9. Двумерная случайная величина. Законы распределения Определения и формулы для решения задач

Save this PDF as:
Размер: px
Начинать показ со страницы:

Download "9. Двумерная случайная величина. Законы распределения Определения и формулы для решения задач"

Транскрипт

1 9 Двумерная случайная величина Законы распределения 9 Определения и формулы для решения задач Определение Двумерной случайной величиной называется упорядоченная пара (, ) одномерных случайных величин и При этом предполагаются определенными вероятности произведения событий x и y для любых вещественных x, y Одномерные случайные величины, называются компонентами двумерной случайной величины (, ) Определение Функцией распределения F ( x, y ) двумерной случайной величины (, ) называется вероятность произведения двух событий x, y, определенная для любых вещественных x, y : F ( x, y ) P ( x, y ) Определение 3 Двумерная случайная величина называется дискретной, если множество ее значений ( x, y ) конечное или счетное Закон распределения вероятностей двумерной дискретной случайной величины (, ) можно задать формулой P( x, y ) p ( i,, m; k,, n) i k ik Имеет место условие нормировки m n i k p ik Формулы согласованности для дискретной случайной величины имеют вид: 3

2 p p i k n k m i p p ik ik,, Здесь pi P( xi ), i,, m ; pk P( yk ), k,, n одномерные законы распределения компонент случайной величины Формулы согласованности позволяют из закона распределения двумерной случайной величины получить одномерные законы распределения ее компонент Определение 4 Двумерная случайная величина называется непрерывной, если существует неотрицательная функция f ( x, y ), называемая двумерной плотностью вероятности, такая, что вероятность попадания случайной величины (, ) в область D равна двойному интегралу от плотности по области D : P (, ) D f ( x, y) dxdy Из приведенной формулы следует выражение для функции распределения двумерной непрерывной случайной величины: D F ( x, y) P ( x, y) f ( x, y) dxdy формулы согласованности для плотностей: x y f ( x, y) dy f ( x); f ( x, y) dx f ( y) Условие нормировки для плотности: 3

3 f ( x, y ) dxdy Двумерное равномерное распределение в области D определяется плотностью f ( x, y) SD, ( x, y) D; 0, ( x, y) D Здесь S D площадь области D Двумерное нормальное распределение определяется плотностью x m f ( x, y ) exp ( ) ( ) ( x m )( y m ) ( y m ) Оно содержит 5 параметров m, m,,, Точка ( m, m ) называется центром нормального распределения Параметр называется коэффициентом корреляции m, m математические ожидания,, отклонения компонент, средние квадратические Определение 5 Случайные величины, называются независимыми, если независимыми являются события x и y для любых вещественных x, y В противном случае случайные величины (, ) называются зависимыми Общее необходимое и достаточное условие независимости двух случайных величин: F ( x, y) F ( x) F ( y) 33

4 для любых вещественных x и y Необходимое и достаточное условие независимости двух непрерывных случайных величин: f ( x, y) f ( x) f ( y) Необходимое и достаточное условие независимости двух дискретных случайных величин: p p p для любых i,,, m; k,,, n ik i k 9 Задачи с решениями Дискретная двумерная случайная величина имеет следующий закон распределения P ; p, P ; p, 4 3 P ; p, P ; p 6 6 Найти ряд распределения компоненты Решение Исходим из формулы ;,, ;,, P x p p i m k n i i ik k 3 P p p p ; P p Отв p, p Тогда По условиям задачи найти ряд распределения компоненты Решение Исходим из формулы 34

5 ;,, ;,, P y p p i m k n k k ik i 3 P p p p ; 6 6 Тогда 5 P p p p Отв p ; p Решить зависимы или независимы компоненты, двумерной случайной величины (,) в задаче Решение Используем необходимое и достаточное условие независимости компонент, двумерной случайной величины (): p p p ; i,, m; k,, n Здесь mn ik i k 3 5 p ; p ; p ; p p ; p ; p ; p Проверяем выполнение необходимого и достаточного условия независимости компонент: p p p Это означает, что для всех i,k проверяемое условие не выполняется, следовательно компоненты зависимы 4 Плотность вероятности двумерной случайной величины, задана формулами f x, y Cxy в квадрате D x y f x, y 0 вне квадрата D Найдите С 0 ;0 ; Решение Применяем условие нормировки плотности Cxydxdy Тогда x y Cxdx ydy C C Отсюда C 4 D 35

6 5 Выполнены условия задачи 4 Найти плотность распределения компоненты при 0 x Отв f x x Решение Используем формулу 0 f x f x, y dy Тогда при 0x y f x 4xydy 4x x В остальных точках вещественной 0 оси плотность компоненты равна нулю 6 Выполнены условия задачи 4 Найти плотность распределения компоненты при 0 y Отв f y y Решение По симметрии двумерного распределения заключаем, что распределение компоненты аналогично распределению компоненты Тогда используем ответ в задаче 5, заменяя переменную x на переменную y f y y при 0 y В остальных точках вещественной оси плотность компоненты равна нулю 7 Выполнены условия задачи 4 Решить зависимы или независимы компоненты, двумерной случайной величины (,) Решение Применяем необходимое и достаточное условие независимости компонент двумерной случайной величины: для любых xy выполняется равенство f x, y В условиях задачи оно выполняется: 4 f x f y f x f y x y xy f xy в квадрате D В остальных точках оно очевидно, так как умножение на нуль дает нуль Отв Случайные величины, независимы 93 Задачи для решения 36

7 Плотность вероятности двумерной случайной величины, задана формулами f x, y x y в квадрате D 0 x ;0 y ;, 0 f Отв f x y вне квадрата D Найдите x при x0; ; f x 0 при x f x x 0; Плотность вероятности двумерной случайной величины, задана формулами f x, y x y в квадрате D 0 x ;0 y ;, 0 f Отв f x y при y 0; ; f x 0 f x y вне квадрата D Найдите x при y 0; Решение По симметрии двумерного распределения заключаем, что распределение компоненты аналогично распределению компоненты Тогда используем ответ в задаче 4, заменяя переменную x на переменную y 3 Решить зависимы или независимы компоненты, двумерной случайной величины (;) в задаче 4 Отв Зависимы 4 Случайные величины независимы, и распределены по показательному закону с параметром каждая Напишите плотность вероятности f,, Отв f x y x y e при x y f x y x y двумерной случайной величины, 0, 0;, 0в остальных случаях 5 Дискретные случайные величины, независимы и равновероятно принимают только значения 0 и Найдите ряд распределения случайной величины Z Отв PZ 0 ; PZ ; PZ Независимые нормальные случайные величины, имеют нулевые математические ожидания и единичные дисперсии Найдите плотность вероятности двумерной случайной величины (,) x y Отв f x, y e 7 Независимые нормальные случайные величины, имеют единичные математические ожидания и единичные дисперсии Найдите функцию распределения двумерной случайной величины (,) 37

