Раздел 2. Дифференциальные уравнения Модуль 4. Линейные дифференциальные уравнения и системы.

Размер: px
Начинать показ со страницы:

Download "Раздел 2. Дифференциальные уравнения Модуль 4. Линейные дифференциальные уравнения и системы."

Транскрипт

1 Раздел Дифференциальные уравнения Модуль 4 Линейные дифференциальные уравнения и системы Лекция 4 Аннотация Линейные дифференциальные уравнения (ЛДУ) -го порядка, однородные и неоднородные Теорема о существовании и единственности решения Дифференциальный оператор L[ y ], его свойства Структура общего решения неоднородного линейного ДУ (НЛДУ) Теорема о наложении частных решений Теорема о наложении частных решений Линейное пространство решений однородного ЛДУ (ОЛДУ) Линейно зависимые и независимые системы функций на отрезке Определитель Вронского (вронскиан) Теорема о вронскиане системы линейно зависимых функций Теорема о вронскиане системы линейно зависимых решений ОЛДУ Теорема о структуре общего решения ОЛДУ Размерность пространства решений ОЛДУ Фундаментальная система решений ОЛДУ Формула Остроградского-Лиувилля и ее следствия Линейные дифференциальные уравнения высших порядков Основные понятия Дифференциальный оператор, его свойства Структура общего решения линейного неоднородного дифференциального уравнения, его свойство Многие задачи математики, механики, электротехники и других технических наук приводят к линейным дифференциальным уравнениям (ЛДУ) Задача Определить закон движения материальной точки массой, на которую действует сила, направленная к началу координат и пропорциональная расстоянию точки от начала координат Сопротивлением среды пренебречь Решение Пусть t ()- положение точки в момент времени t на оси O, тогда - скорость точки в момент времени t ; d - ее ускорение Согласно второму закону Ньютона, имеем ДУ движения d a d =a или + = - ЛОДУ второго порядка с постоянными коэффициентами Его a a a t Ccos t C si t Asi t ϕ = + = + решение - гармонические колебания с

2 амплитудой A, начальной фазой ϕ и периодом ( t T) t a a + + ϕ = + ϕ+ π или C C T = π Здесь A= C + C, siϕ =, cosϕ =, C и C - константы a A A Определение Уравнение вида b ( y + b( y + + b ( y = g( ( ), () где b (, b( ),, b, g- заданные непрерывные (на некотором множестве X (отрезок, интервал, полупрямая или вся числовая прямая) функции, называется ЛДУ -го порядка Уравнение () содержит искомую функцию y и все ее производные лишь в первой степени (отсюда и название уравнения линейное) Функции b ( ), b ( ),, b ( ) называются коэффициентами уравнения (), а функция g - его свободным членом Определение Если g, то уравнение () называется линейным однородным дифференциальным уравнением (ЛОДУ) -го порядка Если g, то линейным неоднородным дифференциальным уравнением (ЛНДУ) -го порядка (или линейным уравнением с правой частью) Разделим обе части уравнения () на b и запишем уравнение () в виде - приведенное ЛДУ -го порядка ( ) y + a y + + a y = f () К уравнению () могут быть добавлены начальные условия y = y, y ( ) y ( ) =,, y ( ) = y, Полученная задача ()-(3) называется задачей Коши X (3) Теорема (о существовании и единственности решения задачи Коши) Решение задачи Коши ()-(3) существует и единственно на любом отрезке [ ab, ] X Введем следующие обозначения: [ L y a y ] + y + + a y - линейный дифференциальный оператор -го порядка Тогда Ly [ ] = - ЛОДУ -го порядка, Ly [ ] = f( - ЛНДУ -го порядка Лемма (свойство линейного оператора) Пусть y = y ( и y = y ( - произвольные функции, имеющие производные до -го порядка

3 включительно, C и C - произвольные постоянные, тогда выполняется равенство Докажем две основные теоремы ЛДУ L[ C y C y ] = C Ly [ ] + C Ly [ ] + (4) Теорема (о структуре общего решения ЛНДУ) Общее решение y = y неоднородного уравнения Ly [ ] = f( есть сумма какого-либо частного решения yчн( ) этого уравнения и общего решения yоо( ) соответствующего однородного уравнения Ly [ ] =, те y = yоо + yчн Доказательство: Покажем сначала, что y = y ( + y ( является решением ДУ Ly [ ] = f( Из леммы следует, что чн L [ y ( + y ( ] = Ly [ ( ] + Ly [ ( ] = f( + = f( чн оо чн оо Теперь покажем, что любое решение y неоднородного уравнения = есть y y ( y ( Ly [ ] f( Имеем Теорема доказана = + чн оо L[ y y ( ] = Ly [ ] Ly [ ( ] = f( f( = = L[ y ( ] чн чн оо Теорема 3 (о наложении решений) (свойство ЛДУ) Пусть y y ( - соответствующие решения уравнений Ly f y ( y ( + есть решение уравнения Доказательство: Из леммы следует, что Теорема доказана оо он = и y = y ( [ ] = ( и Ly [ ] f( L[ y] = f ( + f ( Ly [ ( + y( ] = Ly [ ( ] + Ly [ ( ] = f( + f( Линейные однородные дифференциальные уравнения =, тогда Линейно зависимые и независимые системы функций на отрезке Определитель Вронского Рассмотрим ЛОДУ Ly [ ] = Из Леммы следует Лемма

4 Лемма Пусть y ( ), Ly [ ] = и C, C,, комбинация уравнения y,, y - какие-либо частные решения ЛОДУ C - произвольные постоянные Тогда линейная также является решением этого C y ( + C y ( + + C y ( Из Леммы следует, что множество решений ЛОДУ образует линейное пространство Какова размерность этого пространства, и как устроен базис? То есть может ли функция y = C y( + C y( + + C y( являться общим решением уравнения Ly [ ] =? Определение 3 Функции y ( ), y называются линейно независимыми на некотором отрезке [ ab,, ] если равенство α y ( + α y ( + + α y ( = (5) выполняется тогда и только тогда, когда α = α = = α = для всех чисел αi, i =,,, Определение 4 Если хотя бы одно из чисел αi, i =,,,, отлично от нуля и выполняется равенство (5), то функции y ( ), y называются линейно зависимыми на [ ab, ] Замечание Из определений 3 и 4 следует, что два решения y ( ) и y ( ) являются линейно независимыми (зависимыми) на отрезке [ ab,, ] если их отношение не является (является) постоянным на этом отрезке, те y( cost y( y( = cost, [ ab, ] y( y ( cost y ( 3e y ( Например, ) функции 3 - линейно зависимы, тк y = ; ) функции y 3 e линейно независимы, тк y ( cos 5 3 y = e и y = e = и y3 = e - = ; 3) функции si 4 cost = - линейно независимы, тк 4 α si + α cos = α = α = 5 y = и y ( tg cost y ( ) = и Средством изучения линейной зависимости системы функций y ( ), y является так называемый определитель Вронского (или просто вронскиан) (Юзеф Мария Вронский польский математик ( )) Определитель Вронского имеет вид:

