются только своим числовым значением, называются скалярными Примерами скалярных величин: длина, площадь, объѐм, температура, работа, масса

Подробнее

Глава 1. Элементы линейной алгебры.

Глава 1. Элементы линейной алгебры. Глава Элементы линейной алгебры Матрицы О п р е д е л е н и е Матрицей размерности m n называется прямоугольная таблица чисел, расставленных в m строк и n столбцов Обозначаются матрицы латинскими буквами,,

Подробнее

Векторная алгебра. Аналитическая геометрия. Ищанов Т.Р.

Векторная алгебра. Аналитическая геометрия. Ищанов Т.Р. Векторная алгебра Аналитическая геометрия Ищанов ТР h://schowru/veor-lger-lches-geomerhml Задача Написать разложение вектора по векторам r 8 r Требуется представить вектор в виде r где числа Найдем их

Подробнее

МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ К ВЫПОЛНЕНИЮ 1-ой КОНТРОЛЬНОЙ РАБОТЫ

МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ К ВЫПОЛНЕНИЮ 1-ой КОНТРОЛЬНОЙ РАБОТЫ МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ К ВЫПОЛНЕНИЮ -ой КОНТРОЛЬНОЙ РАБОТЫ Теоретические положения -ой части контрольной работы (тема: Элементы линейной алгебры) Определителем называется число, задаваемое таблицей

Подробнее

1. Найти значение матричного многочлена:

1. Найти значение матричного многочлена: 1. Найти значение матричного многочлена: f(a) = A + 5A E f(x) = x + 5x, A = ( 0 1 4 ) 5 1 A = ( 0 1 4 ) ( 0 1 4 ) = 5 1 5 1 + 0 5 + 1 ( ) ( ) + 4 1 = ( 0 + 1 0 + 4 5 0 + 1 1 + 4 ( ) 0 ( ) + 1 4 + 4 1)

Подробнее

Вопросы к зачету по математике 1 семестр для студентов 1 курса ИСиА, 1-6 гр. направление подготовки:

Вопросы к зачету по математике 1 семестр для студентов 1 курса ИСиА, 1-6 гр. направление подготовки: Министерство образования и науки РФ Северный (Арктический) федеральный университет им. М.В.Ломоносова Кафедра математики Вопросы к зачету по математике семестр для студентов курса ИСиА, -6 гр. направление

Подробнее

«Элементы векторной алгебры и аналитической геометрии»

«Элементы векторной алгебры и аналитической геометрии» МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Национальный исследовательский ядерный университет

Подробнее

Министерство образования и науки Российской Федерации. Кафедра высшей математики. Элементы векторной и линейной алгебры. Аналитическая геометрия.

Министерство образования и науки Российской Федерации. Кафедра высшей математики. Элементы векторной и линейной алгебры. Аналитическая геометрия. Министерство образования и науки Российской Федерации Казанский государственный архитектурно-строительный университет Кафедра высшей математики Элементы векторной и линейной алгебры. Аналитическая геометрия.

Подробнее

Содержание Введение 1. Линейная алгебра 2. Аналитическая геометрия и векторная алгебра 3. Введение в анализ 4. Дифференциальное исчисление

Содержание Введение 1. Линейная алгебра 2. Аналитическая геометрия и векторная алгебра 3. Введение в анализ 4. Дифференциальное исчисление Содержание Введение Линейная алгебра Задачи для аудиторных занятий Образцы решения задач Задачи для самоподготовки Аналитическая геометрия и векторная алгебра Задачи для аудиторных занятий Образцы решения

Подробнее

Вопросы к коллоквиуму по математике 1 семестр для студентов 1 курса ИСиА, 1-6 гр. направление подготовки:

Вопросы к коллоквиуму по математике 1 семестр для студентов 1 курса ИСиА, 1-6 гр. направление подготовки: Министерство образования и науки РФ Северный (Арктический) федеральный университет им МВЛомоносова Кафедра математики Вопросы к коллоквиуму по математике семестр для студентов курса ИСиА, -6 гр направление

Подробнее

Раздел 7. УРАВНЕНИЯ ПРЯМОЙ И ПЛОСКОСТИ В ПРОСТРАНСТВЕ. Лекция 14.

Раздел 7. УРАВНЕНИЯ ПРЯМОЙ И ПЛОСКОСТИ В ПРОСТРАНСТВЕ. Лекция 14. Раздел 7. УРАВНЕНИЯ ПРЯМОЙ И ПЛОСКОСТИ В ПРОСТРАНСТВЕ Лекция 4. Тема: Уравнения прямой и плоскости в пространстве 7. Система координат в пространстве Рассмотрим прямоугольную декартову систему координат

Подробнее

Лекции подготовлены доц. Мусиной М.В. Векторы. Линейные операции над векторами.

Лекции подготовлены доц. Мусиной М.В. Векторы. Линейные операции над векторами. Лекции подготовлены доц Мусиной МВ Векторы Линейные операции над векторами Определение Направленный отрезок (или что то же упорядоченную пару точек) мы будем называть вектором Обозначение: AB Нулевой вектор

Подробнее

4) Какая матрица является обратной по отношению к данной матрице? Условия существования обратной матрицы. Как вычисляется обратная матрица.