8 Отв, F x, y x y, где x функция Лапласа 8 Двумерная непрерывная случайная величина имеет плотность вероятности f ( x, y ) C ( x ) y при 0 x, 0 y ; f ( x, y) 0 в остальных случаях Найти коэффициент C Отв C =4 9 Двумерная непрерывная случайная величина (, ) имеет плотность вероятности f ( x, y) ту же, что и в задаче Найти плотности распределения компонент и f x x ; f y y при 0 x 0 y В остальных Отв точках плотности равны нулю 0 Двумерная случайная величина (, ) распределена равномерно в квадрате D 0 x ;0 y Найти плотности распределения ее компонент, Отв Распределены равномерно на отрезках своего задания Решить, зависимы или нет компоненты, двумерной случайной величины (, ) в задаче 0 Отв Независимы Двумерная нормальная случайная величина(, ) имеет плотность x y вероятности f x, y e Решить, зависимы или нет компоненты, двумерной случайной величины (, ) Отв Независимы 8 4 Теоретические вопросы Что такое двумерная случайная величина? Что такое двумерная дискретная случайная величина? 3 Что такое двумерная непрерывная случайная величина? 4 Как задать закон распределения дискретной двумерной случайной величины? 5 Что такое функция распределения двумерной случайной величины? 38

9 6 Запишите формулу выражающую через функцию распределения F ( x, y ) 7 Как найти функцию распределения F ( x, y),зная плотность вероятности f ( x, y )? 8 Как найти закон распределения компоненты, зная функцию распределения F ( x, y) двумерной случайной величины (, )? 9 Как найти функцию распределения компоненты, зная функцию распределения F ( x, y) двумерной случайной величины (, )? 0 Как найти закон распределения компоненты, зная плотность вероятности f ( x, y) двумерной случайной величины (, )? Как найти закон распределения компоненты, зная плотность вероятности f ( x, y) двумерной случайной величины (, )? Как найти закон распределения компоненты, зная закон P( x, y ) p ( i,, m; k,, n ) распределения двумерной i i ik дискретной случайной величины (, ) 3 Чему равно ; F x? 4 Чему равно F ; y?? 5 Как найти вероятность, P D попадания двумерной непрерывной случайной величины, в область D? 6 Чему равно F ; y? 7 Чему равно Fx;? 8 Запишите плотность вероятности двумерной непрерывной случайной величины,, Зная плотности вероятности ее независимых компонент, Отв f x, y f x f y для любых xy, 9 Запишите функцию распределения двумерной случайной 39

10 величины,, зная функции распределения ее независимых компонент, Отв F x, y F xf y для любых xy, 0 Запишите закон распределения двумерной дискретной случайной величины,, зная вероятности pi P xi; i,, m; p k P yk ; k,, n для ее независимых компонент, Отв p p p для любых i, k; i,, m; k,, n ik i k 40


8. Канонические непрерывные законы распределения Определения и формулы для решения задач

8. Канонические непрерывные законы распределения Определения и формулы для решения задач 8 Канонические непрерывные законы распределения 8 Определения и формулы для решения задач Определение Математическим ожиданием непрерывной случайной величины называется интеграл M x f ( x) dx Этот интеграл

Подробнее

(, ) (, ) ( ) x y. F x y = P X Y D

(, ) (, ) ( ) x y. F x y = P X Y D 4 СИСТЕМА ДВУХ СЛУЧАЙНЫХ ВЕЛИЧИН КОРРЕЛЯЦИОННЫЙ АНАЛИЗ Многомерной случайной величиной (векторной случайной величиной, случайным вектором или случайной точкой) называют упорядоченный набор нескольких случайных

Подробнее

1.24. Двумерные дискретные и непрерывные случайные величины: определения, функция распределения. Рассмотрим двумерные случайные величины.

1.24. Двумерные дискретные и непрерывные случайные величины: определения, функция распределения. Рассмотрим двумерные случайные величины. 1.4. Двумерные дискретные и непрерывные случайные величины: определения, функция распределения Определение одномерной случайной величины см. п.1.11.: def Одномерной случайной величиной называется числовая

Подробнее

14. Тесты по теории вероятностей. Тест 1

14. Тесты по теории вероятностей. Тест 1 1 Если A B, то чему равно AB? 14 Тесты по теории вероятностей Тест 1 Сформулируйте классическое определение вероятности События A, B, C взаимно независимы P( A) P( B) P( C) 1 Найдите P( A B C) 4 Испытываются

Подробнее

Математическое ожидание

Математическое ожидание Числовые характеристики непрерывных случайных величин 1 Математическое ожидание Математическим ожиданием непрерывной случайной величины с плотностью распределения называется число M X px ( ) xp( x) dx.

Подробнее

Типовой расчет по теме «Теория вероятностей» разработан преподавателями. кафедры «Высшая математика»

Типовой расчет по теме «Теория вероятностей» разработан преподавателями. кафедры «Высшая математика» Типовой расчет по теме «Теория вероятностей» разработан преподавателями кафедры «Высшая математика» Руководство к решению типового расчета выполнила преподаватель Тимофеева Е.Г. Основные определения и

Подробнее

Глава 4. Основные законы распределения непрерывной случайной величины Равномерный закон распределения

Глава 4. Основные законы распределения непрерывной случайной величины Равномерный закон распределения 53 Глава 4. Основные законы распределения непрерывной случайной величины. 4.. Равномерный закон распределения Определение. Непрерывная случайная величина Х имеет равномерное распределение на промежутке

Подробнее

ДИСКРЕТНЫЕ И НЕПРЕРЫВНЫЕ СЛУЧАЙНЫЕ ВЕЛИЧИНЫ ЗАКОНЫ РАСПРЕДЕЛЕНИЯ

ДИСКРЕТНЫЕ И НЕПРЕРЫВНЫЕ СЛУЧАЙНЫЕ ВЕЛИЧИНЫ ЗАКОНЫ РАСПРЕДЕЛЕНИЯ 1 ДИСКРЕТНЫЕ И НЕПРЕРЫВНЫЕ СЛУЧАЙНЫЕ ВЕЛИЧИНЫ ЗАКОНЫ РАСПРЕДЕЛЕНИЯ Одним из важнейших понятий теории вероятностей является понятие случайной величины. Случайной величиной называется переменная, которая

Подробнее

МНОГОМЕРНЫЕ СЛУЧАЙНЫЕ ВЕЛИЧИНЫ

МНОГОМЕРНЫЕ СЛУЧАЙНЫЕ ВЕЛИЧИНЫ МНОГОМЕРНЫЕ СЛУЧАЙНЫЕ ВЕЛИЧИНЫ 1 Многомерная случайная величина X = (X 1,X 2,,X n ) это совокупность случайных величин X i (i =1,2,,n), заданных на одном и том же вероятностном пространстве Ω. Закон распределения

Подробнее

ЛЕКЦИЯ 12. НЕПРЕРЫВНАЯ СЛУЧАЙНАЯ ВЕЛИЧИНА. 1 Плотность вероятности.