5 W( = W[ y, y,, y ] = y y y y y y y y y ( ) ( ) ( ) В частности, y y W[ y, y ] = = y y y y y y Теорема 4 Если дифференцируемые функции y ( ), y,, y линейно зависимы на отрезке [ ab,, ] то определитель Вронского на этом отрезке равен нулю, те = [,,, ] =, [ ab, ] W W y y y Теорема 5 Если y ( ), y,, y - линейно независимые решения уравнения Ly [ ] = на отрезке [ ab,, ] то их определитель Вронского ни при одном значении [ ab, ] не обращается в нуль Пример Функции, si, cos являются линейно независимыми, тк si cos W [,si, cos ] = cos si = si cos Из теорем 4 и 5 вытекает Следствие Определитель Вронского некоторой системы решений ЛОДУ Ly [ ] = либо тождественно равен нулю на отрезке [ ab,, ] и тогда эти решения являются линейно независимыми, либо не обращается в нуль ни в одной точке [ ab, ]; в этом случае рассматриваемые решения линейно независимы Фундаментальная система решений Формула Остроградского- Лиувилля Определение 5 Совокупность любых линейно независимых на отрезке [ ab, ] частных решений y ( ), y ЛОДУ Ly [ ] = будем называть фундаментальной системой (набором) решений (ФСР) Определитель Вронского, составленный из ФСР отличен от нуля Теорема 6 (о существовании ФСР) Всякое ЛОДУ с непрерывными коэффициентами имеет ФСР Замечание ФСР ЛОДУ определена неединственным образом

6 Теорема 7 (о структуре общего решения ЛОДУ) Пусть y ( ), y,, y ( ) - фундаментальный набор решений ЛОДУ Ly [ ] = Тогда общее решение ЛОДУ задается формулой: y = C y+ C y + + C y Пример y e y 4y = и y e = - частные решения ЛОДУ второго порядка = Эти решения линейно независимы, тк их определитель Вронского e e W y y e e e e e e [, ] = = =4 y e y e = и решение уравнения y 4y = образуют ФСР, следовательно y= Ce + Ce - общее = Замечание Множество решений ЛОДУ образует -мерное линейное пространство, а ФСР является его базисом Для определителя Вронского можно доказать формулу a ( W[ y, y,, y ] = W e, где W - значение вронскиана при = ( W W( = ), фундаментальную систему решений ЛОДУ Ly [ ] =, y, y,, y образуют a - коэффициент перед ( ) производной y Эта формула называется формулой Остроградского- Лиувилля Из этой формулы следуют две теоремы 7 и 8 (следствия формулы Остроградского-Лиувилля) Теорема 8 (о свойстве определителя Вронского для системы решений ЛОДУ) Если определитель Вронского для системы решений ЛОДУ равен нулю в какой-либо точке [ ab, ], то он тождественно равен нулю на всем отрезке [ ab, ] Теорема 9 Если известно одно частное решение y ЛОДУ второго порядка y + a( y ) + a( y ) =, то второе его частное решение y ( ), линейно независимое с первым, можно найти по формуле Примеры y a ( ) e y ( y ( ( = Функция y = e является частным решением ЛОДУ второго порядка y y y + =, тогда второе решение y e e e e e = = =

7 Общее решение - y= Ce + Ce = e( C+ C ) Пусть известно, что частное решение ЛОДУ второго порядка y y y + + = есть y ( si = Тогда l si e si e y( = = si = si si si cos = ( ctg = = si si cos Общее решение - y = C + C = ( C si C cos ) 3 Составим дифференциальное уравнение, фундаментальный набор решений которого образован функциями,, e Для этого запишем искомое уравнение через определитель: e y e y = e y Раскрывая этот определитель, получим ( ) y y y e y + =


Модуль 4. Линейные дифференциальные уравнения и системы. Лекция 4.1. Аннотация

Модуль 4. Линейные дифференциальные уравнения и системы. Лекция 4.1. Аннотация Раздел Дифференциальные уравнения Модуль 4 Линейные дифференциальные уравнения и системы Лекция 41 Аннотация Линейные дифференциальные уравнения (ЛДУ) -го порядка, однородные и неоднородные Теорема о существовании

Подробнее

Московский Государственный Технический Университет им. Н.Э. Баумана Факультет Фундаментальные науки Кафедра Высшая математика

Московский Государственный Технический Университет им. Н.Э. Баумана Факультет Фундаментальные науки Кафедра Высшая математика Московский Государственный Технический Университет им. Н.Э. Баумана Факультет Фундаментальные науки Кафедра Высшая математика Интегралы и дифференциальные уравнения Раздел "Дифференциальные уравнения".

Подробнее

Раздел 2. Дифференциальные уравнения Модуль 4. Линейные дифференциальные уравнения и системы.

Раздел 2. Дифференциальные уравнения Модуль 4. Линейные дифференциальные уравнения и системы. Раздел Дифференциальные уравнения Модуль 4 Линейные дифференциальные уравнения и системы Лекция 43 Аннотация Нормальные системы ДУ Задача и теорема Коши Частные и общее решения Системы линейных ДУ первого

Подробнее

Раздел 2. Дифференциальные уравнения Модуль 4. Линейные дифференциальные уравнения и системы.

Раздел 2. Дифференциальные уравнения Модуль 4. Линейные дифференциальные уравнения и системы. Раздел Дифференциальные уравнения Модуль 4 Линейные дифференциальные уравнения и системы Лекция 4 Аннотация Однородные ЛДУ (ОЛДУ) с постоянными коэффициентами Характеристическое уравнение ОЛДУ Построение

Подробнее

Раздел 2. Дифференциальные уравнения Модуль 4. Линейные дифференциальные уравнения и системы.