4) Какая матрица является обратной по отношению к данной матрице? Условия существования обратной матрицы. Как вычисляется обратная матрица. ВОПРОСЫ ТЕОРИИ I. МАТРИЦЫ, ОПРЕДЕЛИТЕЛИ 1) Дать определение матрицы. Что такое нулевая и единичная матрицы? При каких условиях матрицы считаются равными? Как выполняется операция транспонирования? Когда

Подробнее

Задача Кузнецов Аналитическая геометрия 1-3. Условие задачи. Написать разложение вектора по векторам : Решение. Искомое разложение вектора

Задача Кузнецов Аналитическая геометрия 1-3. Условие задачи. Написать разложение вектора по векторам : Решение. Искомое разложение вектора Задача Кузнецов Аналитическая геометрия 1-3 Написать разложение вектора по векторам : Искомое разложение вектора имеет вид: Или в виде системы: Получаем: Ко второй строке прибавим третью: Вычтем из первой

Подробнее

ЛИНЕЙНАЯ И ВЕКТОРНАЯ АЛГЕБРА. АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ. МЕТОДИЧЕСКИЕ УКАЗАНИЯ И ЗАДАНИЯ к первой части контрольной работы 1 по дисциплине «Математика»

ЛИНЕЙНАЯ И ВЕКТОРНАЯ АЛГЕБРА. АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ. МЕТОДИЧЕСКИЕ УКАЗАНИЯ И ЗАДАНИЯ к первой части контрольной работы 1 по дисциплине «Математика» СТАРООСКОЛЬСКИЙ ФИЛИАЛ ФЕДЕРАЛЬНОГО ГОСУДАРСТВЕННОГО БЮДЖЕТНОГО ОБРАЗОВАТЕЛЬНОГО УЧРЕЖДЕНИЯ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «РОССИЙСКИЙ ГОСУДАРСТВЕННЫЙ ГЕОЛОГОРАЗВЕДОЧНЫЙ УНИВЕРСИТЕТ ИМ СЕРГО ОРДЖОНИКИДЗЕ»

Подробнее

РЕШЕНИЕ ЗАДАЧ по теме "АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ" Составитель: В.П.Белкин

РЕШЕНИЕ ЗАДАЧ по теме АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ Составитель: В.П.Белкин РЕШЕНИЕ ЗАДАЧ по теме "АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ" Составитель: ВПБелкин Занятие Прямая на плоскости Пример Определить коэффициенты k, b в уравнении прямой y = kx+ b, если прямая определена уравнением x y=

Подробнее

Лекция 31 Глава 3. Аналитическая геометрия в пространстве

Лекция 31 Глава 3. Аналитическая геометрия в пространстве Лекция Глава Аналитическая геометрия в пространстве Плоскость в пространстве Уравнение плоскости проходящей через данную точку перпендикулярно данному вектору Пусть в пространстве OXYZ даны точка ) и ненулевой

Подробнее

Занятие 1. Векторный анализ Краткое теоретическое введение. Физические величины, Z. для определения которых K

Занятие 1. Векторный анализ Краткое теоретическое введение. Физические величины, Z. для определения которых K Занятие 1. Векторный анализ. 1.1. Краткое теоретическое введение. Физические величины, Z Z (M) для определения которых K достаточно задать одно число Y K (положительное или Y отрицательное) называются

Подробнее

1. a + b = b + a. 2. (a + b) + c = a + (b + c).

1. a + b = b + a. 2. (a + b) + c = a + (b + c). Занятие 5 Линейные операции над векторами 5.1 Сложение векторов. Умножение векторов на числа Закрепленным вектором называется направленный отрезок, определенный двумя точками A и B. Точка A называется

Подробнее

Задания для аудиторной и самостоятельной работы

Задания для аудиторной и самостоятельной работы Задания для аудиторной и самостоятельной работы Решите системы линейных уравнений методом Крамера (если это возможно) и методом Гаусса ( ):,,,, 4,, 4 5 7 5 5 4 4 6 6 4 5,, 6 4 4 4,, 8, 9,, 4 4 5 Контрольный

Подробнее

АЛГЕБРА И ГЕОМЕТРИЯ (варианты курсовых заданий)

АЛГЕБРА И ГЕОМЕТРИЯ (варианты курсовых заданий) Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «МАТИ Российский государственный технологический

Подробнее

8. Дать определение ортогональной скалярной проекции вектора на направление.

8. Дать определение ортогональной скалярной проекции вектора на направление. 1. Дать определение равенства геометрический векторов. Два геометрических вектора называют равными, если: они коллинеарны и однонаправлены; их длины совпадают. 2. Дать определение суммы векторов и умножения

Подробнее

5. Векторы. 5.1 Определение и начальные сведения о векторах

5. Векторы. 5.1 Определение и начальные сведения о векторах 49 5 Векторы 51 Определение и начальные сведения о векторах Любые две точки А,В определяют направленный отрезок, если точка А определяет начало, точка В конец отрезка, направление задается от А к В Направленный

Подробнее

Лекция 3. Вектора и линейные операции над ними.

