главному вектору R, R, R и главному

Размер: px
Начинать показ со страницы:

Download "главному вектору R, R, R и главному"

Транскрипт

1 Лекция 08 Общий случай сложного сопротивления Косой изгиб Изгиб с растяжением или сжатием Изгиб с кручением Методики определения напряжений и деформаций, использованные при решении частных задач чистого растяжения или сжатия, чистого сдвига, кручения, изгиба, могут быть распространены и на более сложные случаи нагружения тел Ограничиваясь рассмотрением призматических брусьев, у которых центр изгиба совпадает с геометрическим центром поперечного сечения, выясним какими усилиями могут вызываться напряжения на сечениях перпендикулярных к оси бруса Брус находится в равновесии под действием приложенных к нему системы сил, как угодно расположенных в пространстве Как обычно, сечением перпендикулярным оси бруса разделим его на две части Начало прямоугольных координат расположим в центре поперечного сечения, ось направим вдоль оси бруса в сторону внешней нормали к выделенной его части, а O оси и совместим с главными осями n сечения Силы приложенные, например, к 1 левой части бруса статически эквивалентны главному вектору R, R, R и главному ( моменту (,,, приложенному в начале координат выбранного сечения Из предыдущего известно, что нормальная сила R и момент вызывают соответственно растяжение или сжатие вдоль и кручение вокруг оси левой части бруса; изгибающий момент и поперечная сила R - соответственно изгиб и сдвиг бруса в плоскости ; изгибающий момент и поперечная сила R - изгиб и сдвиг в плоскости Таким образом, в самом общем случае действия сил на брус в нём возникают четыре простых деформации: осевое растяжение или сжатие, два плоских изгиба и кручение Нормальные напряжения обусловлены действием продольной силы и изгибающих моментов и : R ( σ (, F σ, R ( σ Принцип независимости действия сил позволяет вычислить полное нормальное напряжение в точке с координатами (,, как сумму σ σ σ σ R ( ( ( ( 1, 1 Уравнение 0 определяет F a для сечения с координатой нейтральную линию сечения a Отрезки, отсекаемые нейтральной линией на осях координат, (, R ( R ( соответственно равны a и a, а F F тангенс угла β наклона к оси равен tgβ ( ( ( ( Нейтральная линия в общем случае делит поперечное сечение бруса на две области: растянутую и сжатую Проводя линии, параллельные нейтральной и касательные к контуру поперечного сечения, находим в той и другой области наиболее удаленные от ( 1, 1 нейтральной линии точки и (, с наибольшими растягивающими и сжимающими напряжениями

2 ( ( 1, ( σ R 1, 1, F Касательные напряжения в сечении возникают вследствие кручения бруса вокруг оси O и сдвигов в плоскостях и Крутящий момент уравновешивается касательными напряжениями τ Для бруса с поперечным l сечением в виде круга или кольца имеем τ ρ, ϕ Для брусьев с G поперечным сечением другой формы максимальные касательные напряжения и угол поворота сечения вычисляются по аналогичным формулам ma τ, W l ϕ, где для момента инерции при кручении и момента сопротивления G при кручении W вводят обозначения, W Некоторые результаты, полученные теорией упругости для этих характеристик данны в лекции 04 Во всех случаях наибольшие касательные напряжения возникают на контуре поперечного сечения и направлены вдоль касательной к контуру Касательные напряжения от сдвига, уравновешивающие силы R и R, вычисляются по формулам: ( τ RS b( и RS( τ b( Для прямоугольного и круглого сечений касательные напряжения достигают максимума на соответствующих главных осях инерции: τ на оси, а τ на оси Суммарные касательные напряжения от двух плоских изгибов наибольшего значения достигают в центре тяжести сечения, то есть как раз там, где касательные напряжения от кручения и нормальные напряжения от изгиба равны нулю Поэтому определение этих напряжений часто не имеет практического значения Тем не менее полное касательное напряжение вычисляется как сумма τ τ τ τ В наиболее тяжёлых условиях материал бруса находится в тех точках, в которых имеет место наиболее неблагоприятное сочетание нормальных и касательных напряжений В связи с тем, что нормальные напряжения от изгиба и касательные напряжения от кручения наибольших значений достигают на контуре поперечного сечения, именно там обычно приходится искать наиболее напряженные точки Для вычисления перемещений призматического бруса используют принцип независимости действия сил Не останавливаясь на других приёмах, напомним использование теоремы Кастильяно Пренебрегая энергией касательных напряжений от изгиба, имеем U U ( R U ( U ( U ( ( ( ( ( R d EF G E E l Интегрирование как обычно идет по участкам непрерывности подынтегральной функции Тогда перемещения δ в сечении приложения нагрузки вычисляется по формуле ( R ( ( ( ( ( ( ( d R EF G E E l Напомним, что центр изгиба совпадает с центром инерции сечения δ

3 На практике часто встречаются случаи, когда линия действия силы, перпендикулярной оси бруса, не совпадает ни с одной из двух главных осей инерции поперечного сечения Опыт показывает, что изогнутая ось стержня при этом уже не будет лежать в плоскости действия сил, и мы имеем случай так называемого косого изгиба Рассмотрим балку, защемленную одним концом и нагруженную на другом силой, лежащей в плоскости торца B балки и направленной под углом ϕ к главной оси B Разложив силу на φ составляющие sinϕ, csϕ, получим совокупность двух плоских изгибов Изгибающие моменты в сечении с абсциссой будут равны csϕ и sinϕ, а напряжения в точке первого квадранта с координатами, вычисляются по формулам σ csϕ, σ sinϕ Полное напряжение находим как алгебраическую сумму - α φ σ σ σ csϕ sinϕ Для нахождения наиболее опасной точки учтём, что при плоском изгибе, деформация, соответствующая нормальным напряжениям, сводится к относительному повороту сечения вокруг нейтральной оси При косом изгибе, являющемся комбинацией двух плоских изгибов, мы имеем одновременный относительный поворот сечения вокруг двух нейтральных осей, пересекающихся в центре инерции сечения Но, поворот фигуры вокруг двух пересекающихся осей может быть заменен одном поворотом вокруг оси проходящей через точку пересечения Таким образом, при косом изгибе в каждом сечении также имеем нейтральную линию, проходящую через центр инерции сечения и наибольшую деформацию испытывают волокна наиболее удаленные от нейтральной оси Уравнение нейтральной оси получаем из условия cs sin ϕ ϕ σ 0 Эта прямая, составляет угол α с осью, который зависит от угла ϕ наклона силы к оси и от формы сечения: tgα tgϕ Углы α и ϕ не равны, то есть нейтральная линия не перпендикулярна к плоскости внешних сил, как это было при плоском изгибе Эта перпендикулярность имеет место лишь при В точках наиболее удаленных от нейтральной оси имеем напряжения ϕ ϕ σ cs sin, ma 1, 1, ϕ ϕ cs sin W W [ σ ] 1 ma