Раздел 2. Дифференциальные уравнения Модуль 4. Линейные дифференциальные уравнения и системы. Раздел Дифференциальные уравнения Модуль 4 Линейные дифференциальные уравнения и системы Лекция 4 Аннотация Однородные ЛДУ (ОЛДУ) с постоянными коэффициентами Характеристическое уравнение ОЛДУ Построение

Подробнее

{ общие понятия - теорема Коши - линейный дифференциальный оператор - основные теоремы - линейная независимость решений - определитель Вронского -

{ общие понятия - теорема Коши - линейный дифференциальный оператор - основные теоремы - линейная независимость решений - определитель Вронского - { общие понятия - теорема Коши - линейный дифференциальный оператор - основные теоремы - линейная независимость решений - определитель Вронского - вронскиан однородного линейного дифференциального уравнения

Подробнее

Цель: Изучение линейных дифференциальных уравнений высших порядков. 1. Рассмотреть линейные дифференциальные уравнения высших порядков.

Цель: Изучение линейных дифференциальных уравнений высших порядков. 1. Рассмотреть линейные дифференциальные уравнения высших порядков. ЛЕКЦИЯ 3 Линейные дифференциальные уравнения высших порядков Линейные неоднородные и однородные дифференциальные уравнения второго порядка Интегрирование ЛОДУ и ЛНДУ второго порядка с постоянными коэффициентами

Подробнее

Глава 3. Линейные дифференциальные уравнения n-го порядка

Глава 3. Линейные дифференциальные уравнения n-го порядка Глава 3 Линейные дифференциальные уравнения -го порядка Лекция 6 В этой главе рассматриваются дифференциальные уравнения вида ( ) Ly y a y a y f + + + = () при условии что все функции a = а также f ( )

Подробнее

Интегралы и дифференциальные уравнения. Лекции 18-19

Интегралы и дифференциальные уравнения. Лекции 18-19 кафедра «Математическое моделирование» проф. П. Л. Иванков Интегралы и дифференциальные уравнения конспект лекций для студентов 1-го курса 2-го семестра специальностей РЛ1,2,3,6, БМТ1,2 Лекции 18-19 Линейные

Подробнее

2. СИСТЕМЫ ЛИНЕЙНЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ. 1. Основные определения. Нормальная система (2) дифференциальных уравнений называется

2. СИСТЕМЫ ЛИНЕЙНЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ. 1. Основные определения. Нормальная система (2) дифференциальных уравнений называется СИСТЕМЫ ЛИНЕЙНЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ Основные определения Нормальная система дифференциальных уравнений называется линейной если функции f f K f линейны относительно неизвестных функций Из этого

Подробнее

Московский Государственный Технический Университет им. Н.Э. Баумана Факультет Фундаментальные науки Кафедра Высшая математика

Московский Государственный Технический Университет им. Н.Э. Баумана Факультет Фундаментальные науки Кафедра Высшая математика Московский Государственный Технический Университет им. Н.Э. Баумана Факультет Фундаментальные науки Кафедра Высшая математика Интегралы и дифференциальные уравнения Раздел "Дифференциальные уравнения".

Подробнее

Дифференциальные уравнения высших порядков. Лекции 2-3

Дифференциальные уравнения высших порядков. Лекции 2-3 Дифференциальные уравнения высших порядков Лекции 2-3 Дифференциальным уравнением порядка n называется уравнение вида F( x, y, y,..., y() n ) 0, () в котором обязательно наличие n-ой производной. Будем

Подробнее

Лекция 2. Дифференциальные уравнения 2-го порядка (ДУ-2). Общий вид дифференциального уравнения порядка n запишется:

Лекция 2. Дифференциальные уравнения 2-го порядка (ДУ-2). Общий вид дифференциального уравнения порядка n запишется: Лекция Дифференциальные уравнения -го порядка (ДУ-) Общий вид дифференциального уравнения порядка n запишется: ( n) F,,,,, = 0 ( ) Уравнение -го порядка ( n = ) примет вид F(,,, ) = 0 Подобные уравнения

Подробнее

Интегралы и дифференциальные уравнения. Лекция 23

Интегралы и дифференциальные уравнения. Лекция 23 кафедра «Математическое моделирование» проф. П. Л. Иванков Интегралы и дифференциальные уравнения конспект лекций для студентов 1-го курса 2-го семестра специальностей РЛ1,2,3,6, БМТ1,2 Лекция 23 Системы

Подробнее

Министерство образования и науки Российской Федерации. Кафедра высшей математики

Министерство образования и науки Российской Федерации. Кафедра высшей математики Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Сибирский государственный индустриальный университет»

Подробнее

Глава 4. Системы линейных уравнений

Глава 4. Системы линейных уравнений Глава 4 Системы линейных уравнений Лекция 7 Общие свойства Определение Нормальной системой (НС) линейных дифференциальных уравнений называется система вида x A () x + F () () где A( ) квадратная матрица

Подробнее

1.Дифференциальные уравнения высших порядков, общие понятия.

1.Дифференциальные уравнения высших порядков, общие понятия. ЛЕКЦИЯ N Дифференциальные уравнения высших порядков, методы решения Задача Коши Линейные дифференциальные уравнения высших порядков Однородные линейные уравнения Дифференциальные уравнения высших порядков,

Подробнее

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ВЫСШИХ ПОРЯДКОВ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ (ДУ) ВЫСШИХ ПОРЯДКОВ. ДУ линейные однородные (ДУЛО)

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ВЫСШИХ ПОРЯДКОВ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ (ДУ) ВЫСШИХ ПОРЯДКОВ. ДУ линейные однородные (ДУЛО) ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ВЫСШИХ ПОРЯДКОВ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ (ДУ) ВЫСШИХ ПОРЯДКОВ ДУ допускающие понижение ДУ линейные однородные (ДУЛО) ДУ линейные неоднородные (ДУЛН) ДУ линейные однородные

Подробнее

5. ЛИНЕЙНЫЕ ОДНОРОДНЫЕ УРАВНЕНИЯ С ПОСТОЯННЫМИ КОЭФФИЦИЕНТАМИ

5. ЛИНЕЙНЫЕ ОДНОРОДНЫЕ УРАВНЕНИЯ С ПОСТОЯННЫМИ КОЭФФИЦИЕНТАМИ 5 ЛИНЕЙНЫЕ ОДНОРОДНЫЕ УРАВНЕНИЯ С ПОСТОЯННЫМИ КОЭФФИЦИЕНТАМИ Рассмотрим линейное уравнение ( ) ( ) ( ) L[ ] p p p p f () () коэффициенты которого p p p постоянные вещественные числа а правая часть f ()

Подробнее

ДУ 2курс 4 семестр 1 задание

ДУ 2курс 4 семестр 1 задание . ДУ курс семестр задание. Постановка задачи Коши для нормальной системы дифференциальных уравнений.. Выяснить, при каких начальных условиях существует единственное решение уравнения y y y.. Решить уравнения,

Подробнее

Комплексные числа. ЛОДУ с постоянными коэффициентами.

