Игорь Иванов Ультразвуковой термояд: критический анализ Источник: Scientific.ru

Save this PDF as:
Размер: px
Начинать показ со страницы:

Download "Игорь Иванов Ультразвуковой термояд: критический анализ Источник: Scientific.ru"

Транскрипт

1 Игорь Иванов Ультразвуковой термояд: критический анализ Источник: Scientific.ru 1. Пролог Несколько месяцев назад новостные агенства всего мира разнесли сенсацию: ученые добились термоядерной реакции в "бутылке с водой". Многие восприняли это как начало эры термоядерной энергии. Что же на самом деле было сделано? Так ли однозначны выводы? Так ли безупречен проведенный эксперимент? Ответы на эти вопросы мы попытаемся найти в этой критической статье. Сообщение о "пузырьковом термояде" появилось в свое время во многих новостных изданиях. Из русскоязычных сайтов я дам ссылку на заметку Пузырьковый термояд разжигает полемику с сайта Phys.Web.ru. К сожалению, это открытие не избежало превратного толкования. Поэтому прежде всего, в целях погашения нездорового интереса, я позволю себе развеять некоторое недопонимание, связанное с этой статьей. Во-первых, в этой работе речь идет не о холодном термояде. Здесь обычный, горячий термояд. Действительно, для того, чтобы ядерные реакции начались, нужно, чтобы ядра, преодолевая взаимное электростатическое отталкивание, подошли друг к другу достаточно близко. В случае горячего термояда это осуществляется за счет большой кинетической энергии ядер, то есть, за счет высокой температуры. Холодный же термояд подразумевает, что ядра сближаются, например, за счет высокого давления (то есть, сильного сжатия) образца. В работе [1] - про которую и пойдет речь в данной статье - утверждается, что главной причиной начала термоядерных реакций является именно высокая температура в схлапывающемся пузырьке. По оценкам авторов, она доходит до 10 миллионов кельвинов. Второй предрассудок заключается в том, что данный эксперимент является прорывом в энергетике. На самом деле, ни о какой промышленной установке на основе этого эксперимента с положительным выходом энергии нет и речи. Даже по оптимистичным оценкам авторов речь идет максимум о миллионе дейтерий-дейтериевых (D-D) слияний в секунду, что дает энергетический выход в доли микроватта. Это, конечно же, не сопоставимо с той мощностью, которая необходима для создания ультразвуковой волны. Заметьте, что эту полезную мощность существенно не увеличишь - все ограничивается размерами пузырька. Поэтому сразу запомним - все описываемые эксперименты представляют исключительно научный интерес, от "народного хозяйства" они очень далеки. Теперь я выскажу свое основное утверждение касательно этой работы. По моему мнению, ситуация выглядит так: авторы получили эффект, которого не может быть (см. пояснения ниже), однако,если верить данным, никакого другого разумного объяснения, кроме как термояд, я не вижу. Поэтому я лично склонен не доверять представленным экспериментальным данным. Структура этой статьи следующая. Сначала я опишу само явление сонолюминесценции и отмечу различие между однопузырьковой и многопузырьковой сонолюминесценцией. Затем я перейду к описанию экспериментов [1] и полученных результатов. Наконец, в последней части я перечислю свои основные претензии к работе [1]. 2. Явление сонолюминесценции Здесь я ограничусь достаточно кратким описанием явления сонолюминесценции. Более подробный разговор можно найти в нашей статье "Сонолюминесценция: загадки, идеи, объяснения". Для серьезно настроенного читателя дам также ссылки на два обзора [3], один из которых появился совсем недавно.

2 2.1 Суть явления Явление заключается в том, что при пропускании через жидкость мощной ультразвуковой волны в ней возникают кавитационные пузырьки, которые при схлапывании дают вспышку света. Происхождение света - тепловое, то есть, на короткое время в жидкости возникают сверхгорячие области с температурой в тысячи и десятки тысяч кельвинов. Как это происходит? В самом грубом приближении, стандартная картина сонолюминесценции такова. В фазе разряжения ультразвуковой волны в определенном месте жидкости (в месте максимальной пучности ультразвука) создается большое по модулю отрицательное давление ("растянутая" жидкость). При превышении критического значения амплитуды волны, в фазе разряжения начинается кавитация - разрыв сплошной жидкости с образованием полости, заполненной парами этой жидкости. Образуется и растет кавитационный пузырек. Через полпериода, в фазе сжатия, звуковая волна создает сильное положительное давление в жидкости. Оно - вкупе с силами поверхностного натяжения - приводит к быстрому сжатию пузырька. В процессе этого сжатия происходит нагрев паров, находящихся внутри пузырька (разумеется, для более аккуратной картины нам нужно включить ударные волны, процессы конденсации, и т.д.). Именно при таком сжатии и достигаются столь высокие температуры. 2.2 Однопузырьковая или многопузырьковая сонолюминесценция? Как мы описывали в нашей статье, существует две разновидности сонолюминесценции: однопузырьковая и многопузырьковая. Главное различие между ними заключается в динамике процесса схлапывания. Рассмотрим сначала один сферический пузырек. Если сжимающие его силы также обладают сферической симметрией, то он, казалось бы, должен схлапываться, сохраняя сферичность. Однако ситуция может усложняться неустойчивостями, возникающими при ускоренном схлапывании пузырька. Развившись, эти неустойчивости приведут к тому, что пузырек станет все менее похож на сферу. Как следствие этого, движение жидкости из строго радиального превратится в сильно турбулентное. Чем это "вредно"? Тем что если в строго сферическом случае вся работа сжимающих сил шла на нагрев паров в пузырьке, то теперь она идет на турбулентность, то есть на кинетическую энергию потоков жидкости. Таким образом, схлапывание пузырька содержит две стадии: приблизительно сферическую и турбулентную. На первом этапе - пока неустойчивости не развились - сжатие и, следовательно, нагрев пузырька являются достаточно эффективными. На второй же стадии происходит турбулизация движения и дальнейшее сжатие пузырька почти не происходит. Таким образом, эффективность нагрева паров определяется тем временем, в течение которого пузырек еще остается сферическим. А это, как мы понимаем, зависит от того, насколько значительны были отклонения от симметрии у начального пузырька. Если начальный пузырек с хорошей точностью был шаром, то он испытает многократное сжатие, прежде чем отклонения от сферической симметрии заметно выростут. А вот если начальный пузырек с самого начала не был похож на сферу, то и при его сжатии сразу же возникнет турбулентность, и нагрев паров будет, как минимум, очень слабо выраженным. В случае однопузырьковой сонолюминесценции в принципе можно создать достаточно сферический пузырек. Опыт показывает, что при его схлопывании нагрев может происходить вплоть до температур порядка К. В случае же многопузырьковой сонолюминесценции экспериментально определенные значения температур редко превышают 5000 К. 3. Описание эксперимента по обнаружению ультразвукового термояда Обратимся теперь непосредственно к "виновнику торжества" - работе [1]. Схема эксперимента представлена на Рис.1.

3 Рис.1 Схема эксперимента по обнаружению следов термоядерной активности при сонолюминесценции. Основные элементы установки: цилиндрическая емкость с жидкостью, излучаемая по периметру установки ультразвуковая волна, импульсный источник нейтронов, сцинтиллятор, фотоэлектронный умножитель. Постановка эксперимента, описанного в этой статье, слегка отличается от "общепринятой", поэтому мы обратим особое внимание на отличия. 3.1 Особенности эксперимента Во-первых, в отличие от большинства опытов по сонолюминесценции, авторами [1] использовалась не вода, а органические жидкости (ацетон, C 3 H 6 O, и "тяжелый" ацетон, C 3 D 6 O). Утверждается, что эти жидкости обладают свойством "держать" существенное растяжение, что позволяет работать с амплитудами звуковой волны, гораздо большими, чем в случае воды. Во-вторых, использовался совершенно нестандартный метод зарождения пузырьков. Дело в том, что обычно исследователь просто-напросто поднимает амплитуду звуковой волны до той отметки, когда звуковое давление с фазе растяжения само начинает порождать кавитационные пузырьки. В данной работе амплитуда звуковой волны была докритической, а пузырьки рождались за счет облучения 14-мэвными нейтронами, получаемыми из внешнего источника в виде коротких импульсов. В-третьих, отметим, что в данной работе изучалась именно многопузырьковая сонолюминесценция. Этот факт авторы установили с помощью непосредственного фотографирования кавитационной области, где было найдено порядка тысячи отдельных пузырьков. То, что мы имеем дело именно с многопузырьковой сонолюминесценцией, и следовало ожидать: ведь процесс зарождения пузырьков высокоэнергетическими нейтронами - явление вовсе не точечное. 3.2 Поиск следов термоядерной реакции Поскольку мы собираемся охотиться за термоядерной реакцией слияния двух ядер дейтерия, полезно вспомнить, по какие проявлениям вообще можно узнать, что эта реакция имела место. На Рис.1 условно показаны два наиболее интересных для нас канала реакции слияния двух