4 Для определения прогибов при косом изгибе опять применим способ сложения действия сил: csϕ l l l l sinϕ csα, 3E 3E 3E 3E sinα sinϕ При этом tgϕ tgα, то есть прогиб перпендикулярен к csϕ нейтральной оси Для узких и высоких сечений, у которых отношение главных моментов инерции может быть весьма велико, уже небольшое отклонение плоскости действия внешних сил от плоскости наибольшей жёсткости вызывает весьма значительное отклонение плоскости изгиба балки На практике очень часто встречаются случаи совместной работы стержня на изгиб и на растяжение или сжатие Подобная рода ситуация возникает при воздействии на балке продольных и поперечных сил, или только продольными силами Первый случай изображён на рисунке Y X Предположим, что прогибами балки по сравнению с размерами поперечного сечения можно пренебречь; тогда с достаточной для практики степенью точности можно считать, что и после деформации силы X и будут вызывать лишь осевое сжатие балки Тогда сжимающие напряжения равномерно распределены по площади F поперечного сечения и одинаковы для всех сечений: σ ; нормальные напряжения от изгиба в вертикальной плоскости в сечении F с абсциссой, которая отсчитана, например, от левого конца балки, выражается формулой σ σ σ σ ( σ, maσ ± W B YB ma Таким образом, для напряжения в ma крайних волокнах сечения балки имеем σ 1, F W Описанный ход расчета применяется и при действии на балку наклонных сил; такую силу можно разложить на нормальную к оси, изгибающую балку, и продольную, сжимающую или растягивающую l/ Y Если прогибами балки нельзя пренебречь по сравнению с размерами сечения, то следует учитывать X влияние продольных сил на изгиб В рассмотренном примере наибольший прогиб будет посредине пролёта Разрежем балку в опасном сечении посредине пролета, оставим левую часть и вычислим изгибающий момент На отсеченную часть помимо сплошной нагрузки и вызванной ею реакции Y будет действовать приложенная в точке горизонтальная реакция X Эта сила создает дополнительный момент на l l плече ma Y Прогиб балки зависит от изгибающих моментов, вызванных не только поперечными нагрузками, но и продольными силами Здесь мы имеем ситуацию, для которой принцип независимости действия

5 сил уже неприменим Однако на практике необходимо уметь оценивать, следует ли учитывать добавочный изгибающий момент от продольных сил или им можно пренебречь Принимая во внимание, что момент является лишь поправкой, её можно вычислить путём последовательных приближений: ( 1 ( ( 1 n ( n 1 Вторым важным случаем сложения деформаций от изгиба и от продольных сил является так называемое внецентренное сжатие или растяжение, вызываемое одними продольными силами Этот вид деформации получается при действии на стержень двух равных и прямо противоположных сил, направленных по прямой параллельной оси стержня Расстояние e между осью стержня и линией действия сил называется эксцентриситетом Каждая такая сила эквивалентна силе e e, приложенной по оси стержня и моменту e Так как плоскость действия изгибающих моментов может не совпадать ни с одной из главных плоскостей инерции стержня, то в общем случае имеет место комбинация продольного сжатия и чистого косого изгиба Так как при осевом сжатии и чистом изгибе напряжения во всех сечениях одинаковы, то проверку прочности можно произвести по любому сечению Суммируя напряжения от осевого сжатия и двух плоских изгибов, получаем выражение для напряжения в точке с координатами, : σ, где F, координаты точки приложения силы Наибольшее напряжение имеем в наиболее удаленных от нейтральной оси точках Нейтральная ось, для точек которой σ 0, определяется уравнением 1 0, где i F, i F радиусы инерции сечения i i относительно главных осей Она проходит через точки с координатами i i 0, a и a, 0 и делит сечение на две части сжатую и растянутую (на рисунке растянутая часть заштрихована Отметим, что с приближением точки приложения силы к центру инерции сечения нейтральная ось удаляется от него и наоборот 1 1, 1, Итак, σ 1, F При конструировании стержней из материала, плохо сопротивляющихся растяжению (бетон, камень, весьма желательно добиться того, чтобы все сечение работало лишь на сжатие Этого можно достигнуть, не давая точке приложения

6 силы слишком далеко отходить от центра инерции сечения, ограничивая величину эксцентриситета Вводится понятие ядро сечения Этим термином обозначается некоторая область вокруг центра инерции сечения, внутри которой можно расположить точку приложения силы, не вызывая в сечении напряжений разного знака Пока точка приложения силы лежит внутри ядра, все сечение лежит по одну сторону нейтральной оси Чтобы получить очертания ядра, необходимо дать нейтральной оси несколько положений, касательных к контуру сечения, определить для этих положений отрезки a, a и вычислить координаты точки приложения силы i i, a a Поскольку нагрузки большинства B скручиваемых элементов машин создают также изгибающий момент, необходимо рассматривать h Z совместное действие скручивающего и ZB изгибающего моментов На рисунке изображен T G c вал круглого сечения со шкивом и кривошипом Вес шкива G, радиус шкива R, натяжения ремня T и t ( T > t, на правом конце на палец кривошипа действует горизонтальная сила Размеры конструкции даны на рисунке Натяжения ремней эквивалентно силе T t приложенной к левому концу вала и скручивающему вал моменту ( T tr Сила создает скручивающий вал момент R h При равномерном вращении вала с угловой скоростью ω π n (n -количество оборотов вала в единицу времени моменты и К равны Если передаваемая шкивом мощность равна N, то N N N К h ( T tr и, T b l a ω ω h R 1 m (, t где m T Что же касается изгиба, то на вал действуют и вертикальные G и горизонтальные T t, силы Поэтому следует строить эпюры моментов для тех и других, считая опоры вала в подшипниках и B шарнирами Имея эпюры моментов ( от вертикальных сил и (от горизонтальных сил, t b G Tt Y l YB a ( ( можем для каждого сечения вала найти полный ( Tt b изгибающий момент ( ( ( Для ( каждого сечения имеем свою плоскость действия изгибающего момента У круглого вала все моменты сопротивления относительно центральных осей одинаковы, и плоскости действия изгибающего момента можно совместить Для сечений между опорами и B эпюра ограничена и не имеет стационарных точек Наибольший изгибающий момент И a определяет нормальное напряжение 3 σ И, где W π r N Крутящий K определяет наибольшее напряжение W 4 ω 3 K r при скручивании τ К, где W π W Для проверки прочности следует W воспользоваться какой-либо из теорий Все четыре теории дают примерно одно и то же значение для радиуса вала Qb a


Курс лекций на тему: "Сложное сопротивление" В.В Зернов

Курс лекций на тему: Сложное сопротивление В.В Зернов Курс лекций на тему: "Сложное сопротивление" В.В Зернов Лекция на тему: Косой изгиб. При плоском поперечном изгибе балки плоскость действия сил (силовая плоскость) и плоскость прогиба совпадали с одной