Комплексные числа. ЛОДУ с постоянными коэффициентами. Занятие 14 Комплексные числа. ЛОДУ с постоянными коэффициентами. 14.1 Комплексные числа Комплексным числом называется выражение вида z = x+iy,где x R. Имеется взаимно однозначное соответствие между множеством

Подробнее

Математический анализ

Математический анализ Очная форма обучения Бакалавры I курс, семестр Направление 70800 «Строительство» Дисциплина - «Математика-» Материалы для подготовки к экзамену Содержание Материалы для подготовки к экзамену Содержание

Подробнее

V. ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ. Теоретические вопросы

V. ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ. Теоретические вопросы V ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ Теоретические вопросы 1 Основные понятия теории дифференциальных уравнений Задача Коши для дифференциального уравнения первого порядка Формулировка теоремы существования и

Подробнее

Системы дифференциальных уравнений

Системы дифференциальных уравнений Системы дифференциальных уравнений Введение Также как и обыкновенные дифференциальные уравнения системы дифференциальных уравнений применяются для описания многих процессов реальной действительности В

Подробнее

Лекция 5 РТУ-МИРЭА. Тема: ОДНОРОДНЫЕ И НЕОДНОРОДНЫЕ СИСТЕМЫ ЛИНЕЙНЫХ УРАВНЕНИЙ ГОРШУНОВА Т.А.

Лекция 5 РТУ-МИРЭА. Тема: ОДНОРОДНЫЕ И НЕОДНОРОДНЫЕ СИСТЕМЫ ЛИНЕЙНЫХ УРАВНЕНИЙ ГОРШУНОВА Т.А. Лекция Тема: ОДНОРОДНЫЕ И НЕОДНОРОДНЫЕ СИСТЕМЫ ЛИНЕЙНЫХ УРАВНЕНИЙ Однородная система линейных алгебраических уравнений Пусть дана однородная система линейных уравнений: или в матричной форме: m m n n A

Подробнее

Глава 1. ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ Основные понятия и определения

Глава 1. ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ Основные понятия и определения Глава ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ Основные понятия и определения Дифференциальным уравнением называется уравнение связывающее независимую переменную х искомую функцию ( у f (х и производные искомой функции

Подробнее

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ Общие понятия Дифференциальные уравнения имеют многочисленные и самые разнообразные приложения в механике физике астрономии технике и в других разделах высшей математики (например

Подробнее

Теоретические вопросы

Теоретические вопросы V ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ Теоретические вопросы 1 Основные понятия теории дифференциальных уравнений Задача Коши для дифференциального уравнения первого порядка Формулировка теоремы существования и

Подробнее

ГЛАВА III. СИСТЕМЫ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ

ГЛАВА III. СИСТЕМЫ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ ГЛАВА III СИСТЕМЫ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ 7 Задачи приводящие к понятию систем дифференциальных уравнений Рассмотрим систему уравнений m m m F m m m F 7 LLLLLLLLLLLLLLLLLLLLL L L m m m F где независимая

Подробнее

Содержание. Балльно - рейтинговая система.

Содержание. Балльно - рейтинговая система. Очная форма обучения Бакалавры I курс, семестр Направление 80700 «Техносферная безопасность» Дисциплина - «Высшая математика» Содержание Содержание Балльно - рейтинговая система Контрольная работа «Неопределенный

Подробнее

Уравнения в частных производных первого порядка. Общее уравнение в частных производных первого порядка имеет вид = или (

Уравнения в частных производных первого порядка. Общее уравнение в частных производных первого порядка имеет вид = или ( Глава 8 Уравнения в частных производных первого порядка Лекция 3 Общее уравнение в частных производных первого порядка имеет вид,,,, F x 0,, x z = или ( F x, z,gradz = 0 Проблема существования и единственности

Подробнее

Дифференциальные уравнения (лекция 10)

Дифференциальные уравнения (лекция 10) Дифференциальные уравнения лекция 0 Линейные неоднородные уравнения высших порядков Лектор Шерстнёва Анна Игоревна 6. Линейные неоднородные уравнения -го порядка. Метод вариации произвольных постоянных

Подробнее

Дифференциальные уравнения и ряды

Дифференциальные уравнения и ряды Федеральное агентство по образованию ГОУ ВПО «Уральский государственный технический университет УПИ» НМ Кравченко Дифференциальные уравнения и ряды Учебно-методическое пособие Научный редактор доц, канд

Подробнее

Лекция 18. Системы дифференциальных уравнений

Лекция 18. Системы дифференциальных уравнений Лекция 8 Системы дифференциальных уравнений Общие понятия Системой обыкновенных дифференциальных уравнений -порядка называется совокупность уравнений F y y y y ( F y y y y ( F y y y y ( Частным случаем

Подробнее

КУРС ЛЕКЦИЙ ПО ОБЫКНОВЕННЫМ ДИФФЕРЕНЦИАЛЬНЫМ УРАВНЕНИЯМ.

КУРС ЛЕКЦИЙ ПО ОБЫКНОВЕННЫМ ДИФФЕРЕНЦИАЛЬНЫМ УРАВНЕНИЯМ. КУРС ЛЕКЦИЙ ПО ОБЫКНОВЕННЫМ ДИФФЕРЕНЦИАЛЬНЫМ УРАВНЕНИЯМ. ЛЕКЦИЯ Вводные замечания Дифференциальные уравнения занимают в математике особое место. Математическое исследование разнообразных природных явлений

Подробнее

Дифференциальные уравнения высшего порядка. Конев В.В. Наброски лекций. 1. Основные понятия.