4 дейтронов: превращение в ядро гелия-3 плюс нейтрон с энергием 2.45 МэВ и превращение в тритон (водород-3) плюс протон. В первом канале гелий отлавливать трудно, а вот нейтроны - достаточно легко, они являются достаточно проникающим излучением. Во втором канале, протоны отлавливать безнадежно, а вот тритий легко обнаружить по характерному бетараспаду. Поэтому вырисовываются две стратегии - поиск нейтронов, рожденных в сонолюминесцентной вспышке и поиск слевод бета-распада трития. Теперь обратимся тому, что и как детектировалось в эксперименте. Во-первых, как и в стандартном эксперименте, регистрировалась сонолюминесцентная вспышка света, а также проверялось наличие "щелчка" в высокочувствительных микрофонах. Оба этих сигнала свидетельствовали о том, что процесс рождения и схлопывания пузырька имел место. Во-вторых, исследовался нейтронный сигнал. А именно, одновременно с сонолюминесцентной вспышкой, детектировался и короткий поток нейтронов. Детектирование нейтронов производилось с помощью сцинтиллятора (органического или жидкостного). Поскольку сцинтиллятор мог срабатывать как от гамма-квантов, так и от нейтронов, использовалась методика "дискриминатора по профилю импульса", которая отбирала исключительно нейтроны. Эта методика подробно описана в приложении к статье [2]. Эффективность регистрации быстрых нейтронов составляла порядка полпроцента. Для того, чтобы отделить исходные 14-мэвные нейтроны (напомним, что они лишь рождали пузырьки, а к термоядерной реакции отношения не имеют и поэтому являются для нас фоном) от 2.5-мэвных нейтронов, рожденных в ходе термоядерной реакции D+D -> 3 He + n, анализировался энергетический спектр нейтронного импульса. Весь спектр детектируемых нейтронов разбивался на две области - ниже 2.5 МэВ и выше 2.5 МэВ. Сигнал ожидался только в области ниже 2.5 МэВ (нейтроны с энергей выше 2.5 МэВ считались замедлившимися исходными 14-мэвными нейтронами). Третьим сигналом, измеряемый в эксперименте, была "тритиевая активность". Поскольку "горение" дейтерия может происходить и по каналу D+D -> T + p, то естественно ожидать появление трития в исходной жидкости. Проверка на тритиевую активность проводилась следующим образом: по окончанию экспериментального цикла, который составлял 7-12 часов, из объема брался 1 кубический сантиметр жидкости и исследовался на предмет бета-излучения от распада трития в области энергий электронов от 5 до 18 кэв. Наконец, опишем стратегию исследования, которой придерживались авторы работы [1]. Вопервых, все эксперименты проводились как с обычным ацетоном, так и с дейтериевым ацетоном. Это позволяло отделить настоящий эффект термоядерной реакции от артефакта эксперимента - ведь в случае простого ацетона никакого термояда быть не должно. Затем, проводились контрольные опыты. А именно, проводилась вся совокупность измерений по поиску как нейтронного сигнала, так и тритиевой активности в случае облучения жидкости нейтронами, но в отсутствии ультразвука (что гарантирует отсутствие сонолюминесценции). И только после этого проводились "полные" эксперименты - то есть, с одновременным облучением нейтронами и с ультразвуком. В этом случае также снимались данные по нейтронному сигналу и тритиевой активности. Наконец, вычитая первые данные (без ультразвука) из вторых ("полный" эксперимент), авторы получали то, что они называли сигналом. 3.3 Результаты эксперимента Перейдем теперь к изложению результатов, показанных на Рис.2 (нейтронный сигнал) и Рис.3 (тритиевая активность).

5 Рис.2 Нейтронный сигнал. Левая половина рисунка отвечает низкоэнергетической части спектра, правая - высокоэнергетической. Серые столбцы отвечают тяжелому ацетону, черные - обычному. На Рис.2 показан нейтронный сигнал как для тяжелого (светлые столбцы), так и для обычного ацетона (темные столбцы). Левая половина гистограммы показывает низкоэнергетическую часть нейтронного сигнала (то есть, низкоэнергетическую часть разности между нейтронными потоками в "полном" эксперименте и в эксперименте без ультразвука), а правая - высокоэнергетическую часть этого же сигнала. Все соотвествующие числа приведены тут же в таблице (cav.on или off означает включенную или выключенную кавитацию). Ошибки, показанные на гистограмме в виде "усов", определяются, в основном, статистическими погрешностями, которые легко проследить из численных данных. Видим, что статистически значимый сигнал есть только в одном случае - в низкоэнергетической части нейтронного спектра в тяжелом ацетоне. Сигнал отличается от нуля на уровне 3.5 стандартных отклонений. Во всех остальных случаях включения сонолюминесценции не приводило ни к какой разнице в выходе нейтронов. Рис.3 Результаты измерения тритиевой активности. На Рис.3 показаны результаты тритиевого анализа (представленные числа - это cpm = count per minute, зарегистрированные события распада трития в минуту). Здесь также показана разность

6 тритиевых сигналов до и после включения кавитации. Опять же, видно исключительное положение тяжелого ацетона: как после 7-часового, так и после 12-часового эксперимента наблюдалось увеличение тритиевой активности, причем сигнал оказался прямо пропорциональным времени проведения эксперимента. Погрешности на графике не отмечены, но, как можно проследить из табличных данных, они примерно равны 3.5 cpm для дейтериевого ацетона и 2 cpm для обычного ацетона. Таким образом, мы имеем дело с эффектом порядка 2-4 стандартных отклонений. В заключение своей работы, авторы [1] приводят теоретический анализ явления. Они докладывают о результатах численного решения уравнений газодинамики коллапсирующего пузырька, записанных на основании определенной теоретической модели этого явления. Полная система уравнений, а также более подробное изложение результатов этого вычисления, представлены в приложении 2 [2]. По утверждению авторов, этот расчет подтверждает возможность достижения высоких температур (миллионы кельвинов и выше) в данном эксперименте, а также дают предсказания по выходу нейтронов, которые не противоречат их эксперименту. Авторы считают, что этот анализ является еще одним доказательством того, что они в самом деле обнаружили проявление термоядерной реакции. 4. Критика Я начну с недоумения. Выше я описал, что для зарождения пузырьков в растянутой жидкости в эксперименте использовался поток нейтронов. В то же время, именно процесс рождения нейтронов нас и интересует, именно нейтронный сигнал мы и собираемся в дальнейшем искать. Так зачем же нам нужно так усложнять себе жизнь?! Зачем слабенький нейтронный сигнал забивать мощным нейтронным пучком, а потом мучаться и пытаться среди нейтронного потока выделить те нейтроны, которые рождены в ядерной реакции?! Не проще ли использовать какойто иной способ инициации пузырька (да хотя бы форусировать лазерный луч, или же на худой конец, использовать протоны вместо нейтронов), и затем уже мерять чистенький нейтронный сигнал?! Но нет, авторы предпочитают искусственно создать огромный нейтронный фон и уже из него выделять сигнал! И очевидно, при этом они очень рискуют не заметить какого-то явления, связанного с нейтронами, и получить артефакт вместо реального сигнала. А ведь взгляните на ожидаемый сигнал - почти 500 нейтронов в низкоэнергетической части спектра! Неужели авторы не догадались, что достаточно использовать какой-либо другой "триггер" для рождения пузырьков и предъявить те же 500 нейтронов! Ведь в таком варианте им действительно неоткуда взяться, кроме как из термоядерной реакции! И тогда к эксперименту было бы совсем иное отношение! Но авторы предпочли идти трудной дорогой. Надо сказать, что этот момент очень щепетильный. В принципе, на ум может придти и подозрение в сознательном использовании нейтронного рождения пузырьков и ловли рыбки в мутной воде. Если уж авторы решаются на использование нейтронов, то пусть они приводят доскональный анализ того, что происходит с нейтронами в веществе. Как они замедляются, как они распределяются по спектру, какие реакции они инициируют. Но ничего этого в статье нет! Так же как нет, например, объяснения, откуда вообще берется ненулевая тритиевая активность в чистом ацетоне, или в том же тяжелом ацетоне, но ДО кавитационного эксперимента. В общем, то, что в этих вопросах нет прозрачности, настораживает. Второй момент. Авторы очень уверенно говорят про температуры в миллионы кельвинов. Но вообще-то если они действительно получили миллион кельвинов в сонолюминесцентном эксперименте, это само по себе было бы достижением. Ведь типичные экспериментальные значения температур в многопузырьковой сонолюминесценции никогда не превышали 10 тысяч градусов! Может быть, можно было померять температуру? Почему нельзя было попытаться хотя бы приблизительно оценить температуру по спектру сонолюминесцентной вспышки? В статье этот вопрос не обсуждается. Третий момент. В качестве подтверждения того, что в эксперименте в самом деле происходит термоядерная реакция, авторы предлагают результаты численного решения уравнений гидродинамики для схлапывающегося пузырька. Эти уравнения, по словам автором, учитывают уравнение состояния ацетона, процессы ионизации и образование плазмы, распространение