Подробнее

МИНИСТЕРСТВО ВЫСШЕГО И СРЕДНЕГО СПЕЦИАЛЬНОГО ОБРАЗОВАНИЯ РЕСПУБЛИКИ УЗБЕКИСТАН ПО ПРЕДМЕТУ «ПРИКЛАДНАЯ МЕХАНИКА»

МИНИСТЕРСТВО ВЫСШЕГО И СРЕДНЕГО СПЕЦИАЛЬНОГО ОБРАЗОВАНИЯ РЕСПУБЛИКИ УЗБЕКИСТАН ПО ПРЕДМЕТУ «ПРИКЛАДНАЯ МЕХАНИКА» МИНИСТЕРСТВО ВЫСШЕГО И СРЕДНЕГО СПЕЦИАЛЬНОГО ОБРАЗОВАНИЯ РЕСПУБЛИКИ УЗБЕКИСТАН ТАШКЕНТСКИЙ ХИМИКО-ТЕХНОЛОГИЧЕСКИЙ ИНСТИТУТ Кафедра: «Машины и оборудование пищевой промышленности основы механики» РЕФЕРАТИВНАЯ

Подробнее

Сложное сопротивление вид нагружения, представляющий собой комбинацию (сочетание) нескольких простых типов сопротивления.

Сложное сопротивление вид нагружения, представляющий собой комбинацию (сочетание) нескольких простых типов сопротивления. Лекция 14 Сложное сопротивление. Косой изгиб. Определение внутренних усилий, напряжений, положения нейтральной оси при чистом косом изгибе. Деформации при косом изгибе. 14. СЛОЖНОЕ СОПРОТИВЛЕНИЕ. КОСОЙ

Подробнее

Предельная нагрузка для стержневой системы

Предельная нагрузка для стержневой системы Л е к ц и я 18 НЕУПРУГОЕ ДЕФОРМИРОВАНИЕ Ранее, в первом семестре, в основном, использовался метод расчета по допускаемым напряжениям. Прочность изделия считалась обеспеченной, если напряжение в опасной

Подробнее

Следующим шагом является отыскание x наиболее напряженного сечения. Для этого A

Следующим шагом является отыскание x наиболее напряженного сечения. Для этого A Лекция 05 Изгиб Проверка прочности балок Опыт показывает, что при нагружении призматического стержня с прямой осью силами и парами сил, расположенными в плоскости симметрии, наблюдаются деформации изгиба

Подробнее

Билет 1 N J. 2.Какая из эпюр Q, M соответствует заданной балке? Эпюры Q + 3. Какой деформации подвергается заданный брус? а) центрального растяжения;

Билет 1 N J. 2.Какая из эпюр Q, M соответствует заданной балке? Эпюры Q + 3. Какой деформации подвергается заданный брус? а) центрального растяжения; Билет. По какой формуле определяются напряжения при центральном растяжении, сжатии? N N,,.Какая из эпюр Q, соответствует заданной балке? г) Эпюры. Какой деформации подвергается заданный брус? центрального

Подробнее

Кручение простой вид сопротивления (нагружения), при котором на стержень действуют моменты в плоскостях, перпендикулярных к продольной оси стержня.

Кручение простой вид сопротивления (нагружения), при котором на стержень действуют моменты в плоскостях, перпендикулярных к продольной оси стержня. Кручение стержней с круглым поперечным сечением. Внутренние усилия при кручении, напряжения и деформации. Напряженное состояние и разрушение при кручении. Расчет на прочность и жесткость вала круглого

Подробнее

СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ

СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ Министерство образования Российской Федерации Государственное образовательное учреждение высшего профессионального образования «Хабаровский государственный технический университет» СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ

Подробнее

СЛОЖНОЕ СОПРОТИВЛЕНИЕ

СЛОЖНОЕ СОПРОТИВЛЕНИЕ МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «ТЮМЕНСКИЙ ГОСУДАРСТВЕННЫЙ АРХИТЕКТУРНО-СТРОИТЕЛЬНЫЙ

Подробнее

В сопротивлении материалов различают изгиб плоский, косой и сложный.

В сопротивлении материалов различают изгиб плоский, косой и сложный. Лекция 10 Плоский поперечный изгиб балок. Внутренние усилия при изгибе. Дифференциальные зависимости внутренних усилий. Правила проверки эпюр внутренних усилий при изгибе. Нормальные и касательные напряжения

Подробнее

Основные соотношения, полученные для них, приведены в таблице 7.1. Таблица 7.1 Виды нагружения Напряжения Деформации. . Условие прочности:

Основные соотношения, полученные для них, приведены в таблице 7.1. Таблица 7.1 Виды нагружения Напряжения Деформации. . Условие прочности: Лекция 11 Сложное сопротивление 1 Расчет балки, подверженной косому или пространственному изгибу 2 Определение внутренних усилий при косом изгибе 3 Определение напряжений при косом изгибе 4 Определение

Подробнее

уравнение изогнутой оси балки и θ tg θ =.

уравнение изогнутой оси балки и θ tg θ =. Лекция 06 Деформации балок при изгибе Теорема Кастильяно При чистом изгибе балки её ось искривляется Перемещение центра тяжести сечения по направлению перпендикулярному к оси балки в её недеформированном

Подробнее

НАПРЯЖЕНИЯ. При плоском изгибе максимальные нормальные напряжения действуют в точках поперечного сечения, Варианты ответов

НАПРЯЖЕНИЯ. При плоском изгибе максимальные нормальные напряжения действуют в точках поперечного сечения, Варианты ответов НАПРЯЖЕНИЯ. Задача 1 При плоском изгибе максимальные нормальные напряжения действуют в точках поперечного сечения, 1) расположенных в плоскости действия момента 2) лежащих на нейтральной линии 3) лежащих

Подробнее

ИЗГИБ С КРУЧЕНИЕМ СТЕРЖНЯ КРУГЛОГО ПОПЕРЕЧНОГО СЕЧЕНИЯ

ИЗГИБ С КРУЧЕНИЕМ СТЕРЖНЯ КРУГЛОГО ПОПЕРЕЧНОГО СЕЧЕНИЯ МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ УЛЬЯНОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ В. К. Манжосов ИЗГИБ С КРУЧЕНИЕМ СТЕРЖНЯ КРУГЛОГО ПОПЕРЕЧНОГО СЕЧЕНИЯ Методические указания Ульяновск 00

Подробнее

Тычина К.А. И з г и б.