Лекция 3. Вектора и линейные операции над ними. Лекция 3 Вектора и линейные операции над ними. 1. Понятие вектора. При изучении различных разделов физики, механики и технических наук встречаются величины, которые полностью определяются заданием их числовых

Подробнее

ТИПОВОЙ РАСЧЕТ «АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ, ВЕКТОРНАЯ И МАТРИЧНАЯ АЛГЕБРА»

ТИПОВОЙ РАСЧЕТ «АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ, ВЕКТОРНАЯ И МАТРИЧНАЯ АЛГЕБРА» ТИПОВОЙ РАСЧЕТ «АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ ВЕКТОРНАЯ И МАТРИЧНАЯ АЛГЕБРА» ВАРИАНТ Даны вершины треугольника А ( ) В ( ) С ( ) Определить его внешний угол при вершине А Определить длины диагоналей параллелограмма

Подробнее

6.4. Приложение векторной алгебры и аналитической геометрии. Расчет пирамиды

6.4. Приложение векторной алгебры и аналитической геометрии. Расчет пирамиды Условия задач Расчетно-графическая работа 9 4 Приложение векторной алгебры и аналитической геометрии Расчет пирамиды Выбрать в декартовой прямоугольной системе координат четыре произвольные точки A B C

Подробнее

Критерии и показатели оценивания компетенций на различных этапах их формирования

Критерии и показатели оценивания компетенций на различных этапах их формирования Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине (модулю) Общие сведения 1 Кафедра Математики, физики и информационных технологий 2 Направление подготовки 010302

Подробнее

ЛИНЕЙНАЯ АЛГЕБРА И АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ

ЛИНЕЙНАЯ АЛГЕБРА И АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ Е В Морозова, С В Мягкова БАЗА ТЕСТОВЫХ ЗАДАНИЙ ПО МАТЕМАТИКЕ ЧАСТЬ I ЛИНЕЙНАЯ АЛГЕБРА И АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ МИНОБРНАУКИ РОССИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО

Подробнее

Лекции подготовлены доц. Мусиной М.В. Аналитическая геометрия в пространстве.

Лекции подготовлены доц. Мусиной М.В. Аналитическая геометрия в пространстве. Аналитическая геометрия в пространстве Поверхность в пространстве можно рассматривать как геометрическое место точек, удовлетворяющих какому-либо условию Прямоугольная система координат Охy в пространстве

Подробнее

1.1. Расстояние между двумя точками. Рассмотрим прямоугольную систему координат (декартовую, рис. 1). Рис. 1

1.1. Расстояние между двумя точками. Рассмотрим прямоугольную систему координат (декартовую, рис. 1). Рис. 1 1 Простейшие задачи аналитической геометрии на плоскости 11 Расстояние между двумя точками Рассмотрим прямоугольную систему координат (декартовую, рис Рис 1 Любой точки M соответствуют координаты OA x

Подробнее

Элементы высшей математики

Элементы высшей математики Кафедра математики и информатики Элементы высшей математики Учебно-методический комплекс для студентов, обучающихся с применением дистанционных технологий Модуль 5 Элементы аналитической геометрии на плоскости

Подробнее

Уравнения прямой и плоскости

Уравнения прямой и плоскости Уравнения прямой и плоскости Уравнение прямой на плоскости.. Общее уравнение прямой. Признак параллельности и перпендикулярности прямых. В декартовых координатах каждая прямая на плоскости Oxy определяется

Подробнее

Лекция 5. Прямая на плоскости. 1. Уравнение прямой, задаваемой точкой и вектором нормали.

Лекция 5. Прямая на плоскости. 1. Уравнение прямой, задаваемой точкой и вектором нормали. Лекция 5 на плоскости. Определение. Любая прямая на плоскости может быть задана уравнением первого порядка причем постоянные А, В не равны нулю одновременно. Это уравнение первого порядка называют общим

Подробнее

Е.Л. Плужникова, Б.Г. Разумейко АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ И ЛИНЕЙНАЯ АЛГЕБРА. Учебно-методическое пособие

Е.Л. Плужникова, Б.Г. Разумейко АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ И ЛИНЕЙНАЯ АЛГЕБРА. Учебно-методическое пособие ЕЛ Плужникова БГ Разумейко АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ И ЛИНЕЙНАЯ АЛГЕБРА Учебно-методическое пособие МОСКВА Кафедра математики ЕЛ Плужникова БГ Разумейко АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ И ЛИНЕЙНАЯ АЛГЕБРА Учебно-методическое

Подробнее

РТУ-МИРЭА ГОРШУНОВА Т.А. Аналитическая геометрия на плоскости Уравнение линии является важнейшим понятием аналитической геометрии.

РТУ-МИРЭА ГОРШУНОВА Т.А. Аналитическая геометрия на плоскости Уравнение линии является важнейшим понятием аналитической геометрии. Аналитическая геометрия на плоскости Уравнение линии является важнейшим понятием аналитической геометрии. y М(x, y) 0 x Определение. Уравнением линии (кривой) на плоскости Оху называется уравнение, которому

Подробнее

Задачи для отработки пропущенных занятий

Задачи для отработки пропущенных занятий Задачи для отработки пропущенных занятий Оглавление Тема: Матрицы, действия над ними. Вычисление определителей.... 2 Тема: Обратная матрица. Решение систем уравнений с помощью обратной матрицы. Формулы

Подробнее

определения которых K Y отрицательное) называются скалярами. Два скаляра X X одинаковой размерности Рис. 1.

определения которых K Y отрицательное) называются скалярами. Два скаляра X X одинаковой размерности Рис. 1. Занятие 1. Векторный анализ. Краткое теоретическое введение. Физические величины, для Z Z ϕ (M) определения которых K достаточно задать одно число Y K (положительное или Y отрицательное) называются скалярами.