7 ударной волны, фазовые переходы и т.п., и в результате предсказывают температуры порядка нескольких миллионов кельвинов. Все бы хорошо, но только одно слово все рушит - весь этот анализ одномерный! Все эти уравнения решаются в предположении о сферической симметрии коллапсирующего пузырька. Но мы же знаем, что когда речь идет про многопузырьковую сонолюминесценцию, не о какой сферической симметрии не может быть и речи! Почему авторы об этом не задумываются?! В общем, мое мнение - приведенный численный анализ нефизичен и не имеет отношения к данным экспериментам. В принципе, у меня были и иные мелкие придирки по ходу текста, но я не буду заострять на них внимание. Я только еще раз сформулирую основные претензии. 1. Авторы выбрали самую трудную дорогу - искусственно "забили" возможный нейтронный сигнал мощным фоном и затем статистическими методами "выцарапывали" сигнал обратно. В результате получился эффект на уровне нескольких стандартных отклонений. Альтернативная постановка эксперимента привела бы к несравнимо более надежным результатам, но авторы ее избегают. Такие игры с нейтронами кажутся очень подозрительными, особенно если учесть, что авторы совершенно не обсуждают ни судьбу нейтронов, попавших в вещество, ни фоновую тритиевую активность. 2. Выбрана жидкость, для которой, насколько я понимаю, ранее не было проведено сонолюминесцентных экспериментов. Полученные результаты свидетельствуют о том, что в этом эксперименте были достигнуты температуры в несколько миллионов кельвинов. Это, само по себе выдающееся, достижение практически не обсуждается в статье. Это настораживает. 3. Для подтверждения вывода про высокие температуры и термояд используется теоретическая модель, которая откровенно не имеет отношения к реальности. Мне кажется, что на мои возражения можно почерпнуть ответ из самой статьи [1], а точнее, из ее духа. Этот ответ звучит так: "Хорошо, может быть, у нас не все чисто-гладко, но как вы еще можете объяснить наши эксперименты, кроме как термоядом?!" С этим я не могу поспорить - если принять, что все данные верны, то никакого другого объяснения я не вижу. И это значит, что мы совсем не понимаем сонолюминесценцию. Итак, резюме. Полученные результаты - очень странны. Весь проведенный анализ тонок и может порваться - слишком уж много необъясненных, необговоренных мест. Поэтому мне лично кажется, что с данными не все в порядке. Если же данные верны, то здесь есть два варианта: либо авторы не все учитывают и неправильно их трактуют, либо мы в самом деле имеем дело с термоядом, но тогда надо пересматривать все наше представление о процессе сонолюминесценции (ведь та теоретическая модель, которая приведена в статье, не отражает реальности). 5. Послесловие Поскольку эта работа - еще на стадии рецензирования - вызвала некий переполох, сразу же нашлись "добровольцы"-экспериментаторы, готовые повторить те же самые измерения на той же самой установке в том же самом режиме, но уже со своим сцинтиллятором и своей системой отбора нейтронных событий [4]. Нейтронного сигнала в этом эксперименте обнаружено не было. Надо сказать, что авторы оригинальной работы комментируют [5] этот независимый эксперимент, и их вывод звучит несколько парадоксально. Они полностью одобряют этот эксперимент и делают заключение (на основании тех же данных!), что он вполне подтверждает их открытие. Такая вот парадоксальная ситуация! Наконец, отмечу работу [6], которая появилась буквально позавчера. В ней впервые детально изучается соно-химия, то есть, химические реакции во время однопузырьковой сонолюминесценции (основная трудность такого анализа - исчезающе малое количество вещества реагентов, менее моля). Важным выводом этой работы стало заключение, что разнообразные эндодермические реакции, включающиеся при высоких температурах, значительно подавляют дальнейший рост температуры. Этот эффект тем сильнее, чем выше "летучесть" вещества, и если этот эффект был отмечен для воды, то для ацетона он будет еще

8 важнее. Поэтому авторы этой работы предостерегают, что данный эффект может стать дополнительным препятствием для достижения температур в миллионы кельвинов. Ссылки: 1. Taleyarkhan, R. P. et al. Evidence for nuclear emissions during acoustic cavitation, Science 295, (2002). 2. Taleyarkhan, R. P. et al., Web supplements 1 and 2, 3. P.Barber et al., Phys Rept 281(1997) 65; M.P.Brenner, S.Hilgenfeldt, and D.Lohse, Rev.Mod.Phys. 74 (2002) D. Shapira, M. J. Saltmarsh, Comments on Reported Nuclear Emissions During Acoustic Cavitation, 5. R. P. Taleyarkhan, R.C. Block, C.D. West and R. T. Lahey, Jr., COMMENTS ON THE SHAPIRA AND SALTMARSH REPORT, 6. YURI T. DIDENKO AND KENNETH S. SUSLICK, The energy efficiency of formation of photons, radicals and ions during single-bubble cavitation Nature 418, (2002).


Серия: ФИЗИКА И АСТРОНОМИЯ

Серия: ФИЗИКА И АСТРОНОМИЯ Серия: ФИЗИКА И АСТРОНОМИЯ Карпов М.А. О проявлениях реакции холодного ядерного синтеза в различных средах. Аннотация Не смотря на упорное молчание официальной канонизированной науки, в последнее время

Подробнее

Спросите Итана 108: Бывает Ли Мгновенный Солнечный Свет?

Спросите Итана 108: Бывает Ли Мгновенный Солнечный Свет? Спросите Итана 108: Бывает Ли Мгновенный Солнечный Свет? Тэги: Солнце Ядерный Синтез Гамма-Излучение Автор: Ethan Siegel Перевод: Вячеслав Голованов @SLY_G Опубликовано: Geektimes Солнце получает энергию

Подробнее

Тест по ядерной физике система подготовки к тестам Gee Test. oldkyx.com

Тест по ядерной физике система подготовки к тестам Gee Test. oldkyx.com Тест по ядерной физике система подготовки к тестам Gee Test oldkyx.com Список вопросов по ядерной физике 1. С какой скоростью должен лететь протон, чтобы его масса равнялась массе покоя α-частицы mα =4

Подробнее

ОДНОПУЗЫРЬКОВАЯ СОНОЛЮМИНЕСЦЕНЦИЯ

ОДНОПУЗЫРЬКОВАЯ СОНОЛЮМИНЕСЦЕНЦИЯ ОДНОПУЗЫРЬКОВАЯ СОНОЛЮМИНЕСЦЕНЦИЯ Выполнил студент гр. ФРБ-502 Матюшенко Сергей Научный руководитель Болецкая Татьяна Константиновна Введение Цель работы Изучить явление однопузырьковой сонолюминесценции.

Подробнее

Интерференция волн. Сложение колебаний. И. В. Яковлев Материалы по физике MathUs.ru

Интерференция волн. Сложение колебаний. И. В. Яковлев Материалы по физике MathUs.ru И. В. Яковлев Материалы по физике MthUs.ru Темы кодификатора ЕГЭ: интерференция света. Интерференция волн В предыдущем листке, посвящённом принципу Гюйгенса, мы говорили о том, что общая картина волнового

Подробнее

γ =, c скорость света.

γ =, c скорость света. 6. Антипротон Первой обнаруженной античастицей был позитрон. Открытие позитрона, частицы по своим характеристикам идентичной электрону, но с противоположным (положительным) электрическим зарядом, было

Подробнее

Наглядное представление физической природы фотона и нейтрино. Доказательство отсутствия в природе такого явления, как слабое взаимодействие.

Наглядное представление физической природы фотона и нейтрино. Доказательство отсутствия в природе такого явления, как слабое взаимодействие. Наглядное представление физической природы фотона и нейтрино. Доказательство отсутствия в природе такого явления, как слабое взаимодействие. М. А. Гайсин Аннотация Автор в своей статье покажет, что физическая

Подробнее

= (3) 2 1. КРАТКАЯ ТЕОРИЯ.

= (3) 2 1. КРАТКАЯ ТЕОРИЯ. ИЗУЧЕНИЕ СТАТИСТИЧЕСКИХ ЗАКОНОМЕРНОСТЕЙ РАДИОАКТИВНОГО РАСПАДА Лабораторная работа 8 Цель работы: 1. Подтверждение случайного, статистического характера процессов радиоактивного распада ядер.. Ознакомление

Подробнее

Лекция 4. СТАТИЧЕСКИЕ СВОЙСТВА АТОМНЫХ ЯДЕР Масса ядра и Энергия связи

Лекция 4. СТАТИЧЕСКИЕ СВОЙСТВА АТОМНЫХ ЯДЕР Масса ядра и Энергия связи Лекция 4 СТАТИЧЕСКИЕ СВОЙСТВА АТОМНЫХ ЯДЕР Масса ядра и Энергия связи Масса частиц в связанном состоянии: Массу ядра образуют массы нуклонов. Однако M я суммарная масса нуклонов больше массы ядра. Этот

Подробнее

В приложении Радиоактивный распад. В приложении Задание Цепные ядерные реакции. Ядерный реактор

В приложении Радиоактивный распад. В приложении Задание Цепные ядерные реакции. Ядерный реактор Календарно-тематическое планирование по ФИЗИКЕ для 11 класса (заочное обучение) на II полугодие 2016-2017 учебного года Базовый учебник: ФИЗИКА 11, Г.Я. Мякишев и др., М.:«Просвещение», 2004 Учитель: Горев