Тычина К.А. И з г и б. Тычина К.А. tchina@mail.ru V И з г и б. Изгиб вид нагружения, при котором в поперечных сечениях стержня возникают внутренние изгибающие моменты и (или) : упругая ось стержня стержень Рис. V.1. М изг М

Подробнее

ВОПРОСЫ к экзамену по курсу «Сопротивление материалов»

ВОПРОСЫ к экзамену по курсу «Сопротивление материалов» ВОПРОСЫ к экзамену по курсу «Сопротивление материалов» 1. Историческое развитие учения о сопротивлении материалов. Диаграмма стального образца Ст 3. 2. Диаграмма Ф.Ясинского. 3. Основные понятия курса

Подробнее

Л.4 Прочность, жесткость, устойчивость. Силовые нагрузки элементов

Л.4 Прочность, жесткость, устойчивость. Силовые нагрузки элементов Л. Прочность, жесткость, устойчивость. Силовые нагрузки элементов Под прочностью понимают способность конструкции, ее частей и деталей выдерживать определенную нагрузку без разрушений. Под жесткостью подразумевают

Подробнее

Внецентренное действие продольных сил

Внецентренное действие продольных сил Внецентренное действие продольных сил C C Центральное сжатие (растяжение) Внецентренное сжатие (растяжение) Внецентренное сжатие (растяжение) это случай нагружения, когда линия действия сжимающей (растягивающей

Подробнее

Тычина К.А. И з г и б.

Тычина К.А. И з г и б. www.tchina.pro Тычина К.А. V И з г и б. Изгибом называется такой вид нагружения стержня, при котором в его поперечных сечениях остаётся не равным нулю только внутренний изгибающий момент. Прямым изгибом

Подробнее

ЛЕКЦИЯ 5 Построение эпюр внутренних силовых факторов для основных видов деформации бруса

ЛЕКЦИЯ 5 Построение эпюр внутренних силовых факторов для основных видов деформации бруса В.Ф. ДЕМЕНКО МЕХАНИКА МАТЕРИАЛОВ И КОНСТРУКЦИЙ 2013 1 ЛЕКЦИЯ 5 Построение эпюр внутренних силовых факторов для основных видов деформации бруса 1 Эпюры и основные правила их построения Определение Эпюрами

Подробнее

Часть 1 Сопротивление материалов

Часть 1 Сопротивление материалов Часть Сопротивление материалов Рисунок Правило знаков Проверки построения эпюр: Эпюра поперечных сил: Если на балке имеются сосредоточенные силы, то на эпюре, должен быть скачок на величину и по направлению

Подробнее

Аттестационное тестирование в сфере профессионального образования

Аттестационное тестирование в сфере профессионального образования Page 1 of 15 Аттестационное тестирование в сфере профессионального образования Специальность: 170105.65 Взрыватели и системы управления средствами поражения Дисциплина: Механика (Сопротивление материалов)

Подробнее

Для данной балки из условия прочности подобрать номер двутавра. Решение

Для данной балки из условия прочности подобрать номер двутавра. Решение Задача 1 Для данной балки из условия прочности подобрать номер двутавра. Решение Дано: M = 8 кн м P = 4 кн q = 18 кн м L = 8 м a L = 0.5 b L = 0.4 c L = 0.3 [σ] = 160 МПа 1.Находим реакции опор балки:

Подробнее

N, кн ,4 а. б Рис. П1.1. Схема нагружения стержня (а), эпюра внутренних усилий (б), эпюра напряжений (в), эпюра перемещения сечений (г)

N, кн ,4 а. б Рис. П1.1. Схема нагружения стержня (а), эпюра внутренних усилий (б), эпюра напряжений (в), эпюра перемещения сечений (г) ПРИЛОЖЕНИЕ 1 ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ Задача 1 Ступенчатый брус из стали Ст нагружен, как показано на рис. П.1.1, а. Из условия прочности подобрать размеры поперечного сечения. Построить эпюру перемещения

Подробнее

Контрольные вопросы по сопротивлению материалов

Контрольные вопросы по сопротивлению материалов Контрольные вопросы по сопротивлению материалов 1. Основные положения 2. Каковы основные гипотезы, допущения и предпосылки положены в основу науки о сопротивлении материалов? 3. Какие основные задачи решает

Подробнее

Решение. При кручении возникает напряженное состояние чистого сдвига,. В соответствии с обобщенным законом Гука

Решение. При кручении возникает напряженное состояние чистого сдвига,. В соответствии с обобщенным законом Гука Задача 1 1 Стержень загружен крутящим моментом На поверхности стержня в точке к была замерена главная деформация Требуется определить угол поворота сечения, в котором приложен момент Решение При кручении

Подробнее

Экзаменационный билет 3

Экзаменационный билет 3 Экзаменационный билет 1 1. Реальный объект и расчетная схема. Силы внешние и внутренние. Метод сечений. Основные виды нагружения бруса. 2. Понятие об усталостной прочности. Экзаменационный билет 2 1. Растяжение

Подробнее

РАСЧЕТ БРУСЬЕВ НА ПРОЧНОСТЬ И ЖЕСТКОСТЬ. Методические указания к выполнению домашнего задания по курсу «Механика материалов и конструкций»

РАСЧЕТ БРУСЬЕВ НА ПРОЧНОСТЬ И ЖЕСТКОСТЬ. Методические указания к выполнению домашнего задания по курсу «Механика материалов и конструкций» МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ Национальный аэрокосмический университет им. Н.Е. Жуковского «Харьковский авиационный институт» РАСЧЕТ БРУСЬЕВ НА ПРОЧНОСТЬ И ЖЕСТКОСТЬ Методические указания к

Подробнее

РАСЧЕТНО-ПРОЕКТИРОВОЧНЫЕ И КОНТРОЛЬНЫЕ ЗАДАНИЯ ПО СОПРОТИВЛЕНИЮ МАТЕРИАЛОВ (для студентов ЗВФ)

РАСЧЕТНО-ПРОЕКТИРОВОЧНЫЕ И КОНТРОЛЬНЫЕ ЗАДАНИЯ ПО СОПРОТИВЛЕНИЮ МАТЕРИАЛОВ (для студентов ЗВФ) МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «УЛЬЯНОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Подробнее

Виды нагружения стержня

Виды нагружения стержня Виды нагружения стержня 1. Схема нагружения стержня внешними силами представлена на рисунке. Длины участков одинаковы и равны l. Третий участок стержня испытывает деформации 1) чистый изгиб и кручение;

Подробнее

СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ

СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ Государственный комитет Российской Федерации по высшему образованию Казанский государственный технологический университет СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ Методические указания к самостоятельной работе студентов

Подробнее

СПИСОК ЭКЗАМЕНАЦИОННЫХ ВОПРОСОВ ПО «СОПРОТИВЛЕНИЮ МАТЕРИАЛОВ» 1) ДЛЯ СТУДЕНТОВ СПЕЦИАЛЬНОСТИ ПТМ

СПИСОК ЭКЗАМЕНАЦИОННЫХ ВОПРОСОВ ПО «СОПРОТИВЛЕНИЮ МАТЕРИАЛОВ» 1) ДЛЯ СТУДЕНТОВ СПЕЦИАЛЬНОСТИ ПТМ СПИСОК ЭКЗАМЕНАЦИОННЫХ ВОПРОСОВ ПО «СОПРОТИВЛЕНИЮ МАТЕРИАЛОВ» (часть 1) ДЛЯ СТУДЕНТОВ СПЕЦИАЛЬНОСТИ ПТМ 2014-2015 уч. год 1. Какие допущения о свойствах материалов приняты в курсе "Сопротивление материалов

Подробнее

Расчет элементов стальных конструкций.