ЛЕКЦИЯ 12. НЕПРЕРЫВНАЯ СЛУЧАЙНАЯ ВЕЛИЧИНА. 1 Плотность вероятности. 1 ЛЕКЦИЯ 12. НЕПРЕРЫВНАЯ СЛУЧАЙНАЯ ВЕЛИЧИНА. 1 Плотность вероятности. Помимо дискретных случайных величин на практике приходятся иметь дело со случайными величинами, значения которых сплошь заполняет некоторые

Подробнее

Непрерывная случайная величина

Непрерывная случайная величина Непрерывная случайная величина Непрерывная случайная величина принимает бесконечное количество значений из определенного интервала числовой прямой. 0 6 месяцев Срок службы лампочки 2 Пример. Рост человека

Подробнее

Числовые характеристики непрерывных случайных величин

Числовые характеристики непрерывных случайных величин Числовые характеристики непрерывных случайных величин 1 Математическое ожидание Математическим ожиданием непрерывной случайной величины с плотностью распределения называется число M X + = px ( ) xp( x)

Подробнее

Числовые характеристики дискретных случайных величин

Числовые характеристики дискретных случайных величин 1 Числовые характеристики дискретных случайных величин Математическое ожидание Expected Value (i.e. Mean) - характеризует среднее весовое значение случайной величины с учётом вероятности появлений значений

Подробнее

Медицинская информатика

Медицинская информатика Лукьянова Е. А. Медицинская информатика Теория вероятностей Специальность «Фармация» Заочное отделение 2010 Консультация 2 Темы контрольной работы 2 Случайные величины Числовые характеристики случайных

Подробнее

ТЕОРИЯ ВЕРОЯТНОСТЕЙ: СИСТЕМЫ СЛУЧАЙНЫХ ВЕЛИЧИН И ФУНКЦИИ СЛУЧАЙНЫХ ВЕЛИЧИН

ТЕОРИЯ ВЕРОЯТНОСТЕЙ: СИСТЕМЫ СЛУЧАЙНЫХ ВЕЛИЧИН И ФУНКЦИИ СЛУЧАЙНЫХ ВЕЛИЧИН Т А Матвеева В Б Светличная С А Зотова ТЕОРИЯ ВЕРОЯТНОСТЕЙ: СИСТЕМЫ СЛУЧАЙНЫХ ВЕЛИЧИН И ФУНКЦИИ СЛУЧАЙНЫХ ВЕЛИЧИН ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ ВОЛГОГРАДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

Подробнее

Понятие случайной величины и её закона распределения. Одномерные дискретные случайные величины. Случайной величиной (СВ) называется функция ξ (ω)

Понятие случайной величины и её закона распределения. Одномерные дискретные случайные величины. Случайной величиной (СВ) называется функция ξ (ω) Понятие и её закона Одномерные дискретные случайные Определение случайной Случайной величиной (СВ) называется функция (ω), определённая на пространстве элементарных событий Ω, со значениями в одномерном

Подробнее

Лекция 6 ЧИСЛОВЫЕ ХАРАКТЕРИСТИКИ СЛУЧАЙНЫХ ВЕЛИЧИН

Лекция 6 ЧИСЛОВЫЕ ХАРАКТЕРИСТИКИ СЛУЧАЙНЫХ ВЕЛИЧИН Лекция 6 ЧИСЛОВЫЕ ХАРАКТЕРИСТИКИ СЛУЧАЙНЫХ ВЕЛИЧИН ЦЕЛЬ ЛЕКЦИИ: определить числовые характеристики положения и моменты непрерывных и дискретных случайных величин Числовые характеристики положения Закон

Подробнее

Формулы по теории вероятностей

Формулы по теории вероятностей Формулы по теории вероятностей I. Случайные события. Основные формулы комбинаторики а) перестановки P =! = 3...( ). б) размещения A m = ( )...( m + ). A! в) сочетания C = =. P ( )!!. Классическое определение

Подробнее

1.2. Элементы теории вероятностей.

1.2. Элементы теории вероятностей. .. Элементы теории вероятностей.... Случайные события. Случайные события обычное явление в жизни. Примеры случайных событий: выпадение «орла» или «решки» при бросании монеты, выпадение числа при бросании

Подробнее

Тема3. «Функция распределения вероятностей случайной величины» Минестерство образования Республики Беларусь

Тема3. «Функция распределения вероятностей случайной величины» Минестерство образования Республики Беларусь Минестерство образования Республики Беларусь УО «Витебский государственный технологический университет» Тема3. «Функция распределения вероятностей случайной величины» Кафедра теоретической и прикладной

Подробнее

Контрольная работа 1.

Контрольная работа 1. Контрольная работа...4. Найти общее решение (общий интеграл) дифференциального уравнения. Сделать проверку. 4 y y y y y y 4 y y y 4 4 Это уравнение Бернулли. Сделаем замену: y y y 4 4 4 z y ; z y y Тогда

Подробнее

Лекция 7. Непрерывные случайные величины. Плотность вероятности.

Лекция 7. Непрерывные случайные величины. Плотность вероятности. Лекция 7. Непрерывные случайные величины. Плотность вероятности. Помимо дискретных случайных величин на практике приходятся иметь дело со случайными величинами, значения которых сплошь заполняет некоторые

Подробнее

)? (Вероятность попадания непрерывной СВ

)? (Вероятность попадания непрерывной СВ Случайные величины. Определение СВ ( Случайной называется величина, которая в результате испытания может принимать то или иное значение, заранее не известное).. Какие бывают СВ? ( Дискретные и непрерывные.

Подробнее

1.33. Неравенство Чебышева. ε ε. = ε. = 2 ε ( x) P( X ε). (Для дискретной случайной величины доказательство аналогично).