Подробнее

Аналитическая геометрия Модуль 2. Аналитическая геометрия на плоскости и в пространстве Текст 2.1

Аналитическая геометрия Модуль 2. Аналитическая геометрия на плоскости и в пространстве Текст 2.1 Аналитическая геометрия Модуль 2. Аналитическая геометрия на плоскости и в пространстве Текст 2.1 Аннотация Декартова прямоугольная система координат на плоскости и в пространстве. Координаты точки. Связь

Подробнее

8. ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ДЛЯ ПРОВЕДЕНИЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ (МОДУЛЮ)

8. ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ДЛЯ ПРОВЕДЕНИЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ (МОДУЛЮ) 8. ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ДЛЯ ПРОВЕДЕНИЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ (МОДУЛЮ) Общие сведения 1. Кафедра Информатики, вычислительной техники и информационной безопасности 2. Направление

Подробнее

ЧАСТЬ I ТЕМА 2. ЭЛЕМЕНТЫ АНАЛИТИЧЕСКОЙ ГЕОМЕТРИИ

ЧАСТЬ I ТЕМА 2. ЭЛЕМЕНТЫ АНАЛИТИЧЕСКОЙ ГЕОМЕТРИИ МЕТОДИЧЕСКИЕ УКАЗАНИЯ К РАСЧЕТНЫМ ЗАДАНИЯМ ПОКУРСУ ВЫСШЕЙ МАТЕМАТИКИ «ЭЛЕМЕНТЫ ЛИНЕЙНОЙ АЛГЕБРЫ И АНАЛИТИЧЕСКОЙ ГЕОМЕТРИИ. ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИИ ОДНОГО ПЕРЕМЕННОГО» ЧАСТЬ I ТЕМА. ЭЛЕМЕНТЫ

Подробнее

ЛЕКЦИЯ 12. Поверхности в пространстве и их уравнения.

ЛЕКЦИЯ 12. Поверхности в пространстве и их уравнения. ЛЕКЦИЯ Поверхности в пространстве и их уравнения Поверхность Поверхность, определенная некоторым уравнением в данной системе координат, есть геометрическое место точек, координаты которых удовлетворяют

Подробнее

Если в качестве базисных переменных выбрать x, x, то общее решение: x R, x = x, x = x ; базисное решение: x = 0, x = 8 7, x = 58 7.

Если в качестве базисных переменных выбрать x, x, то общее решение: x R, x = x, x = x ; базисное решение: x = 0, x = 8 7, x = 58 7. 01 1. Найдите общее и базисное решения системы уравнений: x + x + 3x = 26, 2x 12x x = 22, x + 3x + 2x = 20, выбрав в качестве базисных переменных x и x. Ответ: Если в качестве базисных переменных выбрать

Подробнее

Примеры выполнения контрольных работ при заочном обучении Контрольная работа 1 (КР-1)

Примеры выполнения контрольных работ при заочном обучении Контрольная работа 1 (КР-1) Примеры выполнения контрольных работ при заочном обучении Контрольная работа 1 (КР-1) Тема 1. Линейная алгебра Задача 1 Необходимо решить систему уравнений, представленную в задании в виде Постоянные параметры

Подробнее

1. ВЕКТОРЫ. ДЕЙСТВИЯ НАД ВЕКТОРАМИ

1. ВЕКТОРЫ. ДЕЙСТВИЯ НАД ВЕКТОРАМИ Оглавление 1. Векторы. Действия над векторами 4 2. Скалярное произведение векторов 14 3. Векторное произведение векторов 19 4. Смешанное произведение векторов 24 5. Прямая на плоскости 28 6. Плоскость

Подробнее

Лекция 29,30 Глава 2. Аналитическая геометрия на плоскости

Лекция 29,30 Глава 2. Аналитическая геометрия на плоскости Лекция 9,30 Глава Аналитическая геометрия на плоскости Системы координат на плоскости Прямоугольная и полярная системы координат Системой координат на плоскости называется способ, позволяющий определять

Подробнее

Аналитическая геометрия Модуль 1. Матричная алгебра. Векторная алгебра Лекция 1.4

Аналитическая геометрия Модуль 1. Матричная алгебра. Векторная алгебра Лекция 1.4 Аналитическая геометрия Модуль 1. Матричная алгебра. Векторная алгебра Лекция 1.4 Аннотация Скалярные и векторные величины. Понятие геометрического вектора, как направленного отрезка. Длина вектора. Нуль-вектор,

Подробнее

ГРОЗНЕНСКИЙ ГОСУДАРСТВЕННЫЙ НЕФТЯНОЙ ИНСТИТУТ Билет 1 Дисциплина высшая математика Факультет нефтемеханический специальность АТ,ОБД семестр II.

ГРОЗНЕНСКИЙ ГОСУДАРСТВЕННЫЙ НЕФТЯНОЙ ИНСТИТУТ Билет 1 Дисциплина высшая математика Факультет нефтемеханический специальность АТ,ОБД семестр II. Билет 1 1 Определители -го и -го порядка, их свойства и способы вычисления Решение систем линейных уравнений методом Крамера Решить систему уравнений методам Гаусса и матричного исчисления: Найти координаты

Подробнее

ВЫСШАЯ МАТЕМАТИКА. Л.А. Золкина В.М. Мухина. Методические указания для студентов заочного отделения. Часть I ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ

ВЫСШАЯ МАТЕМАТИКА. Л.А. Золкина В.М. Мухина. Методические указания для студентов заочного отделения. Часть I ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ УРАЛЬСКИЙ ГОСУДАРСТВЕННЫЙ ЛЕСОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ Кафедра высшей математики ЛА Золкина ВМ Мухина ВЫСШАЯ МАТЕМАТИКА Методические указания для студентов заочного