Дифференциальные уравнения высшего порядка. Конев В.В. Наброски лекций. 1. Основные понятия. Дифференциальные уравнения высшего порядка. Конев В.В. Наброски лекций. Содержание 1. Основные понятия 1 2. Уравнения, допускающие понижение порядка 2 3. Линейные дифференциальные уравнения высшего порядка

Подробнее

, обращающая уравнение в тождество. Определение. Общим решением дифференциального уравнения первого порядка называется функция y ( x, c)

, обращающая уравнение в тождество. Определение. Общим решением дифференциального уравнения первого порядка называется функция y ( x, c) II ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ Дифференциальные уравнения первого порядка Определение Соотношения, в которых неизвестные переменные и их функции находятся под знаком производной или дифференциала, называются

Подробнее

ДОПОЛНИТЕЛЬНЫЕ ГЛАВЫ ВЫСШЕЙ МАТЕМАТИКИ ГЛАВА 3. СИСТЕМЫ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ

ДОПОЛНИТЕЛЬНЫЕ ГЛАВЫ ВЫСШЕЙ МАТЕМАТИКИ ГЛАВА 3. СИСТЕМЫ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ РОССИЙСКИЙ ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ МИРЭА ДОПОЛНИТЕЛЬНЫЕ ГЛАВЫ ВЫСШЕЙ МАТЕМАТИКИ ГЛАВА 3. СИСТЕМЫ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ Работа посвящена моделированию динамических систем с использованием элементов

Подробнее

Лекция 10. Алгоритм Шредингера определения термов и орбиталей стационарных состояний

Лекция 10. Алгоритм Шредингера определения термов и орбиталей стационарных состояний Лекция 10. Алгоритм Шредингера определения термов и орбиталей стационарных состояний 1 Стационарные состояния Если состояние системы не изменяется со временем и осуществляется при постоянном значении полной

Подробнее

Гл. 11. Дифференциальные уравнения.

Гл. 11. Дифференциальные уравнения. Гл.. Дифференциальные уравнения.. Дифференциальные уравнения. Определение. Дифференциальным уравнением называется уравнение, связывающее независимую переменную, её функцию и производные различных порядков

Подробнее

2. Дифференциальные уравнения первого порядка, разрешенные относительно производной Теорема существования и единственности решения.

2. Дифференциальные уравнения первого порядка, разрешенные относительно производной Теорема существования и единственности решения. Дифференциальные уравнения первого порядка разрешенные относительно производной Теорема существования и единственности решения В общем случае дифференциальное уравнение первого порядка имеет вид F ( )

Подробнее

Линейные дифференциальные уравнения произвольного порядка

Линейные дифференциальные уравнения произвольного порядка Министерство образования и науки Российской Федерации Федеральное государственное автономное образовательное учреждение высшего профессионального образования «ЮЖНЫЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ» А.В. Абрамян,

Подробнее

3. СИСТЕМЫ ЛИНЕЙНЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ С ПОСТОЯННЫМИ КОЭФФИЦИЕНТАМИ. 1. Приведение к одному уравнению n -го порядка

3. СИСТЕМЫ ЛИНЕЙНЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ С ПОСТОЯННЫМИ КОЭФФИЦИЕНТАМИ. 1. Приведение к одному уравнению n -го порядка СИСТЕМЫ ЛИНЕЙНЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ С ПОСТОЯННЫМИ КОЭФФИЦИЕНТАМИ Приведение к одному уравнению -го порядка С практической точки зрения очень важны линейные системы с постоянными коэффициентами

Подробнее

1. Интегрирование системы дифференциальных уравнений методом исключения переменных

1. Интегрирование системы дифференциальных уравнений методом исключения переменных Интегрирование системы дифференциальных уравнений методом исключения переменных Один из основных методов интегрирования системы дифференциальных уравнений заключается в следующем: из уравнений нормальной

Подробнее

4. Линейные неоднородные дифференциальные уравнения с постоянными коэффициентами Линейное дифференциальное уравнение второго порядка имеет вид

4. Линейные неоднородные дифференциальные уравнения с постоянными коэффициентами Линейное дифференциальное уравнение второго порядка имеет вид 4 Линейные неоднородные дифференциальные уравнения с постоянными коэффициентами Линейное дифференциальное уравнение второго порядка имеет вид y p y g y f () (5) где p, g R Дифференциальное уравнение всегда

Подробнее

В.И. Иванов. Министерство образования Российской Федерации. Российский государственный университет нефти и газа имени И.М. Губкина

В.И. Иванов. Министерство образования Российской Федерации. Российский государственный университет нефти и газа имени И.М. Губкина Министерство образования Российской Федерации Российский государственный университет нефти и газа имени ИМ Губкина ВИ Иванов Методические указания к изучению темы «ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ» (для студентов

Подробнее

В.И. Иванов. Министерство образования Российской Федерации. Российский государственный университет нефти и газа имени И.М. Губкина

В.И. Иванов. Министерство образования Российской Федерации. Российский государственный университет нефти и газа имени И.М. Губкина Министерство образования Российской Федерации Российский государственный университет нефти и газа имени ИМ Губкина ВИ Иванов Методические указания к изучению темы «ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ» (для студентов

Подробнее

Если мы разделим его относительно производной, то получим уравнение: (1) , что это условие 2 будет удовлетворяться (т.е. ( x0, C0

Если мы разделим его относительно производной, то получим уравнение: (1) , что это условие 2 будет удовлетворяться (т.е. ( x0, C0 . Дифференциальные уравнения первого порядка. Опр. Дифференциальным уравнением первого порядка называется уравнение, связывающее независимую переменную, искомую функцию и ее первую производную. В самом

Подробнее

4. Функция Грина краевой задачи

4. Функция Грина краевой задачи Функция Грина краевой задачи 4. Функция Грина краевой задачи I.4.1. Существование функции Грина Опр. 1. 1. Функцией Грина краевой задачи Ly = k)y ) ) q)y = f), 1) Γ y y ) sin α + y) cos α = 0, α 0, π 2,

Подробнее

1. Краевая задача для линейного дифференциального уравнения второго порядка. (2)

1. Краевая задача для линейного дифференциального уравнения второго порядка. (2) Глава 4 Краевые задачи Лекция 8 Краевыми задачами для ОДУ называются задачи в которых дополнительные условия ставятся в нескольких точках Далее мы рассмотрим двухточечные краевые задачи для линейных ОДУ

Подробнее

Дифференциальные уравнения

Дифференциальные уравнения ~ ~ Дифференциальные уравнения Общие сведения о дифференциальных уравнений Задача на составление дифференциальных уравнений Определение: дифференциальным уравнением называется такое уравнение, которое

Подробнее

5. Степенные ряды Степенные ряды: определение, область сходимости. Функциональный

5. Степенные ряды Степенные ряды: определение, область сходимости. Функциональный 5 Степенные ряды 5 Степенные ряды: определение, область сходимости Функциональный ряд вида ( a + a ) + a ( ) + K + a ( ) + K a ) (, (5) где, a, a, K, a,k некоторые числа, называют степенным рядом Числа

Подробнее

D ставится в соответствие определенная точка w = u + iv. Множество D называется множеством определения

D ставится в соответствие определенная точка w = u + iv. Множество D называется множеством определения Методические указания к контрольной работе по математике Тема 1. Функции комплексной переменной Дадим определение функции комплексной переменной. Определение. Говорят что на множестве D точек комплексной

Подробнее

УЧЕБНО МЕТОДИЧЕСКИЙ КОМПЛЕКС дисциплины «Математика»

УЧЕБНО МЕТОДИЧЕСКИЙ КОМПЛЕКС дисциплины «Математика» ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ Государственное образовательное учреждение высшего профессионального образования "УФИМСКИЙ ГОСУДАРСТВЕННЫЙ НЕФТЯНОЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ" (УГНТУ) Кафедра математики

Подробнее

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ. 1. Основные понятия

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ. 1. Основные понятия ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ 1. Основные понятия Дифференциальным уравнением относительно некоторой функции называется уравнение, связывающее эту функцию с её независимыми перемпнными и с её производными.