1.33. Неравенство Чебышева. ε ε. = ε. = 2 ε ( x) P( X ε). (Для дискретной случайной величины доказательство аналогично). Т Неравенство Чебышева.33. Неравенство Чебышева Пусть случайная величина имеет второй начальный момент MХ, тогда: M 0 P( ) неравенство Чебышева () Док ( непрерывная случайная величина) MХ = x f( x) dx

Подробнее

НЕПРЕРЫВНЫЕ СЛУЧАЙНЫЕ ВЕЛИЧИНЫ И ИХ ВАЖНЕЙШИЕ ЧИСЛОВЫЕ ХАРАКТЕРИСТИКИ

НЕПРЕРЫВНЫЕ СЛУЧАЙНЫЕ ВЕЛИЧИНЫ И ИХ ВАЖНЕЙШИЕ ЧИСЛОВЫЕ ХАРАКТЕРИСТИКИ НЕПРЕРЫВНЫЕ СЛУЧАЙНЫЕ ВЕЛИЧИНЫ И ИХ ВАЖНЕЙШИЕ ЧИСЛОВЫЕ ХАРАКТЕРИСТИКИ 1 Случайная величина X называется непрерывной, если она принимает более, чем счётное число значений. Случайная величина X называется

Подробнее

ТЕМА 7. НЕПРЕРЫВНЫЕ СЛУЧАЙНЫЕ ВЕЛИЧИНЫ

ТЕМА 7. НЕПРЕРЫВНЫЕ СЛУЧАЙНЫЕ ВЕЛИЧИНЫ ТЕМА 7. НЕПРЕРЫВНЫЕ СЛУЧАЙНЫЕ ВЕЛИЧИНЫ Понятие непрерывной случайной величины. Функция распределения, плотность распределения, их взаимосвязь и свойства. Математическое ожидание непрерывной случайной величины

Подробнее

случайных величин f(x) и ее свойства Дифференциальной функцией распределения называется 1-я производная от интегральной

случайных величин f(x) и ее свойства Дифференциальной функцией распределения называется 1-я производная от интегральной Лекция 6 План лекции.3.3 Дифференциальная функция распределения непрерывных случайных величин.4 Числовые характеристики случайных.4. Математическое ожидание и его свойства..4. Дисперсия случайных величин

Подробнее

а) отношение числа случаев, благоприятствующих событию А к общему числу

а) отношение числа случаев, благоприятствующих событию А к общему числу ТЕОРИЯ ВЕРОЯТНОСТЕЙ. РАСПРЕДЕЛЕНИЕ СЛУЧАЙНЫХ ВЕЛИЧИН Задание. Выберите правильный ответ:. Относительной частотой случайного события А называется величина, равная... а) отношению числа случаев, благоприятствующих

Подробнее

Примеры распределений дискретных случайных величин

Примеры распределений дискретных случайных величин Примеры распределений дискретных случайных величин 1 Биномиальное распределение = μ ( ) Рассмотрим случайную величину равную числу появлений события A в серии n независимых испытаний. Распределение вероятностей

Подробнее

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «РОССИЙСКИЙ УНИВЕРСИТЕТ ТРАНСПОРТА (МИИТ)» СЛУЧАЙНЫЕ ВЕЛИЧИНЫ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «РОССИЙСКИЙ УНИВЕРСИТЕТ ТРАНСПОРТА (МИИТ)» СЛУЧАЙНЫЕ ВЕЛИЧИНЫ Министерство транспорта Российской Федерации ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «РОССИЙСКИЙ УНИВЕРСИТЕТ ТРАНСПОРТА (МИИТ)» Институт пути, строительства

Подробнее

Функции многих переменных

Функции многих переменных Функции многих переменных Задача 7 Найти все производные второго порядка функции f ( x, y) : f ( x, y) y x Искомые производные: Задача 9 Найти полный дифференциал и градиент функции А: 3 4 f ( x, y) ln

Подробнее

Глава 3. Непрерывные случайные величины

Глава 3. Непрерывные случайные величины Глава 3. Непрерывные случайные величины. Функция распределения. Если множество значений случайной величины X не конечно и не счетно, то такая случайная величина не может характеризоваться вероятностью

Подробнее

Тема 11. Неравенство Чебышева. Теорема Чебышева. Теорема Бернулли. Центральная предельная теорема. Интегральная теорема Муавра-Лапласа

Тема 11. Неравенство Чебышева. Теорема Чебышева. Теорема Бернулли. Центральная предельная теорема. Интегральная теорема Муавра-Лапласа Тема. Неравенство Чебышева. Теорема Чебышева. Теорема Бернулли. Центральная предельная теорема. Интегральная теорема Муавра-Лапласа Содержание Предельные теоремы теории вероятности 2 Неравенство Чебышева

Подробнее

Георгинская Ольга Сергеевна, Грибков Владимир Иванович, Золотарева Эрна Францевна.

Георгинская Ольга Сергеевна, Грибков Владимир Иванович, Золотарева Эрна Францевна. Рецензенты: Мякишева Любовь Евстафьева Доцент кафедры математики Шевченко Леонид Андреевич УМК специальности 800 «Безопасность технологических процессов и производств» Библиографическое описание электронного

Подробнее

, - вероятность того, что из n бросков t раз выпадет «пятерка»,

, - вероятность того, что из n бросков t раз выпадет «пятерка», .6 Бросают три игральных кубика. Найти ряд и функцию распределения числа выпавших «пятерок» Х, а также M(X), D(X) и вероятность того, что Х>. Решение: Пусть Х число выпавших «пятерок». Перечислим все возможные

Подробнее

Контрольная работа выполнена на сайте МатБюро. Решение задач по математике, статистике, теории вероятностей

Контрольная работа выполнена на сайте  МатБюро. Решение задач по математике, статистике, теории вероятностей Задача 1. Некто заполнил карточку спортивной лотереи «6 из 49». Случайная величина X число угаданных им номеров при розыгрыше. 1) составить таблицу распределения случайной величины X; ) построить многоугольник

Подробнее

КОНТРОЛЬНАЯ РАБОТА 1 (Линейная алгебра и аналитическая геометрия)

КОНТРОЛЬНАЯ РАБОТА 1 (Линейная алгебра и аналитическая геометрия) КОНТРОЛЬНАЯ РАБОТА 1 (Линейная алгебра и аналитическая геометрия) В заданиях этой контрольной параметры n и m требуется заменить на последнюю и, соответственно, предпоследнюю ненулевую цифру Вашего индивидуального

Подробнее

μ xy = M[(X - m x )(Y - m y )] Для вычислений корреляционного момента используют формулы: для дискретных :

μ xy = M[(X - m x )(Y - m y )] Для вычислений корреляционного момента используют формулы: для дискретных : Лекция План лекции 36 Числовые характеристики системы двух случайных величин 37 Коррелированность и зависимость случайных величин 37 Корреляционные матрицы 38 Характеристики многомерных систем 39 Двумерный

Подробнее

ПРАКТИКУМ ПО ТЕОРИИ ВЕРОЯТНОСТЕЙ. Часть 2

ПРАКТИКУМ ПО ТЕОРИИ ВЕРОЯТНОСТЕЙ. Часть 2 МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Нижегородский государственный университет им НИ Лобачевского ПРАКТИКУМ ПО ТЕОРИИ ВЕРОЯТНОСТЕЙ Часть Рекомендовано методической комиссией факультета

Подробнее

1. (10;20) 2. (15;25) 3. (10;15) 4. (5;25) 5. (0;20) Тогда статистическая оценка математического ожидания равна

1. (10;20) 2. (15;25) 3. (10;15) 4. (5;25) 5. (0;20) Тогда статистическая оценка математического ожидания равна Тема: Математическая статистика Дисциплина: Математика Авторы: Нефедова Г.А.. Точечная оценка параметра равна 5. Укажите, какой вид может иметь интервальная оценка:. (0;0). (5;5) 3. (0;5) 4. (5;5) 5. (0;0).