Расчет элементов стальных конструкций. Расчет элементов стальных конструкций. План. 1. Расчет элементов металлических конструкций по предельным состояниям. 2. Нормативные и расчетные сопротивления стали 3. Расчет элементов металлических конструкций

Подробнее

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ. Национальный аэрокосмический университет им. Н.Е. Жуковского «Харьковский авиационный институт»

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ. Национальный аэрокосмический университет им. Н.Е. Жуковского «Харьковский авиационный институт» МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ Национальный аэрокосмический университет им. Н.Е. Жуковского «Харьковский авиационный институт» Кафедра прочности Домашнее задание по дисциплине «Механика материалов

Подробнее

Лекция 7 (продолжение). Примеры решения на сложное сопротивление и задачи для самостоятельного решения

Лекция 7 (продолжение). Примеры решения на сложное сопротивление и задачи для самостоятельного решения Лекция 7 (продолжение). Примеры решения на сложное сопротивление и задачи для самостоятельного решения Расчет стержней при внецентренном сжатии-растяжении Пример 1. Чугунный короткий стержень сжимается

Подробнее

ТЕХНИЧЕСКАЯ МЕХАНИКА

ТЕХНИЧЕСКАЯ МЕХАНИКА Белорусский государственный университет Механико-математический факультет Кафедра теоретической и прикладной механики ТЕХНИЧЕСКАЯ МЕХАНИКА Тема 3. НАПРЯЖЕНИЯ В БРУСЬЯХ ПРИ РАСТЯЖЕНИИ- СЖАТИИ, КРУЧЕНИИ,

Подробнее

МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ К ПРАКТИЧЕСКОЙ ПОДГОТОВ- КЕ ПО ДИСЦИПЛИНЕ «СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ» ДЛЯ СТУДЕНТОВ-ЗАОЧНИКОВ СПЕЦ.

МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ К ПРАКТИЧЕСКОЙ ПОДГОТОВ- КЕ ПО ДИСЦИПЛИНЕ «СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ» ДЛЯ СТУДЕНТОВ-ЗАОЧНИКОВ СПЕЦ. МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ К ПРАКТИЧЕСКОЙ ПОДГОТОВ- КЕ ПО ДИСЦИПЛИНЕ «СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ» ДЛЯ СТУДЕНТОВ-ЗАОЧНИКОВ СПЕЦ. 1-700402 Общие методические указания Сопротивление материалов одна из сложных

Подробнее

«УЛЬЯНОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

«УЛЬЯНОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ» МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ федеральное государственное бюджетное образовательное учреждение высшего образования «УЛЬЯНОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Подробнее

В.Ф. ДЕМЕНКО МЕХАНИКА МАТЕРИАЛОВ И КОНСТРУКЦИЙ

В.Ф. ДЕМЕНКО МЕХАНИКА МАТЕРИАЛОВ И КОНСТРУКЦИЙ В.Ф. ДЕМЕНКО МЕХАНИКА МАТЕРИАЛОВ И КОНСТРУКЦИЙ 01 1 ЛЕКЦИЯ 14 Деформация плоский изгиб балки с прямолинейной продольной осью. Расчет на прочность Напомним, что деформация «плоский изгиб» реализуется в

Подробнее

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ. Национальный аэрокосмический университет им. Н.Е. Жуковского «Харьковский авиационный институт»

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ. Национальный аэрокосмический университет им. Н.Е. Жуковского «Харьковский авиационный институт» МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ Национальный аэрокосмический университет им НЕ Жуковского «Харьковский авиационный институт» Кафедра прочности Домашнее задание по дисциплине «Механика материалов

Подробнее

90 лет со дня рождения академика А.В. Александрова. Решения задач олимпиады 45 по Сопротивлению материалов 2-й тур 2017 г МИИТ Задача 1

90 лет со дня рождения академика А.В. Александрова. Решения задач олимпиады 45 по Сопротивлению материалов 2-й тур 2017 г МИИТ Задача 1 Задача 1 Рассматривается два загружения плоской рамы, состоящей из стержневых элементов квадратного поперечного сечения При загружении распределенными нагрузками q и 2q в точке к указанного на рисунке

Подробнее

ЛЕКЦИЯ 18 Сложное сопротивление наиболее общий случай нагружения бруса. Расчеты на прочность произвольно нагруженных пространственных ломаных брусьев

ЛЕКЦИЯ 18 Сложное сопротивление наиболее общий случай нагружения бруса. Расчеты на прочность произвольно нагруженных пространственных ломаных брусьев В.Ф. ДЕМЕНКО МЕХАНИКА МАТЕРИАЛОВ И КОНСТРУКЦИЙ 01 1 ЛЕКЦИЯ 18 Сложное сопротивление наиболее общий случай нагружения бруса. Расчеты на прочность произвольно нагруженных пространственных ломаных брусьев

Подробнее

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ. Национальный аэрокосмический университет им. Н.Е. Жуковского «Харьковский авиационный институт»

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ. Национальный аэрокосмический университет им. Н.Е. Жуковского «Харьковский авиационный институт» МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ Национальный аэрокосмический университет им. Н.Е. Жуковского «Харьковский авиационный институт» Кафедра прочности Домашнее задание по дисциплине «Механика материалов

Подробнее

СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ. ПОСОБИЕ по проведению практических занятий

СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ. ПОСОБИЕ по проведению практических занятий ФЕДЕРАЛЬНОЕ АГЕНТСТВО ВОЗДУШНОГО ТРАНСПОРТА ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ГРАЖДАНСКОЙ

Подробнее

Тема 7 Расчет прочности и жесткости простых балок.