Подробнее

22. Линейные уравнения с частными производными первого порядка

22. Линейные уравнения с частными производными первого порядка Линейные уравнения с частными производными первого порядка Понятие уравнения с частными производными и его интегрирование Уравнением с частными производными называется соотношение связывающее неизвестную

Подробнее

ЛИНЕЙНЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ВЫСШИХ ПОРЯДКОВ

ЛИНЕЙНЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ВЫСШИХ ПОРЯДКОВ Министерство образования и науки Российской Федерации ФГБОУ ВПО «Удмуртский государственный университет» Факультет информационных технологий и вычислительной техники Е В Новикова, А Г Родионова, Н В Родионова

Подробнее

Дифференциальные уравнения

Дифференциальные уравнения Московский государственный технический университет им Н Э Баумана Соболев СК Дифференциальные уравнения Методические указания к решению задач Москва МГТУ им Баумана 008 СК Соболев Дифференциальные уравнения

Подробнее

10. ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ

10. ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ОСНОВНЫЕ ПОНЯТИЯ И ОПРЕДЕЛЕНИЯ Понятие об обыкновенном дифференциальном уравнении и его решении Обыкновенным дифференциальным уравнением называется уравнение содержащее независимую

Подробнее

Линейная алгебра Модуль 1. Линейные и евклидовы пространства. Линейные операторы в линейном пространстве Лекция 1.4

Линейная алгебра Модуль 1. Линейные и евклидовы пространства. Линейные операторы в линейном пространстве Лекция 1.4 Линейная алгебра Модуль 1. Линейные и евклидовы пространства. Линейные операторы в линейном пространстве Лекция 1.4 Аннотация Собственные векторы и собственные значения линейного оператора, их свойства.

Подробнее

Глава 4. Основные теоремы дифференциального исчисления. Раскрытие неопределенностей.

Глава 4. Основные теоремы дифференциального исчисления. Раскрытие неопределенностей. Глава 4 Основные теоремы дифференциального исчисления Раскрытие неопределенностей Основные теоремы дифференциального исчисления Теорема Ферма (Пьер Ферма (6-665) французский математик) Если функция y f

Подробнее

1. ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ПЕР- ВОГО ПОРЯДКА 1.1. Основные понятия

1. ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ПЕР- ВОГО ПОРЯДКА 1.1. Основные понятия . ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ПЕР- ВОГО ПОРЯДКА.. Основные понятия Дифференциальным уравнением называется уравнение, в которое неизвестная функция входит под знаком производной или дифференциала.

Подробнее

6. Ряды Фурье Ортогональные системы функций. Ряд Фурье по ортогональной системе функций. Функции ϕ (x)

6. Ряды Фурье Ортогональные системы функций. Ряд Фурье по ортогональной системе функций. Функции ϕ (x) 6 Ряды Фурье 6 Ортогональные системы функций Ряд Фурье по ортогональной системе функций Функции ϕ () и ψ (), определенные и интегрируемые на отрезке [, ], называются ортогональными на этом отрезке, если

Подробнее

Интегралы и дифференциальные уравнения. Лекции 20-21

Интегралы и дифференциальные уравнения. Лекции 20-21 кафедра «Математическое моделирование» проф. П. Л. Иванков Интегралы и дифференциальные уравнения конспект лекций для студентов 1-го курса 2-го семестра специальностей РЛ1,2,3,6, БМТ1,2 Лекции 20-21 Линейные

Подробнее

Глава 1. Введение. 1. Понятие дифференциального уравнения. Основные определения.

Глава 1. Введение. 1. Понятие дифференциального уравнения. Основные определения. Глава Введение Лекция Понятие дифференциального уравнения Основные определения Определение Дифференциальным уравнением (ДУ) называют уравнение, в котором неизвестная функция находится под знаком производной

Подробнее

ДОПОЛНИТЕЛЬНЫЕ ГЛАВЫ ВЫСШЕЙ МАТЕМАТИКИ ГЛАВА 2. ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ВЫСШИХ ПОРЯДКОВ

ДОПОЛНИТЕЛЬНЫЕ ГЛАВЫ ВЫСШЕЙ МАТЕМАТИКИ ГЛАВА 2. ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ВЫСШИХ ПОРЯДКОВ РОССИЙСКИЙ ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ МИРЭА ДОПОЛНИТЕЛЬНЫЕ ГЛАВЫ ВЫСШЕЙ МАТЕМАТИКИ ГЛАВА 2. ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ВЫСШИХ ПОРЯДКОВ Работа посвящена моделированию динамических систем с использованием

Подробнее

удовлетворяются условия теоремы суще6ствования и единственности.

удовлетворяются условия теоремы суще6ствования и единственности. Лекция 9 Линеаризация диффе6ренциальных уравнений Линейные дифференциальные уравнения высших порядков Однородные уравнения свойства их решений Свойства решений неоднородных уравнений Определение 9 Линейным

Подробнее

Аттестационное тестирование в сфере профессионального образования

Аттестационное тестирование в сфере профессионального образования Стр. 1 из 17 26.10.2012 11:39 Аттестационное тестирование в сфере профессионального образования Специальность: 010300.62 Математика. Компьютерные науки Дисциплина: Дифференциальные уравнения Время выполнения

Подробнее

и AC компланарны, а векторы AB, AD и AA не компланарны.