Подробнее

ЧАСТЬ І ОСНОВЫ ТЕОРИИ

ЧАСТЬ І ОСНОВЫ ТЕОРИИ .. Скалярные гиперслучайные величины 4 ЧАСТЬ І ОСНОВЫ ТЕОРИИ ГЛАВА ГИПЕРСЛУЧАЙНЫЕ СОБЫТИЯ И ВЕЛИЧИНЫ Введены понятия гиперслучайного события и гиперслучайной величины. Предложен ряд характеристик и параметров

Подробнее

Лекция 10 ЧИСЛОВЫЕ ХАРАКТЕРИСТИКИ СИСТЕМЫ ДВУХ СЛУЧАЙНЫХ ВЕЛИЧИН.

Лекция 10 ЧИСЛОВЫЕ ХАРАКТЕРИСТИКИ СИСТЕМЫ ДВУХ СЛУЧАЙНЫХ ВЕЛИЧИН. Лекция ЧИСЛОВЫЕ ХАРАКТЕРИСТИКИ СИСТЕМЫ ДВУХ СЛУЧАЙНЫХ ВЕЛИЧИН -МЕРНЫЙ СЛУЧАЙНЫЙ ВЕКТОР ЦЕЛЬ ЛЕКЦИИ: определить числовые характеристики системы двух случайных величин: начальные и центральные моменты ковариацию

Подробнее

Изучение распределения Гаусса и двумерного распределения Максвелла на механической модели

Изучение распределения Гаусса и двумерного распределения Максвелла на механической модели Изучение распределения Гаусса и двумерного распределения Максвелла на механической модели Вывод формулы и свойства распределения Получим распределение некоторой случайной величины. В качестве примера рассмотрим

Подробнее

2 Статистические оценки неизвестных параметров распределения

2 Статистические оценки неизвестных параметров распределения Статистические оценки неизвестных параметров распределения Статистическая оценка неизвестного параметра теоретического распределения Виды статистических оценок 3 Нахождение оценок неизвестных параметров

Подробнее

ВОПРОСЫ ТЕСТА ЛЕКЦИЯ 1

ВОПРОСЫ ТЕСТА ЛЕКЦИЯ 1 ВОПРОСЫ ТЕСТА ЛЕКЦИЯ. Теория вероятностей изучает явления: сложные Б) детерминированные В) случайные Г) простые. Количественная мера объективной возможности это : опыт Б) вероятность В) событие Г) явление

Подробнее

М.П. Харламов Конспект

М.П. Харламов  Конспект М.П. Харламов http://vlgr.ranepa.ru/pp/hmp Конспект Теория вероятностей и математическая статистика Краткий конспект первого раздела (вопросы и ответы) Доктор физ.-мат. наук профессор Михаил Павлович Харламов

Подробнее

Теория вероятностей и математическая статистика. Случайные величины

Теория вероятностей и математическая статистика. Случайные величины Теория вероятностей и математическая статистика Случайные величины 1 Содержание Случайные величины Основные законы распределения 2 Случайные величины Понятие случайной величины и закона ее распределения

Подробнее

2.6. Эксцесс и асимметрия

2.6. Эксцесс и асимметрия Лекция 9 План лекции.5.6. Распределение Симпсона (треугольное распределение)..6 Эксцесс и асимметрия.7 Теорема Ляпунова и её следствия 3. Системы случайных величин (случайные векторы) 3.1 Закон распределения

Подробнее

Лекция 10. Распределение? 2.

Лекция 10. Распределение? 2. Распределение?. Пусть имеется n независимых случайных величин N 1, N,..., N n, распределенных по нормальному закону с математическим ожиданием, равным нулю, и дисперсией, равной единице. Тогда случайная

Подробнее

Лекция 8. Числовые характеристики случайных величин. Основные свойства математического ожидания:

Лекция 8. Числовые характеристики случайных величин. Основные свойства математического ожидания: МВДубатовская Теория вероятностей и математическая статистика Лекция 8 Числовые характеристики случайных величин При изучении случайных величин важную роль играют их числовые характеристики Математическим

Подробнее

6.4. Системы случайных величин

6.4. Системы случайных величин Лекция 4.9. Системы случайных величин. Функция распределения системы двух случайных величин (СДСВ). Свойства функции 6.4. Системы случайных величин В практике часто встречаются задачи которые описываются

Подробнее

Получение на ЭВМ равномерно распределенных псевдослучайных чисел

Получение на ЭВМ равномерно распределенных псевдослучайных чисел Получение на ЭВМ равномерно распределенных псевдослучайных чисел Цель работы изучение методов получения на ЭВМ равномерно распределенных псевдослучайных чисел и тестов проверки их качества. Теоретические

Подробнее

Равномерное распределение.

Равномерное распределение. Равномерное распределение. Равномерным называют распределение вероятностей непрерывной случайной величины X, плотность которого имеет вид, если xa ; b f x b a 0, если xa ; b Математическое ожидание M X

Подробнее

Математика (Статистика, корреляция и регрессия)

Математика (Статистика, корреляция и регрессия) Федеральное агентство воздушного транспорта Федеральное государственное образовательное учреждение высшего профессионального образования МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ГРАЖДАНСКОЙ АВИАЦИИ

Подробнее

Непрерывные случайные величины.