Подробнее

Глава V. СТРОЕНИЕ АТОМА И АТОМНЫЕ СПЕКТРЫ

Глава V. СТРОЕНИЕ АТОМА И АТОМНЫЕ СПЕКТРЫ КВАНТОВАЯ ФИЗИКА V Строение атома и атомные спектры Глава V. СТРОЕНИЕ АТОМА И АТОМНЫЕ СПЕКТРЫ 23. Строение атома 1. Опыт Резерфорда В конце 19-го века английский учёный Дж. Томсон открыл электрон и установил,

Подробнее

c В физике элементарных частиц импульс и массу удобно выражать в энергетических единицах. Импульс, выраженный в этих единицах, следует

c В физике элементарных частиц импульс и массу удобно выражать в энергетических единицах. Импульс, выраженный в этих единицах, следует 4-5 уч год 6, кл Физика Физическая оптика Элементы квантовой физики ЭЛЕМЕНТЫ РЕЛЯТИВИСТСКОЙ ДИНАМИКИ 5 Введение К началу XX века накопилось большое количество экспериментальных данных о величине скорости

Подробнее

Лекция 3 СТАТИЧЕСКИЕ СВОЙСТВА АТОМНЫХ ЯДЕР

Лекция 3 СТАТИЧЕСКИЕ СВОЙСТВА АТОМНЫХ ЯДЕР Лекция 3 СТАТИЧЕСКИЕ СВОЙСТВА АТОМНЫХ ЯДЕР Атомные ядра условно принято делить на стабильные и радиоактивные. Условность состоит в том что, в сущности, все ядра подвергаются радиоактивному распаду, но

Подробнее

Работа 5.6 ИЗМЕРЕНИЕ -СПЕКТРОВ С ПОМОЩЬЮ СЦИНТИЛЛЯЦИОННОГО ПЛАСТИКОВОГО ДЕТЕКТОРА

Работа 5.6 ИЗМЕРЕНИЕ -СПЕКТРОВ С ПОМОЩЬЮ СЦИНТИЛЛЯЦИОННОГО ПЛАСТИКОВОГО ДЕТЕКТОРА Работа 5.6 ИЗМЕРЕНИЕ -СПЕКТРОВ С ПОМОЩЬЮ СЦИНТИЛЛЯЦИОННОГО ПЛАСТИКОВОГО ДЕТЕКТОРА редакция 10 сентября 2016 года В сцинтилляционном пластиковом детекторе световые вспышки возникают за счет взаимодействия

Подробнее

И.И. Гуревич, Я.Б. Зельдович, И.Я. Померанчук, Ю.Б. Харитон

И.И. Гуревич, Я.Б. Зельдович, И.Я. Померанчук, Ю.Б. Харитон 539(09) ИСПОЛЬЗОВАНИЕ ЯДЕРНОЙ ЭНЕРГИИ ЛЕГКИХ ЭЛЕМЕНТОВ И.И. Гуревич, Я.Б. Зельдович, И.Я. Померанчук, Ю.Б. Харитон Предлагается использование для взрывных целей ядерной реакции превращения дейтерия в водород

Подробнее

Электромагнитное поле

Электромагнитное поле Электромагнитное поле Контрольная работа «Электромагнитное поле» Демоверсия 1. Квадратная рамка расположена в однородном магнитном поле, как показано на рисунке. Направление тока в рамке указано стрелками.

Подробнее

Лекция 7. Столкновение нерелятивистских частиц.

Лекция 7. Столкновение нерелятивистских частиц. Лекция 7 Столкновение нерелятивистских частиц 1 Упругое столкновение Задача состоит в следующем Пусть какая-то частица пролетает мимо другой частицы Это могут быть два протона один из ускорителя, другой

Подробнее

Лекция 3 Модель жидкой капли. 1. О ядерных моделях

Лекция 3 Модель жидкой капли. 1. О ядерных моделях Лекция Модель жидкой капли.. О ядерных моделях Свойство насыщения ядерных сил, вытекающее, в ою очередь, из их короткодействия и отталкивания на малых расстояниях, делает ядро похожим на жидкость. Силы,

Подробнее

Ядро атома. Ядерные силы. Структура атомного ядра

Ядро атома. Ядерные силы. Структура атомного ядра Ядро атома. Ядерные силы. Структура атомного ядра На основе опытов Резерфорда была предложена планетарная модель атома: r атома = 10-10 м, r ядра = 10-15 м. В 1932 г. Иваненко и Гейзенберг обосновали протон-нейтронную

Подробнее

ЛАБОРАТОРНЫЕ РАБОТЫ по курсу физики

ЛАБОРАТОРНЫЕ РАБОТЫ по курсу физики Ю. В. Тихомиров ЛАБОРАТОРНЫЕ РАБОТЫ по курсу физики С ЭЛЕМЕНТАМИ КОМПЬЮТЕРНОГО МОДЕЛИРОВАНИЯ КВАНТОВАЯ ОПТИКА. АТОМНАЯ ФИЗИКА. ФИЗИКА АТОМНОГО ЯДРА И ЭЛЕМЕНТАРНЫХ ЧАСТИЦ для студентов всех специальностей

Подробнее

Какая элементарная частица, обозначенная знаком вопроса, участвует в реакции (это может быть электрон, протон или нейтрон)?

Какая элементарная частица, обозначенная знаком вопроса, участвует в реакции (это может быть электрон, протон или нейтрон)? Задания 10. Квантовая физика 1. На рисунке изображён фрагмент Периодической системы химических элементов Д.И. Менделеева. Изотоп урана испытывает α-распад, при котором образуются ядро гелия и ядро другого

Подробнее

И. В. Яковлев Материалы по физике MathUs.ru. Энергия связи ядра. 2 Gm , , ,

И. В. Яковлев Материалы по физике MathUs.ru. Энергия связи ядра. 2 Gm , , , И. В. Яковлев Материалы по физике MathUs.ru Энергия связи ядра Темы кодификатора ЕГЭ: энергия связи нуклонов в ядре, ядерные силы. Атомное ядро, согласно нуклонной модели, состоит из нуклонов протонов

Подробнее

М. Петуховский к.т.н., лауреат Государственной премии ИЗЛУЧЕНИЕ ФОТОНОВ И СТРУКТУРА АТОМА В предлагаемой статье автор пытается в популярной форме

М. Петуховский к.т.н., лауреат Государственной премии ИЗЛУЧЕНИЕ ФОТОНОВ И СТРУКТУРА АТОМА В предлагаемой статье автор пытается в популярной форме М. Петуховский к.т.н., лауреат Государственной премии ИЗЛУЧЕНИЕ ФОТОНОВ И СТРУКТУРА АТОМА В предлагаемой статье автор пытается в популярной форме изложить свой взгляд на процесс излучения света и переноса

Подробнее

И. В. Яковлев Материалы по физике MathUs.ru. Ядерные реакции

И. В. Яковлев Материалы по физике MathUs.ru. Ядерные реакции И. В. Яковлев Материалы по физике MathUs.ru Ядерные реакции Энергетический выход ядерной реакции это разность Q кинетической энергии продуктов реакции и кинетической энергии исходных частиц. Если Q > 0,

Подробнее

И протон, и нейтрон обладают полуцелым спином

И протон, и нейтрон обладают полуцелым спином Конспект лекций по курсу общей физики. Часть III Оптика. Квантовые представления о свете. Атомная физика и физика ядра Лекция 1 9. СТРОЕНИЕ ЯДРА 9.1. Состав атомного ядра Теперь мы должны обратить наше

Подробнее

Содержание 6.1. Столкновение молекул водорода 6.2. Столкновение молекул пропилена

Содержание 6.1. Столкновение молекул водорода 6.2. Столкновение молекул пропилена Раздел 6. Кадры из видеофильмов Содержание 6.1. Столкновение молекул водорода 6.2. Столкновение молекул пропилена 6.1. Столкновение молекул водорода Начальное состояние системы; t = 0. Соударение1; t =

Подробнее

Квиз. Постоянная Стефана-Больцмана Закон излучения Планка Постоянная Ридберга (энергетическая) Обобщённая формула Бальмера Закон Кирхгофа

Квиз. Постоянная Стефана-Больцмана Закон излучения Планка Постоянная Ридберга (энергетическая) Обобщённая формула Бальмера Закон Кирхгофа Квиз Постоянная Планка Уровни энергии атома водорода Закон Вина Перечислить (по порядку) серии в спектре атома водорода Закон Релэя-Джинса Постоянная Стефана-Больцмана Закон излучения Планка Постоянная

Подробнее

МЕХАНИЗМА ФОТОГЕНЕРАЦИИ СИНГЛЕТНОГО КИСЛОРОДА ИЗ СТОЛКНОВИТЕЛЬНЫХ КОМПЛЕКСОВ X-O2 (X = O2, N2, C5H8)

МЕХАНИЗМА ФОТОГЕНЕРАЦИИ СИНГЛЕТНОГО КИСЛОРОДА ИЗ СТОЛКНОВИТЕЛЬНЫХ КОМПЛЕКСОВ X-O2 (X = O2, N2, C5H8) ОТЗЫВ официального оппонента на диссертацию Пыряевой Александры Павловны ИЗУЧЕНИЕ МЕХАНИЗМА ФОТОГЕНЕРАЦИИ СИНГЛЕТНОГО КИСЛОРОДА ИЗ СТОЛКНОВИТЕЛЬНЫХ КОМПЛЕКСОВ X-O 2 (X = O 2, N 2, C 5 H 8 ) представленную