и AC компланарны, а векторы AB, AD и AA не компланарны. Лекция 3 Тема: Линейная зависимость векторов Базис векторного пространства План лекции Компланарные векторы Линейная зависимость/независимость системы векторов: определение свойства геометрический смысл

Подробнее

(или df(x)=f (x) dx).. Очевидно, что первообразными будут также любые

(или df(x)=f (x) dx).. Очевидно, что первообразными будут также любые Лекция 3. Неопределённый интеграл. Первообразная и неопределенный интеграл В дифференциальном исчислении решается задача: по данной функции f() найти ее производную (или дифференциал). Интегральное исчисление

Подробнее

Практикум: «Дифференцируемость и дифференциал функции». Если функция y f (x)

Практикум: «Дифференцируемость и дифференциал функции». Если функция y f (x) Практикум: «Дифференцируемость и дифференциал функции» Если функция y f () имеет конечную производную в точке, то приращение функции в этой точке можно представить в виде: y(, ) f ( ) ( ) (), где ( ) при

Подробнее

Линейная алгебра. Лекция 1.4

Линейная алгебра. Лекция 1.4 Московский Государственный Технический Университет им. Н.Э. Баумана Факультет Фундаментальные науки Кафедра Высшая математика Линейная алгебра Модуль 1. Линейные и евклидовы пространства. Линейные операторы

Подробнее

21. Системы линейных дифференциальных уравнений с постоянными коэффициентами

21. Системы линейных дифференциальных уравнений с постоянными коэффициентами По условию теоремы L [ ] B ( m Тогда в силу линейности оператора L имеем: m m m L L ] B [ Системы линейных дифференциальных уравнений с постоянными коэффициентами Собственные значения и собственные векторы

Подробнее

Линейные неоднородные уравнения n-го порядка. Метод Лагранжа

Линейные неоднородные уравнения n-го порядка. Метод Лагранжа Линейные неоднородные уравнения n-го порядка. Метод Лагранжа Лекция 6 В. Н. Задорожный, В. Ф. Зальмеж, А. Ю. Трифонов, А. В. Шаповалов Курс: Дифференциальные уравнения Семестр 3, 2009 год portal.tpu.ru

Подробнее

1. Линейные неоднородные дифференциальные уравнения высших порядков. Основные свойства линейных неоднородных уравнений второго порядка.

1. Линейные неоднородные дифференциальные уравнения высших порядков. Основные свойства линейных неоднородных уравнений второго порядка. ЛЕКЦИЯ N. Линейные неоднородные дифференциальные уравнения высших порядков, ЛНДУ с постоянными коэффициентами. Системы Д.У. Применение дифференциальных уравнений в экономической динамике.. Линейные неоднородные

Подробнее

Тема 9. Обыкновенные дифференциальные уравнения

Тема 9. Обыкновенные дифференциальные уравнения Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования «Санкт-Петербургский государственный морской технический университет» (СПбГМТУ) Кафедра

Подробнее

5. Теорема существования и единственности решения задачи Коши для нормальной системы ОДУ. определена и непрерывна в замкнутом ( m + 1)

5. Теорема существования и единственности решения задачи Коши для нормальной системы ОДУ. определена и непрерывна в замкнутом ( m + 1) Лекция 5 5 Теорема существования и единственности решения задачи Коши для нормальной системы ОДУ Постановка задачи Задача Коши для нормальной системы ОДУ x = f (, x), () состоит в отыскании решения x =

Подробнее

МАТЕМАТИЧЕСКИЙ АНАЛИЗ. ТРЕТИЙ СЕМЕСТР ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ

МАТЕМАТИЧЕСКИЙ АНАЛИЗ. ТРЕТИЙ СЕМЕСТР ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ Министерство образования и науки Российской Федерации Государственное образовательное учреждение высшего профессионального образования «Оренбургский государственный университет» Кафедра математического

Подробнее

0.5 setgray0 0.5 setgray1

0.5 setgray0 0.5 setgray1 0.5 setgray0 0.5 setgray1 1 Лекция 4 ВЕКТОРЫ. БАЗИС 1. Базис векторов Определение 1. Векторы a 1,a 2,...,a n называются упорядоченными, если указано какой вектор из этой системы является первым, какой

Подробнее

И.В. Ребро, С.Ю. Кузьмин, Н.Н. Короткова, Д.А. Мустафина ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ

И.В. Ребро, С.Ю. Кузьмин, Н.Н. Короткова, Д.А. Мустафина ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ИВ Ребро, СЮ Кузьмин, НН Короткова, ДА Мустафина ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ ВОЛГОГРАДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ВОЛЖСКИЙ ПОЛИТЕХНИЧЕСКИЙ ИНСТИТУТ

Подробнее

Экзаменационный билет 2 Кафедра высшей математики

Экзаменационный билет 2 Кафедра высшей математики Экзаменационный билет Факультет: ПО и ВП, гр.04, 07 и 7.Однородные дифференциальные уравнения первого порядка.. Признак Лейбница. 3 Вычислить интеграл: dx 0 x 6x + Экзаменационный билет Факультет: : ЭМФ.

Подробнее

= 0 u. функции, μ - j-й по порядку положительный нуль функции Бесселя,

= 0 u. функции, μ - j-й по порядку положительный нуль функции Бесселя, функции Бесселя 8 7/8 8 7в Решить смешанную задачу u Δu < > u u ; u u g( s u u < где g - гладкие на [ ] функции - j-й по порядку положительный нуль функции Бесселя j K j K ; Δu u u yy y s Уроев стр 5 7

Подробнее

Лекция 1. Дифференциальные уравнения 1-го порядка. Основные виды дифференциальных уравнений 1-го порядка и их решение.

Лекция 1. Дифференциальные уравнения 1-го порядка. Основные виды дифференциальных уравнений 1-го порядка и их решение. Лекция Дифференциальные уравнения -го порядка Основные виды дифференциальных уравнений -го порядка и их решение Дифференциальные уравнения является одним из самых употребительных средств математического

Подробнее

Практическое занятие 3 ДИФФЕРЕНЦИРОВАНИЕ СЛОЖНОЙ И НЕЯВНОЙ ФУНКЦИИ

Практическое занятие 3 ДИФФЕРЕНЦИРОВАНИЕ СЛОЖНОЙ И НЕЯВНОЙ ФУНКЦИИ Практическое занятие ДИФФЕРЕНЦИРОВАНИЕ СЛОЖНОЙ И НЕЯВНОЙ ФУНКЦИИ Дифференцирование сложной функции Дифференцирование неявной функции задаваемой одним уравнением Системы неявных и параметрически заданных

Подробнее

Дифференциальные уравнения. Тема: Уравнения n-го порядка, допускающие понижение порядка. Лектор Янущик О.В г.