Подробнее

Контрольная работа 1. c 13 C = c 21 c 22 c 23 c 31 c 32 c 33. c 11 c 12

Контрольная работа 1. c 13 C = c 21 c 22 c 23 c 31 c 32 c 33. c 11 c 12 Контрольная работа. Даны матрицы A, B и D. Найти AB 9D, если: 4 7 ( ) 6 9 6 A = 3 9 7, B =, D = 3 8 3. 3 7 7 3 7 Перемножим матрицы A 3 и B 3. Результирующая будет C размера 3 3, состоящая из элементов

Подробнее

ПРИРОДООБУСТРОЙСТВА ЛИНЕЙНАЯ АЛГЕБРА МЕТОДИЧЕСКИЕ УКАЗАНИЯ И КОНТРОЛЬНЫЕ ЗАДАНИЯ ДЛЯ СТУДЕНТОВ - ЗАОЧНИКОВ МГУП

ПРИРОДООБУСТРОЙСТВА ЛИНЕЙНАЯ АЛГЕБРА МЕТОДИЧЕСКИЕ УКАЗАНИЯ И КОНТРОЛЬНЫЕ ЗАДАНИЯ ДЛЯ СТУДЕНТОВ - ЗАОЧНИКОВ МГУП МИНИСТЕРСТВО СЕЛЬСКОГО ХОЗЯЙСТВА РОССИЙСКОЙ ФЕДЕРАЦИИ МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ПРИРОДООБУСТРОЙСТВА ЛИНЕЙНАЯ АЛГЕБРА МЕТОДИЧЕСКИЕ УКАЗАНИЯ И КОНТРОЛЬНЫЕ ЗАДАНИЯ ДЛЯ СТУДЕНТОВ - ЗАОЧНИКОВ МГУП

Подробнее

Матрицы. Примеры решения задач. 1. Даны матрицы и. 2. Дана система m линейных уравнений с n неизвестными

Матрицы. Примеры решения задач. 1. Даны матрицы и. 2. Дана система m линейных уравнений с n неизвестными Матрицы 1 Даны матрицы и Найти: а) А + В; б) 2В; в) В T ; г) AВ T ; д) В T A Решение а) По определению суммы матриц б) По определению произведения матрицы на число в) По определению транспонированной матрицы

Подробнее

ЛИНЕЙНАЯ АЛГЕБРА Лекция 10. Прямая и плоскость в пространстве

ЛИНЕЙНАЯ АЛГЕБРА Лекция 10. Прямая и плоскость в пространстве ЛИНЕЙНАЯ АЛГЕБРА Лекция Прямая и плоскость в пространстве Содержание: Уравнение плоскости Взаимное расположение плоскостей Векторно-параметрическое уравнение прямой Уравнения прямой по двум точкам Прямая

Подробнее

Аналитическая геометрия

Аналитическая геометрия Аналитическая геометрия Аналитическая геометрия на плоскости. Аналитическая геометрия решение геометрических задач с помощью алгебры, для чего используется метод координат. Под системой координат на плоскости

Подробнее

Высшая математика для психологов

Высшая математика для психологов Саратовский государственный университет им Н Г Чернышевского Галаев СВ, Шевцова ЮВ Высшая математика для психологов Часть (Линейная алгебра и аналитическая геометрия) Саратов 00 СОДЕРЖАНИЕ Глава Векторная

Подробнее

МЕТОДИЧЕСКИЕ УКАЗАНИЯ. к выполнению заданий модуля «Линейная и векторная алгебра. Аналитическая геометрия» по курсу «Высшая математика»

МЕТОДИЧЕСКИЕ УКАЗАНИЯ. к выполнению заданий модуля «Линейная и векторная алгебра. Аналитическая геометрия» по курсу «Высшая математика» Министерство образования и науки Украины ХАРЬКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ СТРОИТЕЛЬСТВА И АРХИТЕКТУРЫ Специальности: ; ; ; МЕТОДИЧЕСКИЕ УКАЗАНИЯ к выполнению заданий модуля «Линейная

Подробнее

Лекция 3. Системы линейных алгебраических уравнений. 1. Чем отличается однородная система от неоднородной?

Лекция 3. Системы линейных алгебраических уравнений. 1. Чем отличается однородная система от неоднородной? КОНТРОЛЬНЫЕ ВОПРОСЫ К ЛЕКЦИЯМ. Раздел 1. Векторная и линейная алгебра. Лекция 1. Матрицы, операции над ними. Определители. 1. Определения матрицы и транспонированной матрицы.. Что называется порядком матрицы?

Подробнее

8. Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине (модулю): Общие сведения

8. Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине (модулю): Общие сведения 8. Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине (модулю): Общие сведения 1. Кафедра М и ММЭ 2. Направление подготовки 01.03.02 (010400.62) Прикладная математика

Подробнее

Министерство образования и науки Российской Федерации

Министерство образования и науки Российской Федерации Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Комсомольский-на-Амуре государственный технический

Подробнее

Векторная алгебра Цель изучения Основные понятия 4.1. Векторы и координаты

Векторная алгебра Цель изучения Основные понятия 4.1. Векторы и координаты Векторная алгебра Понятие векторного пространства. Линейная зависимость векторов. Свойства. Понятие базиса. Координаты вектора. Линейные преобразования векторных пространств. Собственные числа и собственные

Подробнее

R может быть задана с помощью

R может быть задана с помощью 5... Уравнения плоскости. Плоскость в пространстве 5.. ПЛОСКОСТЬ. R может быть задана с помощью n, B, C, вектора перпендикулярного плоскости, и точки M,, этой плоскости. Вектор n, B, C,, лежащей на E перпендикулярный

Подробнее

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ НАЦИОНАЛЬНАЯ МЕТАЛЛУРГИЧЕСКАЯ АКАДЕМИЯ УКРАИНЫ Л.П. КАГАДИЙ, И.Л. ШИНКОВСКАЯ, И.П. ЗАЕЦ, Л.Ф.