Подробнее

24 Mg + (Q = МэВ) 23 Mg + n (Q = МэВ) 23 Na + e + + n e (Q = 8.51 МэВ).

24 Mg + (Q = МэВ) 23 Mg + n (Q = МэВ) 23 Na + e + + n e (Q = 8.51 МэВ). 1 Лекция 27 (Продолжение) В ходе дальнейшей эволюции звезды возможны ядерные реакции горения кремния. Характерные условия горения кремния - температура (3-5) 109 K, плотность 105-106 г/см3. С началом горения

Подробнее

ЛАБОРАТОРНАЯ РАБОТА 5. РАСПРЕДЕЛЕНИЕ ПУАССОНА

ЛАБОРАТОРНАЯ РАБОТА 5. РАСПРЕДЕЛЕНИЕ ПУАССОНА ЛАБОРАТОРНАЯ РАБОТА 5. РАСПРЕДЕЛЕНИЕ ПУАССОНА ВВЕДЕНИЕ При измерении физических величин имеет место тот факт, что результаты измерений обычно распределены по некоторому закону. Это происходит вследствие

Подробнее

типа. Пятая глава посвящена применению разработанных моделей для анализа ряда конкретных магнитных конфигураций (обращенная магнитная конфигурация,

типа. Пятая глава посвящена применению разработанных моделей для анализа ряда конкретных магнитных конфигураций (обращенная магнитная конфигурация, ОТЗЫВ официального оппонента доктора физ.-мат. наук, профессора В.А. Курнаева на диссертацию А.Ю. Чиркова «ИССЛЕДОВАНИЕ ЭНЕРГЕТИЧЕСКОЙ ЭФФЕКТИВНОСТИ АЛЬ ТЕРНА ТИВНЫХ СИСТЕМ ТЕРМОЯДЕРНОГО СИНТЕЗА», представленную

Подробнее

ИНДИВИДУАЛЬНОЕ ДОМАШНЕЕ ЗАДАНИЕ 2

ИНДИВИДУАЛЬНОЕ ДОМАШНЕЕ ЗАДАНИЕ 2 ИНДИВИДУАЛЬНОЕ ДОМАШНЕЕ ЗАДАНИЕ 2 Задача 1. 1. Покоившееся ядро радона 220 Rn выбросило α чаcтицу со скоростью υ = 16 Мм/с. В какое ядро превратилось ядро радона? Какую скорость υ 1 получило оно вследствие

Подробнее

ЧАСТЬ 4. ОСНОВЫ КВАНТОВОЙ ФИЗИКИ

ЧАСТЬ 4. ОСНОВЫ КВАНТОВОЙ ФИЗИКИ ЧАСТЬ 4. ОСНОВЫ КВАНТОВОЙ ФИЗИКИ КОРПУСКУЛЯРНО ВОЛНОВОЙ ДУАЛИЗМ ЧАСТИЦ МАТЕРИИ Есть две формы существования материи: вещество и поле. Вещество состоит из частиц, «сцементированных» полем. Именно посредством

Подробнее

11. Горение водорода источник энергии звезд Начало звёздной эры относится примерно к 1 млрд. лет с момента Большого взрыва, когда формируются первые

11. Горение водорода источник энергии звезд Начало звёздной эры относится примерно к 1 млрд. лет с момента Большого взрыва, когда формируются первые 11. Горение водорода источник энергии звезд Начало звёздной эры относится примерно к 1 млрд. лет с момента Большого взрыва, когда формируются первые галактики. Солнечная система возникла сравнительно поздно

Подробнее

9 класс. 1. Законы взаимодействия и движения тел Вопрос Ответ 1 Что называется материальной точкой?

9 класс. 1. Законы взаимодействия и движения тел Вопрос Ответ 1 Что называется материальной точкой? 9 класс 1 1. Законы взаимодействия и движения тел Вопрос Ответ 1 Что называется материальной точкой? Тело, размерами которого в условиях рассматриваемой задачи можно пренебречь, называется материальной

Подробнее

Принцип работы генератора Росси

Принцип работы генератора Росси Школа Новой Физики Принцип работы генератора Росси Аннотация. В этой статье мы объясняем принцип работы генератора Росси, исходя из нового понимания действия основных законов физики - законов сохранения

Подробнее

Научно-техническая библиотека Статьи и Публикации

Научно-техническая библиотека Статьи и Публикации Научно-техническая библиотека Статьи и Публикации http://www.scitclibrar.ru/rus/catalog/arts/ О БЕТА-РАСПАДЕ И НЕЙТРИНО Получена 30.04.013 Воронков С.С. доцент, к.т.н Контакт с автором: vorss60@andx.ru

Подробнее

Тайны атомных ядер 2017

Тайны атомных ядер 2017 Тайны атомных ядер 2017 ЗВЕЗДНЫЙ НУКЛЕОСИНТЕЗ Образование тяжелых элементов Диаграмма Герцшпрунга-Рассела диаграмма эволюции звезд Диаграмма Герцшпрунга-Рассела M / M 15 9 5 3 1,5 1,0 0,5 Время достижения

Подробнее

Атомная физика. А) 5. В) 2. С) 4. D) 1.*

Атомная физика. А) 5. В) 2. С) 4. D) 1.* Атомная физика Согласно постулатам Бора, атом в стационарном состоянии A) непрерывно излучает энергию B) находится всегда C) может находиться только определённое время D) излучает свет определённых частот

Подробнее

Краткие сообщения по физике ФИАН номер 8, 2018 г.

Краткие сообщения по физике ФИАН номер 8, 2018 г. УДК 533.9 ЭНЕРГЕТИЧЕСКИЙ СПЕКТР И ЗАРЯДОВЫЙ СОСТАВ ИОНОВ ЛАЗЕРНОЙ ПЛАЗМЫ, ПОЛУЧАЕМОЙ ПРИ ОБЛУЧЕНИИ МИШЕНЕЙ ИЗ Gd И Al В. Н. Пузырёв 1, А. Т. Саакян 1, А. Н. Стародуб 1, Б. Р. Фахриев 1, А. А. Фроня 1,2,

Подробнее

3.4 ИЗУЧЕНИЕ ЗАКОНА РАДИОАКТИВНОГО РАСПАДА

3.4 ИЗУЧЕНИЕ ЗАКОНА РАДИОАКТИВНОГО РАСПАДА Лабораторная работа 3.4 ИЗУЧЕНИЕ ЗАКОНА РАДИОАКТИВНОГО РАСПАДА Цель работы: изучение закономерностей радиоактивного распада путем компьютерного моделирования; определение постоянной распада и периода полураспада

Подробнее

Тайны атомных ядер 2017

Тайны атомных ядер 2017 Тайны атомных ядер 2017 ЗВЕЗДНЫЙ НУКЛЕОСИНТЕЗ Синтез ядер легче группы железа Возраст t 0 Характеристики Вселенной Радиус наблюдаемой части Вселенной (горизонт видимости) R 0 сt 0 13,7 млрд. лет 10 28

Подробнее

Календарно-тематическое планирование по ФИЗИКЕ для 11 класса (заочное обучение) на II полугодие учебного года

Календарно-тематическое планирование по ФИЗИКЕ для 11 класса (заочное обучение) на II полугодие учебного года Календарно-тематическое планирование по ФИЗИКЕ для 11 класса (заочное обучение) на II полугодие 2017-2018 учебного года Базовый учебник: ФИЗИКА 11, Г.Я. Мякишев и др., М.:«Просвещение», 2012 Учитель: Горев

Подробнее

КОМПЛЕКС ASTRAL ДЛЯ ЗАДАЧ АСТРОФИЗИКИ И ФИЗИКИ ВЫСОКИХ ПЛОТНОСТЕЙ ЭНЕРГИИ. РФЯЦ ВНИИ технической физики им. акад. Е.И. Забабахина, Снежинск, Россия

КОМПЛЕКС ASTRAL ДЛЯ ЗАДАЧ АСТРОФИЗИКИ И ФИЗИКИ ВЫСОКИХ ПЛОТНОСТЕЙ ЭНЕРГИИ. РФЯЦ ВНИИ технической физики им. акад. Е.И. Забабахина, Снежинск, Россия КОМПЛЕКС ASTRAL ДЛЯ ЗАДАЧ АСТРОФИЗИКИ И ФИЗИКИ ВЫСОКИХ ПЛОТНОСТЕЙ ЭНЕРГИИ Г.В. ИОНОВ, Н.Г. КАРЛЫХАНОВ, В.А. СИМОНЕНКО, Н.Е. ЧИЖКОВА РФЯЦ ВНИИ технической физики им. акад. Е.И. Забабахина, Снежинск, Россия

Подробнее

Нейтронная радиоактивность

Нейтронная радиоактивность Нейтронная радиоактивность Ю. Ю. Овчаров По существующим оценкам возможное число атомных ядер, существующих в природе, составляет около 6500. Однако в настоящее время известно лишь около 3500 атомных ядер.