Тема 7 Расчет прочности и жесткости простых балок. Тема 7 Расчет прочности и жесткости простых балок. Лекция 8 7.1Основные типы опорных связей и балок. Определение опорных реакций. 7. Внутренние усилия при изгибе 7.3 Дифференциальные зависимости между

Подробнее

В. К. Манжосов РАСЧЕТНО-ПРОЕКТИРОВОЧНЫЕ И КОНТРОЛЬНЫЕ ЗАДАНИЯ ПО СОПРОТИВЛЕНИЮ МАТЕРИАЛОВ

В. К. Манжосов РАСЧЕТНО-ПРОЕКТИРОВОЧНЫЕ И КОНТРОЛЬНЫЕ ЗАДАНИЯ ПО СОПРОТИВЛЕНИЮ МАТЕРИАЛОВ МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ федеральное государственное бюджетное образовательное учреждение высшего образования «УЛЬЯНОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ» В. К. Манжосов

Подробнее

Указания к выполнению контрольной работы 3

Указания к выполнению контрольной работы 3 Указания к выполнению контрольной работы Пример решения задачи 7 Для стального стержня (рис..) круглого поперечного сечения, находящегося под действием осевых сил F и F и F, требуется: ) построить в масштабе

Подробнее

Решение: Исходные данные: = 2 = 2 = 2

Решение: Исходные данные: = 2 = 2 = 2 Задача 1 Для данного бруса требуется: - вычертить расчетную схему в определенном масштабе, указать все размеры и величины нагрузок; - построить эпюру продольных сил; - построить эпюру напряжений; - для

Подробнее

Лекция 12. Сложное сопротивление (продолжение)

Лекция 12. Сложное сопротивление (продолжение) Лекция 12 Сложное сопротивление (продолжение) 1 Критерии предельного состояния материала при сложном напряженном состоянии 2 Теории прочности 3 Совместное действие изгиба и кручения 4 Определение внутренних

Подробнее

(шифр и наименование направления)

(шифр и наименование направления) Дисциплина Направление Сопротивление материалов 270800 - Строительство (шифр и наименование направления) Специальность 270800 62 00 01 Промышленное и гражданское строительство 270800 62 00 03 Городское

Подробнее

Задание 1 Построение эпюр при растяжении-сжатии

Задание 1 Построение эпюр при растяжении-сжатии Задание 1 Построение эпюр при растяжении-сжатии Стальной двухступенчатый брус, длины ступеней которого указаны на рисунке 1, нагружен силами F 1, F 2, F 3. Построить эпюры продольных сил и нормальных напряжений

Подробнее

УДК Изгиб и кручение тонкостенных стержней

УДК Изгиб и кручение тонкостенных стержней УДК 624.072.327 Изгиб и кручение тонкостенных стержней Гриценко О.О., Хремли Е.А. (Научный руководитель Башкевич И.В.) Белорусский национальный технический университет Минск, Беларусь Основным признаком

Подробнее

5. КЛАССИФИКАЦИЯ ВИДОВ ИЗГИБА

5. КЛАССИФИКАЦИЯ ВИДОВ ИЗГИБА Прямой и поперечный изгиб. 5. КЛАССИФИКАЦИЯ ВИДОВ ИЗГИБА Изгиб стержня вид нагружения, при котором в поперечных сечениях возникают изгибающие моменты и (или) (N = 0, T = 0).. Чистый изгиб. Поперечный изгиб

Подробнее

РГР 1. Растяжение сжатие. 1.1 Определение усилий в стержнях и расчет их на прочность Определение усилий в стержнях

РГР 1. Растяжение сжатие. 1.1 Определение усилий в стержнях и расчет их на прочность Определение усилий в стержнях Содержание РГР. Растяжение сжатие.... Определение усилий в стержнях и расчет их на прочность..... Определение усилий в стержнях..... Определение диаметра стержней.... Расчет ступенчатого бруса на прочность

Подробнее

3. СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ

3. СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ 3. СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ 3.1. Сопротивление материалов. Задачи и определения. Сопротивление материалов - наука о прочности, жесткости и устойчивости элементов инженерных конструкций. Первая задача сопротивления

Подробнее

ТЕХНИЧЕСКАЯ МЕХАНИКА. Рабочая тетрадь по решению задач

ТЕХНИЧЕСКАЯ МЕХАНИКА. Рабочая тетрадь по решению задач МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное бюджетное образовательное учреждение высшего образования «НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ СТРОИТЕЛЬНЫЙ

Подробнее

Оглавление Введение... 3

Оглавление Введение... 3 Оглавление Введение... 3 Глава 1. Основные предпосылки, понятия и определения, используемые в курсе сопротивления материалов - механике материалов и конструкций... 4 1.1. Модель материала. Основные гипотезы

Подробнее

плоскости, а поперечные сечения поворачиваются. Их центры тяжести получают поступательные перемещения y(x). Искривленная

плоскости, а поперечные сечения поворачиваются. Их центры тяжести получают поступательные перемещения y(x). Искривленная В.Ф. ДЕМЕНКО МЕХАНИКА МАТЕРИАЛОВ И КОНСТРУКЦИЙ 01 1 ЛЕКЦИЯ 16 Деформации при плоском изгибе. Основы расчета на жесткость при плоском изгибе. Дифференциальное уравнение упругой линии Ранее были рассмотрены

Подробнее

Лекция 19 Вычисление перемещений по формуле Мора 19.1 Формула Мора Вычисление интеграла Мора по правилу Верещагина Примеры вычислений

Лекция 19 Вычисление перемещений по формуле Мора 19.1 Формула Мора Вычисление интеграла Мора по правилу Верещагина Примеры вычислений Лекция 19 Вычисление перемещений по формуле Мора 191 Формула Мора 192 Вычисление интеграла Мора по правилу Верещагина 193 Примеры вычислений перемещений по формуле Мора при кручении, растяжении-сжатии

Подробнее

Вопросы по дисциплине "Сопротивление материалов". Поток С-II. Часть 1 ( уч.г.).

Вопросы по дисциплине Сопротивление материалов. Поток С-II. Часть 1 ( уч.г.). Вопросы по дисциплине "Сопротивление материалов". Поток С-II. Часть 1 (2014 2015 уч.г.). ВОПРОСЫ К ЭКЗАМЕНУ с подробным ответом. 1) Закрепление стержня на плоскости и в пространстве. Простейшие стержневые

Подробнее

Предисловие Часть I ТЕКСТЫ ЛЕКЦИЙ Лекция 1 Основные понятия Простейшие типы конструкций Нагрузки Гипотезы, принимаемые в сопротивлении материалов

Предисловие Часть I ТЕКСТЫ ЛЕКЦИЙ Лекция 1 Основные понятия Простейшие типы конструкций Нагрузки Гипотезы, принимаемые в сопротивлении материалов Предисловие Часть I ТЕКСТЫ ЛЕКЦИЙ Лекция 1 Основные понятия Простейшие типы конструкций Нагрузки Гипотезы, принимаемые в сопротивлении материалов Деформации и перемещения Метод сечений Частные случаи нагружения

Подробнее

ОЦЕНОЧНЫЕ СРЕДСТВА ПО ДИСЦИПЛИНЕ

ОЦЕНОЧНЫЕ СРЕДСТВА ПО ДИСЦИПЛИНЕ ОЦЕНОЧНЫЕ СРЕДСТВА ПО ДИСЦИПЛИНЕ ОПД.Ф.12.5 ОСНОВЫ ФУНКЦИОНИРОВАНИЯ СИСТЕМ СЕРВИСА. ТЕОРЕТИЧЕСКАЯ МЕХАНИКА основной образовательной программы высшего образования программы специалитета Специальность: 100101.65