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ НАЦИОНАЛЬНАЯ МЕТАЛЛУРГИЧЕСКАЯ АКАДЕМИЯ УКРАИНЫ Л.П. КАГАДИЙ, И.Л. ШИНКОВСКАЯ, И.П. ЗАЕЦ, Л.Ф. МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ НАЦИОНАЛЬНАЯ МЕТАЛЛУРГИЧЕСКАЯ АКАДЕМИЯ УКРАИНЫ ЛП КАГАДИЙ ИЛ ШИНКОВСКАЯ ИП ЗАЕЦ ЛФ СУШКО ВЫСШАЯ МАТЕМАТИКА Часть I Утверждено на заседании Ученого совета академии

Подробнее

Тема 4 ЭЛЕМЕНТЫ АНАЛИТИЧЕСКОЙ ГЕОМЕТРИИ НА ПЛОСКОСТИ И В ПРОСТРАНСТВЕ

Тема 4 ЭЛЕМЕНТЫ АНАЛИТИЧЕСКОЙ ГЕОМЕТРИИ НА ПЛОСКОСТИ И В ПРОСТРАНСТВЕ Тема ЭЛЕМЕНТЫ АНАЛИТИЧЕСКОЙ ГЕОМЕТРИИ НА ПЛОСКОСТИ И В ПРОСТРАНСТВЕ Лекция.. Прямые на плоскости П л а н. Метод координат на плоскости.. Прямая в декартовых координатах.. Условие параллельности и перпендикулярности

Подробнее

Фонд оценочных средств по аналитической геометрии и линейной алгебре Вопросы к экзамену

Фонд оценочных средств по аналитической геометрии и линейной алгебре Вопросы к экзамену Вопросы к экзамену Вопросы для проверки уровня обучаемости «ЗНАТЬ» Раздел 1 Элементы линейной алгебры 1 Операции над матрицами и их свойства Определители -го и 3-го порядков 3 Определение минора и алгебраического

Подробнее

СПЕЦИАЛЬНЫЕ РАЗДЕЛЫ МАТЕМАТИКИ ДЛЯ ТРАНСПОРТНЫХ СПЕЦИАЛЬНОСТЕЙ

СПЕЦИАЛЬНЫЕ РАЗДЕЛЫ МАТЕМАТИКИ ДЛЯ ТРАНСПОРТНЫХ СПЕЦИАЛЬНОСТЕЙ Федеральное агентство железнодорожного транспорта Государственное образовательное учреждение высшего профессионального образования «ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ПУТЕЙ СООБЩЕНИЯ» В. Г. ДЕГТЯРЕВ,

Подробнее

Демонстрационный вариант Найдите общее и базисное решения системы уравнений: выбрав в качестве базисных переменных x и x.

Демонстрационный вариант Найдите общее и базисное решения системы уравнений: выбрав в качестве базисных переменных x и x. Демонстрационный вариант 01 1. Найдите общее и базисное решения системы уравнений: x + x + 3x = 26, 2x 12x x = 22, x + 3x + 2x = 20, выбрав в качестве базисных переменных x и x. 2. Найдите базис системы

Подробнее

УДК [ ](075.8) ISBN ISBN УДК [ ](075.8)

УДК [ ](075.8) ISBN ISBN УДК [ ](075.8) ЭЛЕМЕНТЫ ЛИНЕЙНОЙ АЛГЕБРЫ АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ КОМПЛЕКСНЫЕ ЧИСЛА Учебное пособие МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное бюджетное образовательное учреждение

Подробнее

ТЕСТОВЫЕ ЗАДАНИЯ ДЛЯ ЗАЩИТЫ ТИПОВОГО РАСЧЕТА

ТЕСТОВЫЕ ЗАДАНИЯ ДЛЯ ЗАЩИТЫ ТИПОВОГО РАСЧЕТА МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ КУРГАНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ КАФЕДРА ПРИКЛАДНОЙ МАТЕМАТИКИ И КОМПЬЮТЕРНОГО МОДЕЛИРОВАНИЯ ТЕСТОВЫЕ ЗАДАНИЯ ДЛЯ ЗАЩИТЫ ТИПОВОГО РАСЧЕТА ПО

Подробнее

Аналитическая геометрия Модуль 1. Матричная алгебра. Векторная алгебра

Аналитическая геометрия Модуль 1. Матричная алгебра. Векторная алгебра Аналитическая геометрия Модуль 1 Матричная алгебра Векторная алгебра Текст 5 (самостоятельное изучение) Аннотация Декартова прямоугольная система координат на плоскости и в пространстве Формулы для расстояния

Подробнее

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование»

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ Московский государственный технический университет имени Н.Э. Баумана Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» À.Í. Êàíàòíèêîâ, À.Ï. Êðèùåíêî

Подробнее

ВЕКТОРНАЯ АЛГЕБРА. АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ (конспект лекций)

ВЕКТОРНАЯ АЛГЕБРА. АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ (конспект лекций) МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ ДОНБАССКАЯ ГОСУДАРСТВЕННАЯ МАШИНОСТРОИТЕЛЬНАЯ АКАДЕМИЯ ВЕКТОРНАЯ АЛГЕБРА. АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ (конспект лекций) МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ СТУДЕНТОВ-ЗАОЧНИКОВ