Непрерывные случайные величины. Тема Непрерывные случайные величины. Случайная величина, значения которой заполняют некоторый промежуток, называется непрерывной. В частных случаях это может быть не один промежуток, а объединение нескольких

Подробнее

М. М. Попов Теория вероятности Конспект лекций

М. М. Попов Теория вероятности Конспект лекций 2009 М. М. Попов Теория вероятности Конспект лекций Выполнил студент группы 712 ФАВТ А. В. Димент СПбГУКиТ Случайное событие всякий факт, который в результате опыта может произойти или не произойти, и

Подробнее

Случайные величины. Дискретная и непрерывная случайные величины

Случайные величины. Дискретная и непрерывная случайные величины Случайные величины Дискретная и непрерывная случайные величины Наряду с понятием случайного события в теории вероятности используется другое более удобное понятие случайной величины Случайной величиной

Подробнее

ПРЕДЕЛЬНЫЕ ТЕОРЕМЫ ТЕОРИИ ВЕРОЯТНОСТЕЙ. Лекция 13

ПРЕДЕЛЬНЫЕ ТЕОРЕМЫ ТЕОРИИ ВЕРОЯТНОСТЕЙ. Лекция 13 ЧАСТЬ 7 ПРЕДЕЛЬНЫЕ ТЕОРЕМЫ ТЕОРИИ ВЕРОЯТНОСТЕЙ Лекция 3 ЗАКОН БОЛЬШИХ ЧИСЕЛ И ЦЕНТРАЛЬНАЯ ПРЕДЕЛЬНАЯ ТЕОРЕМА ЦЕЛЬ ЛЕКЦИИ: доказать неравенство Чебышева; сформулировать и доказать закон больших чисел и

Подробнее

Решение типовика выполнено на сайте Переходите на сайт, смотрите больше примеров или закажите свою работу

Решение типовика выполнено на сайте  Переходите на сайт, смотрите больше примеров или закажите свою работу МИРЭА. Пример решения типового расчета по теории вероятностей Вариант 16 Задача 1. Из двух орудий поочередно ведется стрельба по цели до первого попадания одним из орудий. Вероятность попадания в цель

Подробнее

Лекция 8 РАСПРЕДЕЛЕНИЯ НЕПРЕРЫВНЫХ СЛУЧАЙНЫХ ВЕЛИЧИН

Лекция 8 РАСПРЕДЕЛЕНИЯ НЕПРЕРЫВНЫХ СЛУЧАЙНЫХ ВЕЛИЧИН Лекция 8 РАСПРЕДЕЛЕНИЯ НЕПРЕРЫВНЫХ СЛУЧАЙНЫХ ВЕЛИЧИН ЦЕЛЬ ЛЕКЦИИ: определить функции плотности и числовые характеристики случайных величин имеющих равномерное показательное нормальное и гамма-распределение

Подробнее

ЧИСЛОВЫЕ ХАРАКТЕРИСТИКИ СЛУЧАЙНЫХ ВЕЛИЧИН

ЧИСЛОВЫЕ ХАРАКТЕРИСТИКИ СЛУЧАЙНЫХ ВЕЛИЧИН ЧИСЛОВЫЕ ХАРАКТЕРИСТИКИ СЛУЧАЙНЫХ ВЕЛИЧИН Для решения многих практических задач совсем не обязательно знать все возможные значения случайной величины и соответствующие им вероятности, а достаточно указать

Подробнее

ОП «Политология» НИУ ВШЭ, , «Математика и статистика, часть 2»

ОП «Политология» НИУ ВШЭ, , «Математика и статистика, часть 2» ОП «Политология», 7-8 Математика и статистика, часть Непрерывные случайные величины. Решения. (8..8 или..8) А. А. Макаров, А. А. Тамбовцева Задача. Известно, что график функции h() выглядит следующим образом:

Подробнее

Многомерная случайная величина Функция распределения многомерной случайной величины

Многомерная случайная величина Функция распределения многомерной случайной величины СИСТЕМА СЛУЧАЙНЫХ ВЕЛИЧИН В практических применениях теории вероятностей часто приходится сталкиваться с задачами, в которых результат опыта описывается не одной, а двумя или более случайными величинами

Подробнее

Лекция 4. Доверительные интервалы

Лекция 4. Доверительные интервалы Лекция 4. Доверительные интервалы Буре В.М., Грауэр Л.В. ШАД Санкт-Петербург, 2013 Буре В.М., Грауэр Л.В. (ШАД) Лекция 4. Доверительные интервалы Санкт-Петербург, 2013 1 / 49 Cодержание Содержание 1 Доверительные

Подробнее

ГЛАВА 3. СТАНДАРТНЫЕ ЗАКОНЫ РАСПРЕДЕЛЕНИЯ. 1. Биномиальное распределение

ГЛАВА 3. СТАНДАРТНЫЕ ЗАКОНЫ РАСПРЕДЕЛЕНИЯ. 1. Биномиальное распределение ГЛАВА СТАНДАРТНЫЕ ЗАКОНЫ РАСПРЕДЕЛЕНИЯ Биномиальное распределение Пусть эксперимент проводится по схеме Бернулли Определение Дискретная случайная величина имеет биномиальное распределение с параметрами

Подробнее

1. Основные понятия теории вероятностей: пространство элементарных событий, алгебра событий, классическая вероятность.

1. Основные понятия теории вероятностей: пространство элементарных событий, алгебра событий, классическая вероятность. билет 1 1. Основные понятия теории вероятностей: пространство элементарных событий, алгебра событий, классическая вероятность. 2. Свойства математического ожидания. Вывести формулу для дисперсии D( ξ )

Подробнее

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ. Институт управления и предпринимательства. Статистические методы анализа рынков Экзаменационные материалы

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ. Институт управления и предпринимательства. Статистические методы анализа рынков Экзаменационные материалы ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ Государственное образовательное учреждение высшего профессионального образования «Уральский государственный университет им. А.М. Горького» ИОНЦ «Бизнес информатика»

Подробнее

Методические указания к решению контрольной работы 4 по дисциплине «Математика» для студентов второго курса строительных специальностей

Методические указания к решению контрольной работы 4 по дисциплине «Математика» для студентов второго курса строительных специальностей Методические указания к решению контрольной работы 4 по дисциплине «Математика» для студентов второго курса строительных специальностей Кафедра высшей математики 3 А.В. Капусто Минск 018 018 Кафедра высшей

Подробнее

1.18. Непрерывная одномерная случайная величина

1.18. Непрерывная одномерная случайная величина .8. Непрерывная одномерная случайная величина def Случайная величина называется непрерывной, если ее возможные значения сплошь заполняют некоторый промежуток (; b) (или несколько промежутков) и на всей

Подробнее

Предварительный письменный опрос. Список вопросов.

Предварительный письменный опрос. Список вопросов. ТЕОРИЯ ВЕРОЯТНОСТЕЙ. ВЕСНА 2016 г. Предварительный письменный опрос. Список вопросов. Основы теории множеств, аксиоматические свойства вероятности и следствия из них. 1. Записать свойства ассоциативности

Подробнее

Практическая работа 7 Функция, плотность распределения и числовые характеристики непрерывной случайной величины

Практическая работа 7 Функция, плотность распределения и числовые характеристики непрерывной случайной величины Практическая работа 7 Функция плотность распределения и числовые характеристики непрерывной случайной величины Цель работы: Нахождение функции и плотности распределения числовых характеристик непрерывной

Подробнее

4. Дифференцируемость функции многих переменных

4. Дифференцируемость функции многих переменных 4. Дифференцируемость функции многих переменных 4.1. Линейное нормированное пространство Пусть E линейное пространство над полем вещественных чисел, то есть E множество, на котором определены операция

Подробнее

Решение типовика выполнено на сайте Переходите на сайт, смотрите больше примеров или закажите свою работу

Решение типовика выполнено на сайте   Переходите на сайт, смотрите больше примеров или закажите свою работу МИРЭА. Типовой расчет по теории вероятностей с решением Вариант 1 Часть. Случайные величины Задача.1. Фекла решила удивить своего бойфренда роскошным ужином и купила для этого в супермаркете пакет с картофелем.