Подробнее

Сценарий занятия 4 по теме Тепловые явления, теплообмен, уравнение теплового баланса.

Сценарий занятия 4 по теме Тепловые явления, теплообмен, уравнение теплового баланса. Сценарий занятия 4 по теме Тепловые явления, теплообмен, уравнение Было задано решить все задачи из стандартного задачника на тему Теплопередача. В среднем учащиеся решили 20 из заданных 40 задач. Можно

Подробнее

ЛЕКЦИЯ 10 ЯДЕРНЫЕ МОДЕЛИ. РАДИОАКТИВНОСТЬ

ЛЕКЦИЯ 10 ЯДЕРНЫЕ МОДЕЛИ. РАДИОАКТИВНОСТЬ ЛЕКЦИЯ 10 ЯДЕРНЫЕ МОДЕЛИ. РАДИОАКТИВНОСТЬ В прошлый раз мы начали изучать квантовую систему «ядро». В нем работает протоннейтронная модель ядра. Плотность этого вещества 10 1 г/см 3. Спин протонов и нейтронов

Подробнее

Д. А. Паршин, Г. Г. Зегря Физика Электромагнитные волны Лекция 12 ЛЕКЦИЯ 12

Д. А. Паршин, Г. Г. Зегря Физика Электромагнитные волны Лекция 12 ЛЕКЦИЯ 12 1 Д. А. Паршин, Г. Г. Зегря Физика Электромагнитные волны Лекция 1 ЛЕКЦИЯ 1 Определение заряда при его движении. Инвариантность заряда. Опыт Кинга. Преобразование компонент электрического поля при переходе

Подробнее

ФИЗИЧЕСКИЕ ВЕЛИЧИНЫ ИЗМЕНЕНИЕ ВЕЛИЧИНЫ А) Частота падающего света Б) Импульс фотонов В) Кинетическая энергия вылетающих электронов

ФИЗИЧЕСКИЕ ВЕЛИЧИНЫ ИЗМЕНЕНИЕ ВЕЛИЧИНЫ А) Частота падающего света Б) Импульс фотонов В) Кинетическая энергия вылетающих электронов Квантовая физика, ядерная физика 1. Металлическую пластину освещали монохроматическим светом с длиной волны нм. Что произойдет с частотой падающего света, импульсом фотонов и кинетической энергией вылетающих

Подробнее

Темная энергия и квантовый туннельный эффект вакуума через поле Хиггса.

Темная энергия и квантовый туннельный эффект вакуума через поле Хиггса. Темная энергия и квантовый туннельный эффект вакуума через поле Хиггса. Куюков Виталий П. Россия, Сибирский Федеральный Университет Email: vitalik.kayukov@mail.ru В данной статье рассматривается плотность

Подробнее

РАБОТА 3. Дифракция на двойной щели и на нескольких щелях

РАБОТА 3. Дифракция на двойной щели и на нескольких щелях РАБОТА 3 Дифракция на двойной щели и на нескольких щелях Цель работы: При изучении дифракции на двух щелях исследовать зависимость распределения интенсивности вторичных волн на экране от ширины щелей и

Подробнее

Длина волны, соответствующая «красной границе» фотоэффекта, λ кр Максимальная кинетическая энергия фотоэлектронов

Длина волны, соответствующая «красной границе» фотоэффекта, λ кр Максимальная кинетическая энергия фотоэлектронов КВАНТОВАЯ ФИЗИКА, АТОМ И ЯДРО задания типа В Страница 1 из 5 1. Монохроматический свет с длиной волны λ падает на поверхность фотокатода, вызывая фотоэффект. Как изменится энергия падающего фотона, работа

Подробнее

Статистические закономерности, возникающие при измерениях Отчёт по лабораторной работе 1.1

Статистические закономерности, возникающие при измерениях Отчёт по лабораторной работе 1.1 Статистические закономерности, возникающие при измерениях Отчёт по лабораторной работе 1.1 Москалев Александр Сергеевич Физический факультет. Группа 81.2. (8.1) Золкин Александр Степанович Доцент КОФ НГУ,

Подробнее

Минимум по физике для учащихся 9-х классов за 4 - ю четверть.

Минимум по физике для учащихся 9-х классов за 4 - ю четверть. Минимум по физике для учащихся 9-х классов за 4 - ю четверть. Учебник: Перышкин А. В.Физика.9 класс. Учебник для общеобразовательных учреждений. М.: Дрофа, 2013. Виды и формы контроля: 1) предъявление

Подробнее

Информационное моделирование кавитационных процессов, инициированных ультразвуковыми осцилляторами

Информационное моделирование кавитационных процессов, инициированных ультразвуковыми осцилляторами Информационное моделирование кавитационных процессов, инициированных ультразвуковыми Геннадий.В. Леонов, Екатерина.И. Савина Бийский технологический институт Алтайского государственного технического университета

Подробнее

ФИЗИЧЕСКИЕ ВЕЛИЧИНЫ ИЗМЕНЕНИЕ ВЕЛИЧИНЫ А) Частота падающего света Б) Импульс фотонов В) Кинетическая энергия вылетающих электронов A Б В

ФИЗИЧЕСКИЕ ВЕЛИЧИНЫ ИЗМЕНЕНИЕ ВЕЛИЧИНЫ А) Частота падающего света Б) Импульс фотонов В) Кинетическая энергия вылетающих электронов A Б В Квантовая физика, ядерная физика 1. Металлическую пластину освещали монохроматическим светом с длиной волны нм. Что произойдет с частотой падающего света, импульсом фотонов и кинетической энергией вылетающих

Подробнее

ЛАБОРАТОРНАЯ РАБОТА 4.7 СООТНОШЕНИЕ НЕОПРЕДЕЛЕННОСТЕЙ ДЛЯ ФОТОНОВ. выполнения соотношения неопределенностей для фотонов.

ЛАБОРАТОРНАЯ РАБОТА 4.7 СООТНОШЕНИЕ НЕОПРЕДЕЛЕННОСТЕЙ ДЛЯ ФОТОНОВ. выполнения соотношения неопределенностей для фотонов. 1 ЛАБОРАТОРНАЯ РАБОТА 4.7 СООТНОШЕНИЕ НЕОПРЕДЕЛЕННОСТЕЙ ДЛЯ ФОТОНОВ Ц е л ь р а б о т ы : экспериментальное подтверждение выполнения соотношения неопределенностей для фотонов. П р и б о р ы и п р и н а

Подробнее

Фразы, захватывающие внимание

Фразы, захватывающие внимание Фразы, захватывающие внимание Ударный файл из 441 фразы, заставляющей читать дальше сайт автора - www.strategicprofits.com 1. Слово предостережения: 2. Добавьте это к 3. В конце концов, 4. Снова, 5. Кроме

Подробнее

ЛЕКЦИЯ 9 АТОМНОЕ ЯДРО

ЛЕКЦИЯ 9 АТОМНОЕ ЯДРО ЛЕКЦИЯ 9 АТОМНОЕ ЯДРО Мы рассматривали атом в магнитном поле и его влияние на спектр излучения. Впервые эти процессы рассмотрел Зееман, поэтому расщепление уровней энергии в магнитном поле называется эффектом

Подробнее

ИССЛЕДОВАНИЕ РЕЖИМОВ ТЕЧЕНИЯ ЖИДКОСТИ

ИССЛЕДОВАНИЕ РЕЖИМОВ ТЕЧЕНИЯ ЖИДКОСТИ ЛАБОРАТОРНАЯ РАБОТА 1 ИССЛЕДОВАНИЕ РЕЖИМОВ ТЕЧЕНИЯ ЖИДКОСТИ Для изучения процессов, происходящих в капельных жидкостях и газах необходимо знать распределение скоростей в каналах. Английским физиком Осборном

Подробнее

- число силовых линий центрального поля конечно. Число силовых линий поля протона с массой М в М/m раз больше, чем число линий поля электрона с

- число силовых линий центрального поля конечно. Число силовых линий поля протона с массой М в М/m раз больше, чем число линий поля электрона с Как известно, дискретные частоты излучения при возбуждении атома водорода испускаются сериями. Самая высокочастотная из них серия Лаймана. Она описывается эмпирической формулой Ридберга ν = R (1-1 n 2

Подробнее

(14) e комплексная амплитуда, 1. где S. i - мнимая единица. Если подставить волновую функцию в волновое уравнение, получим уравнение для амплитуды

(14) e комплексная амплитуда, 1. где S. i - мнимая единица. Если подставить волновую функцию в волновое уравнение, получим уравнение для амплитуды Конспект лекций по курсу общей физики. Часть III Оптика. Квантовые представления о свете. Атомная физика и физика ядра Лекция 1 7. ЭЛЕМЕНТЫ КВАНТОВОЙ МЕХАНИКИ (продолжение) 7.5. Волновое уравнение Шредингера

Подробнее

E γ + E e = E e; (4) m e v. m e c 2 1 v2 /c 2 ; p e = E e = E γ = m e c 2 1. c = m eβc 1 = m e c 2 = 1

E γ + E e = E e; (4) m e v. m e c 2 1 v2 /c 2 ; p e = E e = E γ = m e c 2 1. c = m eβc 1 = m e c 2 = 1 Изучение взаимодействия гамма-излучения с веществом Составители: к. ф.-м. н. В. В. Добротворский, асс. О. В. Журенков Рецензенты: к. ф.-м. н. В. А. Литвинов, д. ф.-м. н. А. В. Пляшешников Цель работы:

Подробнее

Тест. Радиоактивные вещества. Что такое радиоактивность? Что обычно используют для обнаружения ионизации?