Подробнее

МОСКОВСКИЙ АВТОМОБИЛЬНО-ДОРОЖНЫЙ ИНСТИТУТ (ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ) Кафедра строительной механики

МОСКОВСКИЙ АВТОМОБИЛЬНО-ДОРОЖНЫЙ ИНСТИТУТ (ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ) Кафедра строительной механики МОСКОВСКИЙ АВТОМОБИЛЬНО-ДОРОЖНЫЙ ИНСТИТУТ (ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ) Кафедра строительной механики Утверждаю Зав. кафедрой профессор И.В. Демьянушко «0» января 007г. А.М. ВАХРОМЕЕВ РАСЧЕТ

Подробнее

ЗАДАНИЕ ПО РАСЧЕТНО-ГРАФИЧЕСКОЙ РАБОТЕ 4 Тема 7. Сложное сопротивление стержней

ЗАДАНИЕ ПО РАСЧЕТНО-ГРАФИЧЕСКОЙ РАБОТЕ 4 Тема 7. Сложное сопротивление стержней ЗАДАНИЕ ПО РАСЧЕТНО-ГРАФИЧЕСКОЙ РАБОТЕ 4 Тема 7. Сложное сопротивление стержней Задача 1 Для внецентренно сжатого короткого стержня с заданным поперечным сечением по схеме (рис.7.1) с геометрическими размерами

Подробнее

ТЕСТЫ ПО СОПРОТИВЛЕНИЮ МАТЕРИАЛОВ

ТЕСТЫ ПО СОПРОТИВЛЕНИЮ МАТЕРИАЛОВ ТЕСТЫ ПО СОПРОТИВЛЕНИЮ МАТЕРИАЛОВ ОСНОВНЫЕ ПОЛОЖЕНИЯ, МЕТОД СЕЧЕНИЙ, НАПРЯЖЕНИЯ Вариант 1.1 1. Прямой брус нагружается внешней силой F. После снятия нагрузки его форма и размеры полностью восстанавливаются.

Подробнее

II тур Всероссийской студенческой олимпиады Цетрального и Приволжского федеральных округов по сопротивлению материалов

II тур Всероссийской студенческой олимпиады Цетрального и Приволжского федеральных округов по сопротивлению материалов II тур Всероссийской студенческой олимпиады Цетрального и Приволжского федеральных округов по сопротивлению материалов Задача Для фигуры изображенной на рисунке определить: Центробежный момент инерции

Подробнее

Контрольные задания по сопротивление материалов. для студентов заочной формы обучения

Контрольные задания по сопротивление материалов. для студентов заочной формы обучения Контрольные задания по сопротивление материалов для студентов заочной формы обучения Составитель: С.Г.Сидорин Сопротивление материалов. Контрольные работы студентов заочников: Метод. указания /С.Г.Сидорин,

Подробнее

МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ПЕНЗЕНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ПРИКЛАДНАЯ МЕХАНИКА. Часть I

МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ПЕНЗЕНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ПРИКЛАДНАЯ МЕХАНИКА. Часть I МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ПЕНЗЕНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ПРИКЛАДНАЯ МЕХАНИКА Часть I Методические указания и контрольные задания Пенза 00 УДК 5. (075) И85 Методические указания

Подробнее

ГЕОМЕТРИЧЕСКИЕ ХАРАКТЕРИСТИКИ ПЛОСКИХ СЕЧЕНИЙ

ГЕОМЕТРИЧЕСКИЕ ХАРАКТЕРИСТИКИ ПЛОСКИХ СЕЧЕНИЙ МИНИСТЕРСТВО ОБРАЗОВАНИЯ и НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «МАТИ - Российский государственный технологический

Подробнее

ЗАДАЧА 1. I-швеллер 36, II-уголок 90 х 90 х 8.

ЗАДАЧА 1. I-швеллер 36, II-уголок 90 х 90 х 8. ЗДЧ.. Определить положение центра тяжести сечения.. Найти осевые (экваториальные и центробежные моменты инерции относительно случайных осей, проходящих через центр тяжести ( c и c.. Определить направление

Подробнее

Расчет на жесткость при кручении

Расчет на жесткость при кручении Расчет на жесткость при кручении 1. Для круглого стержня, работающего на кручение, произведение жесткостью называется ОТВЕТ: 1) поперечного сечения на кручение; 2) поперечного сечения на растяжение-сжатие;

Подробнее

ОЦЕНОЧНЫЕ СРЕДСТВА ПО ДИСЦИПЛИНЕ

ОЦЕНОЧНЫЕ СРЕДСТВА ПО ДИСЦИПЛИНЕ УТВЕРЖДАЮ Декан факультета сервиса к.т.н., доцент Сумзина Л.В ОЦЕНОЧНЫЕ СРЕДСТВА ПО ДИСЦИПЛИНЕ Материаловедение основной образовательной программы высшего образования программы специалитета по направлению

Подробнее

Внецентренное растяжение сжатие

Внецентренное растяжение сжатие Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования «Нижегородский государственный архитектурно-строительный университет»

Подробнее

ТЕСТОВЫЕ ЗАДАНИЯ К ЛАБОРАТОРНЫМ РАБОТАМ ПО СОПРОТИВЛЕНИЮ МАТЕРИАЛОВ

ТЕСТОВЫЕ ЗАДАНИЯ К ЛАБОРАТОРНЫМ РАБОТАМ ПО СОПРОТИВЛЕНИЮ МАТЕРИАЛОВ МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «УЛЬЯНОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Подробнее

ИНЖЕНЕРНЫЕ МЕТОДЫ ОПРЕДЕЛЕНИЯ НАПРЯЖЕНИЙ. ВНУТРЕННИЕ УСИЛИЯ Геометрические допущения инженерных методов

ИНЖЕНЕРНЫЕ МЕТОДЫ ОПРЕДЕЛЕНИЯ НАПРЯЖЕНИЙ. ВНУТРЕННИЕ УСИЛИЯ Геометрические допущения инженерных методов ИНЖЕНЕРНЫЕ МЕТОДЫ ОПРЕДЕЛЕНИЯ НАПРЯЖЕНИЙ. ВНУТРЕННИЕ УСИЛИЯ 4.. Геометрические допущения инженерных методов Для решения задачи оценки прочности (подробно мы будем говорить об этом в шестой главе) достаточно

Подробнее

Задачи к экзамену Задача 1. Задача 2.

Задачи к экзамену Задача 1. Задача 2. Вопросы к экзамену 1. Модель упругого тела, основные гипотезы и допущения. Механика твердого тела, основные разделы. 2. Внешние и внутренние силы, напряжения и деформации. Принцип независимого действия

Подробнее

Тычина К.А. В в е д е н и е.