Подробнее

Логашенко И.Б. Современные методы обработки экспериментальных данных. Случайные величины

Логашенко И.Б. Современные методы обработки экспериментальных данных. Случайные величины Случайные величины Распределения Случайные величины характеризуются распределениями Дискретное Если случайная величина может принимать дискретное множество значений, то соответствующее распределение называется

Подробнее

ОБНАРУЖЕНИЕ И ФИЛЬТРАЦИЯ СИГНАЛОВ В НЕРАЗРУШАЮЩЕМ КОНТРОЛЕ. Практические занятия ЧАСТЬ 1. Примеры вопросов с пояснениями

ОБНАРУЖЕНИЕ И ФИЛЬТРАЦИЯ СИГНАЛОВ В НЕРАЗРУШАЮЩЕМ КОНТРОЛЕ. Практические занятия ЧАСТЬ 1. Примеры вопросов с пояснениями ОБНАРУЖЕНИЕ И ФИЛЬТРАЦИЯ СИГНАЛОВ В НЕРАЗРУШАЮЩЕМ КОНТРОЛЕ Практические занятия ЧАСТЬ 1 Этот раздел состоит из простых тестовых вопросов, требующих ответов «ДА» или «НЕТ», в зависимости от того, верное

Подробнее

ФУНКЦИИ СЛУЧАЙНЫХ ВЕЛИЧИН. Лекция 11

ФУНКЦИИ СЛУЧАЙНЫХ ВЕЛИЧИН. Лекция 11 ЧАСТЬ 6 ФУНКЦИИ СЛУЧАЙНЫХ ВЕЛИЧИН Лекция ЗАКОН РАСПРЕДЕЛЕНИЯ И ЧИСЛОВЫЕ ХАРАКТЕРИСТИКИ ФУНКЦИЙ СЛУЧАЙНЫХ ВЕЛИЧИН ЦЕЛЬ ЛЕКЦИИ: ввести понятие функции случайной величины и провести классификацию возникающих

Подробнее

1 при x 0. x - плотность распределения (плотность распределения вероятностей, плотность, дифференциальная. x , то. x 4

1 при x 0. x - плотность распределения (плотность распределения вероятностей, плотность, дифференциальная. x , то. x 4 ) Случайная величина X задана плотностью распределения вероятности при f при при Найти интегральную функцию F и математическое ожидание M X. f - плотность распределения (плотность распределения вероятностей,

Подробнее

Числовые характеристики случайной величины

Числовые характеристики случайной величины Числовые характеристики случайной величины Числовые характеристики случайной величины Применяются вместо закона распределения случайной величины В сжатой форме выражают наиболее существенные особенности

Подробнее

X и значения k и c, а также вероятность попадания случайной величины в интервал (a/2, b/2). Построить график функции распределения.

X и значения k и c, а также вероятность попадания случайной величины в интервал (a/2, b/2). Построить график функции распределения. Оценочные средства для текущего контроля успеваемости, промежуточной аттестации по итогам освоения дисциплины и учебно-методическое обеспечение самостоятельной работы студентов 1 Варианты контрольной работы

Подробнее

СИСТЕМЫ СЛУЧАЙНЫХ ВЕЛИЧИН. Лекция 9

СИСТЕМЫ СЛУЧАЙНЫХ ВЕЛИЧИН. Лекция 9 ЧАСТЬ 5 СИСТЕМЫ СЛУЧАЙНЫХ ВЕЛИЧИН Лекция 9 ЗАКОН РАСПРЕДЕЛЕНИЯ СИСТЕМЫ ДВУХ СЛУЧАЙНЫХ ВЕЛИЧИН ЦЕЛЬ ЛЕКЦИИ: ввести понятие системы случайных величин и закона распределения систем двух случайных величин;

Подробнее

СЛУЧАЙНЫЕ ВЕЛИЧИНЫ. СПОСОБЫ ИХ ЗАДАНИЯ. ХАРАКТЕРИСТИКИ СЛУЧАЙНЫХ ВЕЛИЧИН

СЛУЧАЙНЫЕ ВЕЛИЧИНЫ. СПОСОБЫ ИХ ЗАДАНИЯ. ХАРАКТЕРИСТИКИ СЛУЧАЙНЫХ ВЕЛИЧИН ЗАНЯТИЕ 4 СЛУЧАЙНЫЕ ВЕЛИЧИНЫ. СПОСОБЫ ИХ ЗАДАНИЯ. ХАРАКТЕРИСТИКИ СЛУЧАЙНЫХ ВЕЛИЧИН Понятие случайной величины одно из важнейших понятий теории вероятностей. Под случайной величиной понимается величина,

Подробнее

«Оптимизация и математические методы принятия решений»

«Оптимизация и математические методы принятия решений» «Оптимизация и математические методы принятия решений» ст. преп. каф. СС и ПД Владимиров Сергей Александрович Лекция 4 Методы математической статистики в задачах принятия решений Введение С О Д Е Р Ж А

Подробнее

Глава 2 СЛУЧАЙНЫЕ ВЕЛИЧИНЫ

Глава 2 СЛУЧАЙНЫЕ ВЕЛИЧИНЫ Глава СЛУЧАЙНЫЕ ВЕЛИЧИНЫ.. Основные понятия Наряду со случайными событиями одним из основных понятий теории вероятностей является понятие случайной величины. Случайной называется величина, численное значение

Подробнее

Лекция 12. Понятие о системе случайных величин. Законы распределения системы случайных величин

Лекция 12. Понятие о системе случайных величин. Законы распределения системы случайных величин МВДубатовская Теория вероятностей и математическая статистика Лекция Понятие о системе случайных величин Законы распределения системы случайных величин Часто возникают ситуации когда каждому элементарному

Подробнее

ЛАБОРАТОРНЫЙ ПРАКТИКУМ ПО МАТЕМАТИЧЕСКИМ ОСНОВАМ КИБЕРНЕТИКИ. Лабораторная работа. «Изучение числовых характеристик случайных величин