Тест. Радиоактивные вещества. Что такое радиоактивность? Что обычно используют для обнаружения ионизации? Тест Радиоактивные вещества Что обычно используют для обнаружения ионизации? A счётчик Гейгера B термометр C микрофон D сейсмометр Что не является одним из трех основных типов ядерного излучения? A альфа

Подробнее

Определение длин волн H α, H β и H γ Бальмеровской серии водорода

Определение длин волн H α, H β и H γ Бальмеровской серии водорода Работа Определение длин волн H α, H β и H γ Бальмеровской серии водорода Цель работы: Наблюдение спектральных линий атомарного водорода на решетке с высоким разрешением, измерение длин волн H α, H β и

Подробнее

ТЕМА 2.4 РАСЧЕТ ПОЛЕЙ ИЗЛУЧЕНИЯ ТОЧЕЧНОГО ИСТОЧНИКА ГАММА-ИЗЛУЧЕНИЯ С УЧЕТОМ РАССЕЯНИЯ

ТЕМА 2.4 РАСЧЕТ ПОЛЕЙ ИЗЛУЧЕНИЯ ТОЧЕЧНОГО ИСТОЧНИКА ГАММА-ИЗЛУЧЕНИЯ С УЧЕТОМ РАССЕЯНИЯ ТЕМА 2.4 РАСЧЕТ ПОЛЕЙ ИЗЛУЧЕНИЯ ТОЧЕЧНОГО ИСТОЧНИКА ГАММА-ИЗЛУЧЕНИЯ С УЧЕТОМ РАССЕЯНИЯ Геометрия широких пучков При прохождении реального гамма-излучения через вещество создается широкий пучок излучения,

Подробнее

Т15. Строение ядра (элементы физики ядра и элементарных частиц)

Т15. Строение ядра (элементы физики ядра и элементарных частиц) Т5. Строение ядра (элементы физики ядра и элементарных частиц). Строение ядра. Протоны и нейтроны. Понятие о ядерных циклах. Энергия связи, дефект массы.. Естественная радиоактивность. Радиоактивность.

Подробнее

Дидактическое пособие по теме «Квантовая физика» учени 11 класса

Дидактическое пособие по теме «Квантовая физика» учени 11 класса Задачи «Квантовая физика» 1 Дидактическое пособие по теме «Квантовая физика» учени 11 класса Тема I. Фотоэлектрический эффект и его законы. Фотон. Уравнение Эйнштейна для фотоэффекта c Wф, Wф, где W ф

Подробнее

Спросите Итана 64: Что Происходит С Материей При Расширении Вселенной?

Спросите Итана 64: Что Происходит С Материей При Расширении Вселенной? Спросите Итана 64: Что Происходит С Материей При Расширении Вселенной? Тэги: Вселенная Материя Большой Взрыв Автор: Ethan Siegel Перевод: Вячеслав Голованов @SLY_G Опубликовано: Geektimes При расширении

Подробнее

Выделение энергии аннигиляции при распаде частиц вакуума

Выделение энергии аннигиляции при распаде частиц вакуума 1 Выделение энергии аннигиляции при распаде частиц вакуума ЕГЯкубовский -al yakubovk@ablu Основная задача, которая ставится в данной статье, это получение энергии за счет частиц вакуума При этом частица

Подробнее

8. Теория входных состояний.

8. Теория входных состояний. 8. Теория входных состояний.. Одной из важнейших характеристик ядерных реакций является функция возбуждения, т.е. зависимость сечения реакции от энергии налетающей частицы. Первоначально в энергетической

Подробнее

Вся астрофизика за час. Сергей Попов ГАИШ МГУ

Вся астрофизика за час. Сергей Попов ГАИШ МГУ Вся астрофизика за час Сергей Попов ГАИШ МГУ 10 фактов о вселенной 1. Солнце звезда. Расстояния между звездами световые годы. 2. Солнечная система заканчивается там, где заканчивается область, гравитационно

Подробнее

Тема 2. Системы уравнений и методы их решения

Тема 2. Системы уравнений и методы их решения Тема Системы уравнений и методы их решения Содержание 1 Общие сведения о системах уравнений Метод подстановки Расщепление системы на две системы Сложение и вычитание 5 Умножение и деление 6 Сложные системы

Подробнее

I. Планируемые результаты освоения предмета

I. Планируемые результаты освоения предмета I. Планируемые результаты освоения предмета Учащиеся должны знать: Понятия: электромагнитная индукция, самоиндукция, индуктивность, свободные и вынужденные колебания, колебательный контур, переменный ток,

Подробнее

УДК Неравновесные процессы и образования кавитационных пузырьков при прохождении водяной струи через сопло Лаваля

УДК Неравновесные процессы и образования кавитационных пузырьков при прохождении водяной струи через сопло Лаваля УДК6.532.5+537.7+541.13 Неравновесные процессы и образования кавитационных пузырьков при прохождении водяной струи через сопло Лаваля Ысламидинов А.Ы 1., Ташполотов Ы 1,2,3., Абдалиев У 1. 1-Институт природных

Подробнее

Тема 22. Физика атомного ядра и элементарных частиц. 1. Общие сведения об атомных ядрах

Тема 22. Физика атомного ядра и элементарных частиц. 1. Общие сведения об атомных ядрах Тема 22. Физика атомного ядра и элементарных частиц 1. Общие сведения об атомных ядрах В 1932 г. была открыта новая элементарная частица с массой примерно равной массе протона, но имеющая электрического

Подробнее

Ли Чжицзя, Промтов М. А. ИНТЕНСИФИКАЦИИ МАССООБМЕННЫХ ПРОЦЕССОВ С ИСПОЛЬЗОВАНИЕМ ИМПУЛЬСНЫХ ЭНЕРГЕТИЧЕСКИХ ВОЗДЕЙСТВИЙ (НА ПРИМЕРЕ КАВИТАЦИИ)

Ли Чжицзя, Промтов М. А. ИНТЕНСИФИКАЦИИ МАССООБМЕННЫХ ПРОЦЕССОВ С ИСПОЛЬЗОВАНИЕМ ИМПУЛЬСНЫХ ЭНЕРГЕТИЧЕСКИХ ВОЗДЕЙСТВИЙ (НА ПРИМЕРЕ КАВИТАЦИИ) Ли Чжицзя, Промтов М. А. ИНТЕНСИФИКАЦИИ МАССООБМЕННЫХ ПРОЦЕССОВ С ИСПОЛЬЗОВАНИЕМ ИМПУЛЬСНЫХ ЭНЕРГЕТИЧЕСКИХ ВОЗДЕЙСТВИЙ (НА ПРИМЕРЕ КАВИТАЦИИ) Под кавитацией в жидкости понимают образование заполненных

Подробнее

Удаление Заусенцев Мелких Деталей в Труднодоступных Местах Ультразвуковым Воздействием

Удаление Заусенцев Мелких Деталей в Труднодоступных Местах Ультразвуковым Воздействием Удаление Заусенцев Мелких Деталей в Труднодоступных Местах Ультразвуковым Воздействием Владимир Н. Хмелев, Senior Member, IEEE, Сергей Н. Цыганок, Андрей А. Ромашкин, Геннадий А. Титов. Центр ультразвуковых

Подробнее

1 Введение. Спектр IEPhO В задаче требуется оценка погрешностей!

1 Введение. Спектр IEPhO В задаче требуется оценка погрешностей! В задаче требуется оценка погрешностей! 1 Введение В оптике дифракция явление, которое проявляет себя как отклонения в поведении светового излучения от законов геометрической оптики. Это возможно благодаря

Подробнее

уч. год. 6, 11 кл. Физика. Физическая оптика. Элементы квантовой физики

уч. год. 6, 11 кл. Физика. Физическая оптика. Элементы квантовой физики 9- уч год 6, кл Физика Физическая оптика Элементы квантовой физики ЭЛЕМЕНТЫ РЕЛЯТИВИСТСКОЙ ДИНАМИКИ 5 Введение К началу XX века накопилось большое количество экспериментальных данных о величине скорости

Подробнее

5. Бета- частица это. 6. В состав радиоактивного излучения входят. 7. Явление радиоактивности открыл. 8. Гамма - квант - это

5. Бета- частица это. 6. В состав радиоактивного излучения входят. 7. Явление радиоактивности открыл. 8. Гамма - квант - это БАНК ЗАДАНИЙ. ФИЗИКА.БАЗОВЫЙ УРОВЕНЬ.МОДУЛЬ 4. СТРОЕНИЕ АТОМА И АТОМНОГО ЯДРА.ИСПОЛЬЗОВАНИЕ ЭНЕРГИИ АТОМНЫХ ЯДЕР. 1. Явление радиоактивности свидетельствует о том, что все вещества состоят из неделимых

Подробнее

7. Планетарная модель атома

7. Планетарная модель атома 7. Планетарная модель атома В 1911 г. Резерфорд изучал рассеяние α частиц (ядра атомов гелия, состав р+, заряд + е ) тонкими металлическими пленками (~1 мкм). α частицы возникают при радиоактивном распаде

Подробнее

ЭКОНОМЕТРИКА. 1. Предпосылки метода наименьших квадратов.