Подробнее

Министерство образования Российской Федерации

Министерство образования Российской Федерации Министерство образования Российской Федерации МАТИ - РОССИЙСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ им К Э ЦИОЛКОВСКОГО Кафедра Высшая математика Н Д ВЫСК КОНСПЕКТ ЛЕКЦИЙ ПО ВЫСШЕЙ МАТЕМАТИКЕ Часть

Подробнее

СПРАВОЧНОЕ ПОСОБИЕ ПО РЕШЕНИЮ ЗАДАЧ КУРСА АНАЛИТИЧЕСКОЙ ГЕОМЕТРИИ И ЛИНЕЙНОЙ АЛГЕБРЫ

СПРАВОЧНОЕ ПОСОБИЕ ПО РЕШЕНИЮ ЗАДАЧ КУРСА АНАЛИТИЧЕСКОЙ ГЕОМЕТРИИ И ЛИНЕЙНОЙ АЛГЕБРЫ Министерство образования Республики Беларусь Учреждение образования «Международный государственный экологический университет им АД Сахарова» Факультет экологического мониторинга Кафедра физики и высшей

Подробнее

УЧЕБНО-МЕТОДИЧЕСКИЕ МАТЕРИАЛЫ для проведения практических занятий по учебной дисциплине

УЧЕБНО-МЕТОДИЧЕСКИЕ МАТЕРИАЛЫ для проведения практических занятий по учебной дисциплине ПЕРВОЕ ВЫСШЕЕ ТЕХНИЧЕСКОЕ УЧЕБНОЕ ЗАВЕДЕНИЕ РОССИИ «САНКТ-ПЕТЕРБУРГСКИЙ ГОРНЫЙ УНИВЕРСИТЕТ» Кафедра высшей математики Допущены к проведению занятий в - учгоду Заведующий кафедрой ВМ профессор АПГосподариков

Подробнее

КОМПЛЕКС ЗАДАНИЙ ПО МАТЕМАТИКЕ ДЛЯ СТУДЕНТОВ ЗАОЧНОЙ ФОРМЫ ОБУЧЕНИЯ В 2-Х ЧАСТЯХ. ЧАСТЬ I

КОМПЛЕКС ЗАДАНИЙ ПО МАТЕМАТИКЕ ДЛЯ СТУДЕНТОВ ЗАОЧНОЙ ФОРМЫ ОБУЧЕНИЯ В 2-Х ЧАСТЯХ. ЧАСТЬ I Министерство образования Республики Беларусь Учреждение образования «Белорусский государственный университет информатики и радиоэлектроники» Факультет компьютерных систем и сетей Кафедра высшей математики

Подробнее

Элементы линейной алгебры и аналитической геометрии

Элементы линейной алгебры и аналитической геометрии Министерство образования Российской Федерации Ростовский Государственный Университет Механико-маттематический факультет Кафедра геометрии Казак В.В. Практикум по аналитической геометрии для студентов первого

Подробнее

Аналитическая геометрия Модуль 1. Матричная алгебра. Векторная алгебра Лекция 1.5

Аналитическая геометрия Модуль 1. Матричная алгебра. Векторная алгебра Лекция 1.5 Аналитическая геометрия Модуль 1. Матричная алгебра. Векторная алгебра Лекция 1.5 Аннотация Ориентация базиса, правые и левые тройки векторов. Векторное произведение двух векторов, его геометрический и

Подробнее

8.1. Уравнение прямой в пространстве по точке и направляющему вектору.

8.1. Уравнение прямой в пространстве по точке и направляющему вектору. Глава 8 Уравнение линии в пространстве Как на плоскости, так и в пространстве, любая линия может быть определена как совокупность точек, координаты которых в некоторой выбранной в пространстве системе

Подробнее

1. Векторы Даны координаты векторов a, b, c, x в правом ортонормированном k. Показать, что векторы a, b,

1. Векторы Даны координаты векторов a, b, c, x в правом ортонормированном k. Показать, что векторы a, b, Векторы Даны координаты векторов a b c в правом ортонормированном базисе i j k Показать что векторы a b c тоже образуют базис и найти координаты вектора в базисе a b c ) ( ) a ( ) b ( ) c ( ) ) ( ) a (

Подробнее

IX. АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ. Теоретические вопросы

IX. АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ. Теоретические вопросы векторами. IX. АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ Теоретические вопросы 1. Векторы. Линейные, операции над векторами. 2. Скалярное произведение, его свойства. Длина вектора. Угол между двумя 3. Определители, их свойства.