ЛАБОРАТОРНЫЙ ПРАКТИКУМ ПО МАТЕМАТИЧЕСКИМ ОСНОВАМ КИБЕРНЕТИКИ. Лабораторная работа. «Изучение числовых характеристик случайных величин ЛАБОРАТОРНЫЙ ПРАКТИКУМ ПО МАТЕМАТИЧЕСКИМ ОСНОВАМ КИБЕРНЕТИКИ Лабораторная работа «Изучение числовых характеристик случайных величин в среде MATHCAD» Томск 009 Лабораторный практикум предназначен для выполнения

Подробнее

Консультационный тренинговый центр «Резольвента»

Консультационный тренинговый центр «Резольвента» ООО «Резольвента», wwwresolventaru, resolventa@listru, (95) 509-8-0 Консультационный тренинговый центр «Резольвента» Доктор физико-математических наук, профессор К Л САМАРОВ МАТЕМАТИКА Учебно-методическое

Подробнее

Лекция 5 Тема. Содержание темы. Основные категории. Непрерывные случайные величины (НСВ)

Лекция 5 Тема. Содержание темы. Основные категории. Непрерывные случайные величины (НСВ) Лекция 5 Тема Непрерывные случайные величины (НСВ) Содержание темы Способы задания: интегральный закон распределения, плотность распределения. Связь между ними. Свойства плотности распределения. Применение

Подробнее

такая, что ' - ее функцией плотности. Свойства функции плотности

такая, что ' - ее функцией плотности. Свойства функции плотности Демидова ОА, Ратникова ТА Сборник задач по эконометрике- Повторение теории вероятностей Случайные величины Определение Случайными величинами называют числовые функции, определенные на множестве элементарных

Подробнее

Курсовая работа «Исследование надежности систем» Курсовая работа должна содержать следующие разделы. Введение. Основные понятия надежности систем. 1.

Курсовая работа «Исследование надежности систем» Курсовая работа должна содержать следующие разделы. Введение. Основные понятия надежности систем. 1. Курсовая работа «Исследование надежности систем» Курсовая работа должна содержать следующие разделы. Введение. Основные понятия надежности систем.. Теория вероятности (задачи 7.0 7.80)... Теоремы умножения

Подробнее

Тема 5. Непрерывные случайные величины.

Тема 5. Непрерывные случайные величины. Тема 5. Непрерывные случайные величины. Цель и задачи. Цель контента темы 5 дать определение непрерывной случайной величины, ее функции распределения и функции распределения; рассмотреть особенности задания

Подробнее

Глава 28 ОБОБЩЕННЫЕ ФУНКЦИИ

Глава 28 ОБОБЩЕННЫЕ ФУНКЦИИ Глава 28 ОБОБЩЕННЫЕ ФУНКЦИИ 28.1. Пространства D, D основных и обобщенных функций Понятие обобщенной функции обобщает классическое понятие функции и дает возможность выразить в математической форме такие

Подробнее

Показательное распределение.

Показательное распределение. Показательное распределение. 1) Распределение с.в. X подчинено показательному закону с параметром 5. Записать вычислить M X DX. f x Показательное распределение с параметром имеет плотность вероятности:

Подробнее

СЛУЧАЙНЫЕ ВЕЛИЧИНЫ. ЗАКОНЫ РАСПРЕДЕЛЕНИЯ СЛУЧАЙНОЙ ВЕЛИЧИНЫ

СЛУЧАЙНЫЕ ВЕЛИЧИНЫ. ЗАКОНЫ РАСПРЕДЕЛЕНИЯ СЛУЧАЙНОЙ ВЕЛИЧИНЫ СЛУЧАЙНЫЕ ВЕЛИЧИНЫ ЗАКОНЫ РАСПРЕДЕЛЕНИЯ СЛУЧАЙНОЙ ВЕЛИЧИНЫ Понятие случайной величины Современная теория вероятностей предпочитает где только возможно оперировать не случайными событиями а случайными величинами

Подробнее

что и требовалось доказать. При доказательстве мы использовали свойство неотрицательности функции плотности и неравенство (*)).

что и требовалось доказать. При доказательстве мы использовали свойство неотрицательности функции плотности и неравенство (*)). Оглавление Глава 5 Предельные теоремы 5 Неравенство Чебышѐва 5 Типы сходимости случайных величин 3 Диаграмма зависимости видов сходимости 3 53 Суммы случайных величин 4 Среднее арифметическое случайных

Подробнее

, (3.4.3) ( x) lim lim

, (3.4.3) ( x) lim lim 3.4. СТАТИСТИЧЕСКИЕ ХАРАКТЕРИСТИКИ ВЫБОРОЧНЫХ ЗНАЧЕНИЙ ПРОГНОЗНЫХ МОДЕЛЕЙ До сих пор мы рассматривали способы построения прогнозных моделей стационарных процессов, не учитывая одной весьма важной особенности.

Подробнее

СИСТЕМЫ СЛУЧАЙНЫХ ВЕЛИЧИН

СИСТЕМЫ СЛУЧАЙНЫХ ВЕЛИЧИН Министерство образования и науки Российской Федерации Федеральное агентство по образованию Саратовский государственный технический университет СИСТЕМЫ СЛУЧАЙНЫХ ВЕЛИЧИН Методические указания к практическим

Подробнее

Практическое занятие 8. Числовые характеристики случайных величин

Практическое занятие 8. Числовые характеристики случайных величин Практическое занятие 8. Числовые характеристики случайных величин Закон распределения вероятностей случайной величины содержит полную информацию о случайной величине. Однако полная информация не всегда

Подробнее

ГЛАВА 4. ПРЕДЕЛЬНЫЕ ТЕОРЕМЫ. 1. Неравенства Чебышева

ГЛАВА 4. ПРЕДЕЛЬНЫЕ ТЕОРЕМЫ. 1. Неравенства Чебышева ГЛАВА 4 ПРЕДЕЛЬНЫЕ ТЕОРЕМЫ Неравенства Чебышева Доказательство теоремы Чебышева основывается на неравенстве Чебышева Докажем это неравенство Неравенство Чебышева Вероятность того что отклонение (СВ) ξ

Подробнее

3 Операции над матрицами: сложение и вычитание

3 Операции над матрицами: сложение и вычитание Определение детерминанта матрицы Квадратная матрица состоит из одного элемента A = (a ). Определитель такой матрицы равен A = det(a) = a. ( ) a a Квадратная матрица 2 2 состоит из четырех элементов A =

Подробнее

Предварительный письменный опрос. Список вопросов.

Предварительный письменный опрос. Список вопросов. ТЕОРИЯ ВЕРОЯТНОСТЕЙ. ВЕСНА 2019 г. Предварительный письменный опрос. Список вопросов. В вариантах вопросов на экзамене возможны изменения по сравнению с предложенным списком: могут быть изменены численные

Подробнее