ЭКОНОМЕТРИКА. 1. Предпосылки метода наименьших квадратов. Лекция 5 ЭКОНОМЕТРИКА 5 Проверка качества уравнения регрессии Предпосылки метода наименьших квадратов Рассмотрим модель парной линейной регрессии X 5 Пусть на основе выборки из n наблюдений оценивается

Подробнее

Капельная модель электрона и атома

Капельная модель электрона и атома Капельная модель электрона и атома F. F. Mnd http://fmnauka.narod.ru/works.html mnd_fdor@mail.ru В статье рассмотрена капельная модель электрона и атома, предполагающая существование электрона, как в виде

Подробнее

Отчет по лабораторной работе 5 Опыт Франка-Герца

Отчет по лабораторной работе 5 Опыт Франка-Герца Нижегородский государственный университет имени Н. И. Лобачевского Радиофизический факультет Отчет по лабораторной работе 5 Опыт Франка-Герца Выполнили студенты 430 группы Нижний Новгород, 2018 1. Теоретическая

Подробнее

Рис.1. Легкие молекулы диффундируют быстрее тяжелых

Рис.1. Легкие молекулы диффундируют быстрее тяжелых Лекция 1 Введение. Предмет молекулярной физики. Основные положения молекулярно-кинетической теории (МКТ) вещества и их экспериментальное обоснование. Статистический и термодинамический подходы к изучению

Подробнее

Наблюдение новой частицы с массой 125 ГэВ

Наблюдение новой частицы с массой 125 ГэВ Наблюдение новой частицы с массой 125 ГэВ Эксперимент CMS, ЦЕРН 4 июля 2012 Резюме Сегодня, на совместном семинаре в ЦЕРН и на конференции ICHEP 2012 [1] в Мельбурне исследователи эксперимента Компактный

Подробнее

КВАНТОВАЯ МЕХАНИКА Лекция 1: Введение и простейшие примеры

КВАНТОВАЯ МЕХАНИКА Лекция 1: Введение и простейшие примеры КВАНТОВАЯ МЕХАНИКА Лекция 1: Введение и простейшие примеры А.Г. Семенов I. ВВЕДЕНИЕ Целью данного курса лекций является изучение раздела науки под название квантовая механика, который, в свою очередь,

Подробнее

3. Устойчивость разностных схем

3. Устойчивость разностных схем 3. Устойчивость разностных схем 1 3. Устойчивость разностных схем Проведем расчеты по явной разностной схеме (6) сначала для линейного уравнения диффузии. Выберем (рис.5) определенные значения шага по

Подробнее

/6. На рисунках А, Б и В приведены спектры излучения атомарных газов А и В и газовой смеси Б.

/6. На рисунках А, Б и В приведены спектры излучения атомарных газов А и В и газовой смеси Б. Атомные спектры, энергетические уровни 1. На рисунках А, Б и В приведены спектры излучения атомарных газов А и В и газовой смеси Б. На основании анализа этих участков спектров можно сказать, что смесь

Подробнее

Проверка статистических гипотез

Проверка статистических гипотез Проверка статистических гипотез 1 Основные понятия. Нулевая гипотеза (H 0 ) утверждение о параметре генеральной совокупности (параметрах генеральных совокупностей) или распределении, которое необходимо

Подробнее

8 Ядерная физика. Основные формулы и определения. В физике известно четыре вида фундаментальных взаимодействий тел:

8 Ядерная физика. Основные формулы и определения. В физике известно четыре вида фундаментальных взаимодействий тел: 8 Ядерная физика Основные формулы и определения В физике известно четыре вида фундаментальных взаимодействий тел: 1) сильное или ядерное взаимодействие обусловливает связь между нуклонами атомного ядра.

Подробнее

Глава 1: Атомы. Открытие атома

Глава 1: Атомы. Открытие атома Атомы ХИМИЯ АТОМЫ И СВЯЗИ АТОМЫ Глава 1: Атомы Что такое атом? Атомы являются строительными блоками материи. Они составляют все: от живых существ до искусственных пластмасс, от твердых металлов до невидимых

Подробнее

Взаимодействие бета-частиц с веществом: зависимость проникающей способности бета-частиц от их максимальной энергии

Взаимодействие бета-частиц с веществом: зависимость проникающей способности бета-частиц от их максимальной энергии Белорусский национальный технический университет Кафедра «Техническая физика» Лаборатория ядерной и радиационной безопасности Лабораторный практикум по дисциплине «Защита от ионизирующего излучения» Лабораторная

Подробнее

ЛЕКЦИЯ 9 КВАНТОВЫЙ ОСЦИЛЛЯТОР. ПРОИЗВОДНАЯ ОПЕРАТОРА ПО ВРЕМЕНИ. СООТНОШЕНИЕ НЕОПРЕДЕЛЕННОСТЕЙ ДЛЯ ЭНЕРГИИ И ВРЕМЕНИ

ЛЕКЦИЯ 9 КВАНТОВЫЙ ОСЦИЛЛЯТОР. ПРОИЗВОДНАЯ ОПЕРАТОРА ПО ВРЕМЕНИ. СООТНОШЕНИЕ НЕОПРЕДЕЛЕННОСТЕЙ ДЛЯ ЭНЕРГИИ И ВРЕМЕНИ ЛЕКЦИЯ 9 КВАНТОВЫЙ ОСЦИЛЛЯТОР. ПРОИЗВОДНАЯ ОПЕРАТОРА ПО ВРЕМЕНИ. СООТНОШЕНИЕ НЕОПРЕДЕЛЕННОСТЕЙ ДЛЯ ЭНЕРГИИ И ВРЕМЕНИ 1. Квантовый осциллятор Выпишем некоторые соотношения, полученные на предыдущей лекции.

Подробнее

наименьшей постоянной решетки

наименьшей постоянной решетки Оптика и квантовая физика 59) Имеются 4 решетки с различными постоянными d, освещаемые одним и тем же монохроматическим излучением различной интенсивности. Какой рисунок иллюстрирует положение главных

Подробнее

Лекция Атомное ядро. Дефект массы, энергия связи ядра.

Лекция Атомное ядро. Дефект массы, энергия связи ядра. 35 Лекция 6. Элементы физики атомного ядра [] гл. 3 План лекции. Атомное ядро. Дефект массы энергия связи ядра.. Радиоактивное излучение и его виды. Закон радиоактивного распада. 3. Законы сохранения при

Подробнее

3.ДИФРАКЦИЯ СВЕТА. Рис.3.1

3.ДИФРАКЦИЯ СВЕТА. Рис.3.1 3.ДИФРАКЦИЯ СВЕТА Дифракцией называется совокупность явлений, наблюдаемых при распространении света в среде с резкими неоднородностями и связанных с отклонениями от законов геометрической оптики. Дифракция,

Подробнее

МОДЕЛИРОВАНИЕ МЕХАНО-ФИЗИКОХИМИЧЕСКИХ ЭФФЕКТОВ В ПРОЦЕССЕ СХЛОПЫВАНИЯ КАВИТАЦИОННЫХ ПОЛОСТЕЙ

МОДЕЛИРОВАНИЕ МЕХАНО-ФИЗИКОХИМИЧЕСКИХ ЭФФЕКТОВ В ПРОЦЕССЕ СХЛОПЫВАНИЯ КАВИТАЦИОННЫХ ПОЛОСТЕЙ МОДЕЛИРОВАНИЕ МЕХАНО-ФИЗИКОХИМИЧЕСКИХ ЭФФЕКТОВ В ПРОЦЕССЕ СХЛОПЫВАНИЯ КАВИТАЦИОННЫХ ПОЛОСТЕЙ О.В. Лавриненко, Е.И. Савина, Г.В. Леонов Предложена математическая модель процесса схлопывания кавитационных

Подробнее

МОДЕЛИРОВАНИЕ МЕХАНО-ФИЗИКОХИМИЧЕСКИХ ЭФФЕК- ТОВ В ПРОЦЕССЕ СХЛОПЫВАНИЯ КАВИТАЦИОННЫХ ПОЛО- СТЕЙ

МОДЕЛИРОВАНИЕ МЕХАНО-ФИЗИКОХИМИЧЕСКИХ ЭФФЕК- ТОВ В ПРОЦЕССЕ СХЛОПЫВАНИЯ КАВИТАЦИОННЫХ ПОЛО- СТЕЙ МОДЕЛИРОВАНИЕ МЕХАНО-ФИЗИКОХИМИЧЕСКИХ ЭФФЕК- ТОВ В ПРОЦЕССЕ СХЛОПЫВАНИЯ КАВИТАЦИОННЫХ ПОЛО- СТЕЙ О.В. Лавриненко, Е.И. Савина, Г.В. Леонов Предложена математическая модель процесса схлопывания кавитационных

Подробнее