Подробнее

Кафедра высшей математики. Дудникова Т.В., Караваева Н.Н. ВЫСШАЯ МАТЕМАТИКА. Раздел: Аналитическая геометрия

Кафедра высшей математики. Дудникова Т.В., Караваева Н.Н. ВЫСШАЯ МАТЕМАТИКА. Раздел: Аналитическая геометрия Федеральное агентство по образованию ЭЛЕКТРОСТАЛЬСКИЙ ПОЛИТЕХНИЧЕСКИЙ ИНСТИТУТ (филиал) Федерального государственного образовательного учреждения высшего профессионального образования «Государственный

Подробнее

Н.Н. Корнеева, М.Ф. Насрутдинов, Ф.Ф. Шарифуллина СБОРНИК ЗАДАЧ ПО АНАЛИТИЧЕСКОЙ ГЕОМЕТРИИ

Н.Н. Корнеева, М.Ф. Насрутдинов, Ф.Ф. Шарифуллина СБОРНИК ЗАДАЧ ПО АНАЛИТИЧЕСКОЙ ГЕОМЕТРИИ КАЗАНСКИЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ ВЫСШАЯ ШКОЛА ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ И ИНФОРМАЦИОННЫХ СИСТЕМ Н.Н. Корнеева, М.Ф. Насрутдинов, Ф.Ф. Шарифуллина СБОРНИК ЗАДАЧ ПО АНАЛИТИЧЕСКОЙ ГЕОМЕТРИИ УЧЕБНО-МЕТОДИЧЕСКОЕ

Подробнее

Методические указания к контрольной работе 1. Тема: «Линейная алгебра. Аналитическая геометрия»

Методические указания к контрольной работе 1. Тема: «Линейная алгебра. Аналитическая геометрия» Методические указания к контрольной работе Тема: «Линейная алгебра. Аналитическая геометрия». Даны векторы a {0}, b { }, c { 0}, d {} в некотором базисе. Показать, что векторы abc,, образуют базис и найти

Подробнее

Контрольная работа по дисциплине Высшая математика Вариант - 4

Контрольная работа по дисциплине Высшая математика Вариант - 4 Контрольная работа по дисциплине Высшая математика Вариант - Тема. Элементы аналитической геометрии на плоскости. Прямая на плоскости. По координатам вершин треугольника АВС: А(); В(-5); С(--) найти: а)

Подробнее

Критерии и показатели оценивания компетенций на различных этапах их формирования Критерии и показатели оценивания компетенций

Критерии и показатели оценивания компетенций на различных этапах их формирования Критерии и показатели оценивания компетенций ФОНД ОЦЕНОЧНЫХ СРЕДСТВ Общие сведения 1. Кафедра Общих дисциплин 2. Направление подготовки 38.03.01 «Экономика» 3. Дисциплина (модуль) Б1.Б.8 Линейная алгебра Перечень компетенций - способностью осуществлять

Подробнее

Образец варианта расчетно-графической работы по курсу Линейная алгебра и аналитическая геометрия.

Образец варианта расчетно-графической работы по курсу Линейная алгебра и аналитическая геометрия. Образец варианта расчетно-графической работы по курсу Линейная алгебра и аналитическая геометрия Элементы линейной алгебры: матрицы определители системы линейных уравнений Условия задач Составить две матрицы

Подробнее

МАТЕМАТИКА ЧАСТЬ I ИЗДАТЕЛЬСТВО ТГТУ

МАТЕМАТИКА ЧАСТЬ I ИЗДАТЕЛЬСТВО ТГТУ МАТЕМАТИКА ЧАСТЬ I ИЗДАТЕЛЬСТВО ТГТУ Министерство образования и науки Российской Федерации ГОУ ВПО «Тамбовский государственный технический университет» МАТЕМАТИКА Задания для контрольной работы для студентов

Подробнее

АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ НА ПЛОСКОСТИ И В ПРО- СТРАНСТВЕ

АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ НА ПЛОСКОСТИ И В ПРО- СТРАНСТВЕ Балаковский инженерно-технологический институт - филиал федерального государственного автономного образовательного учреждения высшего образования «Национальный исследовательский ядерный университет «МИФИ»

Подробнее

ПРОГРАММА ЭКЗАМЕНА. по курсу «АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ» (ИОС «NOMOTEX»)

ПРОГРАММА ЭКЗАМЕНА. по курсу «АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ» (ИОС «NOMOTEX») ПРОГРАММА ЭКЗАМЕНА по курсу «АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ» (ИОС «NOMOTEX») 1 курс 1 семестр для групп ФН11, Э4, Э9, Э7, АК1,АК2, АК3, АК4, Знание: Физико-математические науки Направление науки: Математические

Подробнее

Системы линейных уравнений и матрицы второго и третьего порядков.

Системы линейных уравнений и матрицы второго и третьего порядков. Системы линейных уравнений и матрицы второго и третьего порядков. Введение: Рассмотрим систему уравнений вида: { a 11 x 1+a 12 x 2+...+a 1n x n=b 1... a m1 x 1 +a m2 x 2 +...+a mn x n =b m} Обозначим систему

Подробнее

МЕТОДИЧЕСКИЕ УКАЗАНИЯ К ВЫПОЛНЕНИЮ КОНТРОЛЬНОЙ РАБОТЫ ПО УЧЕБНОЙ ДИСЦИПЛИНЕ ЕН.01 «МАТЕМАТИКА»

МЕТОДИЧЕСКИЕ УКАЗАНИЯ К ВЫПОЛНЕНИЮ КОНТРОЛЬНОЙ РАБОТЫ ПО УЧЕБНОЙ ДИСЦИПЛИНЕ ЕН.01 «МАТЕМАТИКА» НЕГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ ЧАСТНОЕ УЧРЕЖДЕНИЕ ПРОФЕССИОНАЛЬНАЯ ОБРАЗОВАТЕЛЬНАЯ ОРГАНИЗАЦИЯ КОЛЛЕДЖ ПРЕДПРИНИМАТЕЛЬСТВА И СОЦИАЛЬНОГО УПРАВЛЕНИЯ МЕТОДИЧЕСКИЕ УКАЗАНИЯ К ВЫПОЛНЕНИЮ КОНТРОЛЬНОЙ РАБОТЫ

Подробнее