Дифференциальные уравнения. Тема: Уравнения n-го порядка, допускающие понижение порядка. Лектор Янущик О.В г. Дифференциальные уравнения Тема: Уравнения n-го порядка, допускающие понижение порядка Лектор Янущик О.В. 2012 г. Глава II. Дифференциальные уравнения высших порядков 12. Основные понятия и определения

Подробнее

x 1 = a 11 (t)x 1 + a 12 (t)x a 1n (t)x n + b 1 (t) x 2 = a 21 (t)x 1 + a 22 (t)x a 2n (t)x n + b 2 (t) (1)

x 1 = a 11 (t)x 1 + a 12 (t)x a 1n (t)x n + b 1 (t) x 2 = a 21 (t)x 1 + a 22 (t)x a 2n (t)x n + b 2 (t) (1) ЛЕКЦИИ ПО КУРСУ «Линейная алгебра, системы ДУ с устойчивостью» 2 курс, 2 семестр Лекторы: Мельников Ю.Б., Мельникова Н.В. Оглавление 1. Системы линейных дифференциальных уравнений 4 1.1. Определения................................

Подробнее

ВАРИАЦИОННОЕ ИСЧИСЛЕНИЕ

ВАРИАЦИОННОЕ ИСЧИСЛЕНИЕ Глава ВАРИАЦИОННОЕ ИСЧИСЛЕНИЕ Лекция 9 Введение В этой главе мы будем рассматривать задачи отыскания экстремумов (максимумов или минимумов) функционалов Сразу отметим, что такие задачи относятся к числу

Подробнее

Тема 3. Линейные дифференциальные уравнения с постоянными коэффициентами

Тема 3. Линейные дифференциальные уравнения с постоянными коэффициентами 1 Тема 3. Линейные дифференциальные уравнения с постоянными коэффициентами 3.1 Линейное однородное уравнение Дифференциальное уравнение вида y (n) + a n 1 y (n 1) +... + a 1 y + a 0 y = 0, (3.1) где a

Подробнее

Семинар 5. ОПИСАНИЕ И АНАЛИЗ НЕПРЕРЫВНЫХ ЛИНЕЙНЫХ СИСТЕМ С ПОМОЩЬЮ ПЕРЕХОДНЫХ ФУНКЦИЙ

Семинар 5. ОПИСАНИЕ И АНАЛИЗ НЕПРЕРЫВНЫХ ЛИНЕЙНЫХ СИСТЕМ С ПОМОЩЬЮ ПЕРЕХОДНЫХ ФУНКЦИЙ Семинар 5 ОПИСАНИЕ И АНАЛИЗ НЕПРЕРЫВНЫХ ЛИНЕЙНЫХ СИСТЕМ С ПОМОЩЬЮ ПЕРЕХОДНЫХ ФУНКЦИЙ Описание сигналов Для описания сигналов используются функции времени Выделяют два специальных сигнала: импульсное воздействие

Подробнее

Предварительные сведения теории разностных схем

Предварительные сведения теории разностных схем Предварительные сведения теории разностных схем 1 Формулы суммирования по частям и разностные формулы Грина для сеточных функций Получим ряд соотношений, которые в дальнейшем будем использовать при исследовании

Подробнее

Краевые задачи. ни разу, все функции комплекснозначные. , такое, что (2) верно. (0,0,0) задача имеет хоть одно решение, а именно ) ~ (

Краевые задачи. ни разу, все функции комплекснозначные. , такое, что (2) верно. (0,0,0) задача имеет хоть одно решение, а именно ) ~ ( Краевые задачи L ни разу все функции комплекснозначные Определение: - задачей называют задачу найти такое что верно задача имеет хоть одно решение а именно Предложение : - линейный оператор L и - линейные

Подробнее

Тема: Степенные ряды.

Тема: Степенные ряды. Математический анализ Раздел: Числовые и функциональные ряды Тема: Степенные ряды. Разложение функции в степенной ряд Лектор Рожкова С.В. 3 г. 34. Степенные ряды Степенным рядом рядом по степеням называется

Подробнее

Лекция 6: Система координат. Координаты точки

Лекция 6: Система координат. Координаты точки Лекция 6: Система координат. Координаты точки Уральский федеральный университет, Институт математики и компьютерных наук, кафедра алгебры и дискретной математики Вступительные замечания В этой лекции мы

Подробнее

2. ЛИНЕЙНАЯ ЗАВИСИМОСТЬ ФУНКЦИЙ

2. ЛИНЕЙНАЯ ЗАВИСИМОСТЬ ФУНКЦИЙ ЛИНЕЙНАЯ ЗАВИСИМОСТЬ ФУНКЦИЙ Рассмотрим систему функций y y K y определенных и непрерывных на интервале a оси O Эта система функций называется линейно зависимой на a если существует постоянных величин

Подробнее

ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ

ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ Министерство образования и науки Российской Федерации НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ СТРОИТЕЛЬНЫЙ УНИВЕРСИТЕТ Кафедра прикладной механики и математики ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ

Подробнее

Теория полугрупп. Полугруппы линейных операторов

Теория полугрупп. Полугруппы линейных операторов Теория полугрупп Полугруппы линейных операторов Пример Рассмотрим обыкновенное дифференциальное уравнение с постоянными коэффициентами dx ax x x Как решить эту начальную задачу или, другими словами, задачу

Подробнее

Интегралы и дифференциальные уравнения. Лекция 16

Интегралы и дифференциальные уравнения. Лекция 16 кафедра «Математическое моделирование» проф. П. Л. Иванков Интегралы и дифференциальные уравнения конспект лекций для студентов 1-го курса 2-го семестра специальностей РЛ1,2,3,6, БМТ1,2 Лекция 16 Геометрическая

Подробнее

СИСТЕМЫ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ (СДУ) Основные понятия. Нормальные системы

СИСТЕМЫ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ (СДУ) Основные понятия. Нормальные системы СИСТЕМЫ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ (СДУ Основные понятия Нормальные Системой называется совокупность в каждое из которых входят независимая переменная искомые функции и их производные Всегда предполагается

Подробнее

Дифференциальные уравнения (лекция 4)

Дифференциальные уравнения (лекция 4) Дифференциальные уравнения лекция 4 Уравнения в полных дифференциалах. Интегрирующий множитель Лектор Шерстнёва Анна Игоревна 9. Уравнения в полных дифференциалах Уравнение d + d = 14 называется уравнением

Подробнее

Алашеева Е.А. Дифференциальные уравнения КОНСПЕКТ ЛЕКЦИЙ

Алашеева Е.А. Дифференциальные уравнения КОНСПЕКТ ЛЕКЦИЙ ФЕДЕРАЛЬНОЕ АГЕНСТВО СВЯЗИ Федеральное государственное образовательное бюджетное учреждение высшего профессионального образования ПОВОЛЖСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ТЕЛЕКОММУНИКАЦИЙ И ИНФОРМАТИКИ Кафедра

Подробнее