Тычина К.А. В в е д е н и е. www.tchina.pro Тычина К.А. I В в е д е н и е. «Теоретическая механика» разработала уравнения равновесия тел, считая их абсолютно твёрдыми и неразрушимыми. Курс «Сопротивление материалов», следующий шаг

Подробнее

= и. = удлинение средней полосы Напряжение в крайних полосах вдвое меньше и сжимающее. 32 мм, а наружный d =.

= и. = удлинение средней полосы Напряжение в крайних полосах вдвое меньше и сжимающее. 32 мм, а наружный d =. Пример Определить начальные напряжения в трёх полосах звена цепи висячего моста если средняя полоса будет короче крайних на δ где длина полос Материал полос сталь E кг см Полосы соединены болтами проходящими

Подробнее

Расчет прочности и устойчивости стального стержня по СНиП II-23-81*

Расчет прочности и устойчивости стального стержня по СНиП II-23-81* Отчет 5855-1707-8333-0815 Расчет прочности и устойчивости стального стержня по СНиП II-3-81* Данный документ составлен на основе отчета о проведенном пользователем admin расчете металлического элемента

Подробнее

ОТ АВТОРОВ... 3 ВВЕДЕНИЕ... 5 Вопросы и задания для самоконтроля к введению... 8

ОТ АВТОРОВ... 3 ВВЕДЕНИЕ... 5 Вопросы и задания для самоконтроля к введению... 8 Допущено Министерством сельского хозяйства Российской Федерации в качестве учебника для студентов высших учебных заведений, обучающихся по направлению 280100 «Природоустройство и водопользование» Сопротивление

Подробнее

Кроме деформации растяжения или сжатия (см. лекцию 3) материал нагруженного элемента конструкции может испытывать деформацию сдвига.

Кроме деформации растяжения или сжатия (см. лекцию 3) материал нагруженного элемента конструкции может испытывать деформацию сдвига. Сдвиг элементов конструкций Определение внутренних усилий напряжений и деформаций при сдвиге Понятие о чистом сдвиге Закон Гука для сдвига Удельная потенциальная энергия деформации при чистом сдвиге Расчеты

Подробнее

ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ КОНТРОЛЬНЫХ РАБОТ ПО СОПРОТИВЛЕНИЮ МАТЕРИАЛОВ

ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ КОНТРОЛЬНЫХ РАБОТ ПО СОПРОТИВЛЕНИЮ МАТЕРИАЛОВ Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Тихоокеанский государственный университет»

Подробнее

Внутренние усилия и напряжения

Внутренние усилия и напряжения 1. Внутренние усилия и напряжения Интегральная связь между крутящим моментом Mz и касательными напряжениями имеет вид 2. Если известно нормальное и касательное напряжения в точке сечения, то полное напряжение

Подробнее

КОНТРОЛЬНЫЕ ТЕСТЫ по дисциплине «Сопротивление материалов»

КОНТРОЛЬНЫЕ ТЕСТЫ по дисциплине «Сопротивление материалов» ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ Тольяттинский государственный университет Кафедра «Материаловедение и механика материалов» КОНТРОЛЬНЫЕ ТЕСТЫ по дисциплине «Сопротивление материалов» Часть Модульная

Подробнее

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ. Национальный аэрокосмический университет им. Н.Е. Жуковского «Харьковский авиационный институт»

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ. Национальный аэрокосмический университет им. Н.Е. Жуковского «Харьковский авиационный институт» МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ Национальный аэрокосмический университет им. Н.Е. Жуковского «Харьковский авиационный институт» Кафедра прочности Домашнее задание по дисциплине «Механика материалов

Подробнее

δ 11 = δ 12 = δ 21 = - 1 δ 22 = 1 δ 12 = δ 21 = 8 6 δ 22 = 82 ) = 505,9

δ 11 = δ 12 = δ 21 = - 1 δ 22 = 1 δ 12 = δ 21 = 8 6 δ 22 = 82 ) = 505,9 4. Определение перемещений. Для определения коэффициентов δ эпюру M умножаем на M : 57 δ = EI ( 2 (h 4 )2 2 3 h 4 + 2 (h 4 )2 2 3 h 4 + 2 (3 4 h)2 2 3 3 4 h) + kei l h 4 h 4 = = 29h3 + lh 2 = h 2 2 (29h

Подробнее

ПЕРЕМЕЩЕНИЯ ПРИ ИЗГИБЕ

ПЕРЕМЕЩЕНИЯ ПРИ ИЗГИБЕ ПЕРЕМЕЩЕНИЯ ПРИ ИЗГИБЕ Задача 1 Однопролетная балка длиной l, высотой h нагружена равномерно распределенной нагрузкой. Радиус кривизны нейтрального слоя балки в середине пролета равен. Жесткость поперечного

Подробнее

Лекция 10. Касательные напряжения при изгибе

Лекция 10. Касательные напряжения при изгибе Лекция 10. Касательные напряжения при изгибе 1. Формула Журавского для касательных напряжений. 2. Касательные напряжения в тонкостенных сечениях. 3. Центр изгиба. 1 Рассмотрим прямой изгиб балки с выпуклым

Подробнее

Рассмотрим стержень упруго растянутый центрально приложенными сосредоточенными

Рассмотрим стержень упруго растянутый центрально приложенными сосредоточенными Растяжение (сжатие) элементов конструкций. Определение внутренних усилий, напряжений, деформаций (продольных и поперечных). Коэффициент поперечных деформаций (коэффициент Пуассона). Гипотеза Бернулли и

Подробнее

Тема 2 Основные понятия. Лекция 2

Тема 2 Основные понятия. Лекция 2 Тема 2 Основные понятия. Лекция 2 2.1 Сопротивление материалов как научная дисциплина. 2.2 Схематизация элементов конструкций и внешних нагрузок. 2.3 Допущения о свойствах материала элементов конструкций.

Подробнее

Механические испытания на изгиб Рис.6.3 Рис.6.4

Механические испытания на изгиб Рис.6.3 Рис.6.4 Лекция 8. Плоский изгиб 1. Плоский изгиб. 2. Построение эпюр поперечной силы и изгибающего момента. 3. Основные дифференциальные соотношения теории изгиба. 4. Примеры построения эпюр внутренних силовых

Подробнее

СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ. СЛОЖНОЕ СОПРОТИВЛЕНИЕ

СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ. СЛОЖНОЕ СОПРОТИВЛЕНИЕ Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования «Томский государственный архитектурно-строительный университет»

Подробнее

Примеры решения задач по «Механике» Пример решения задачи 1

Примеры решения задач по «Механике» Пример решения задачи 1 Примеры решения задач по «еханике» Пример решения задачи Дано: схема конструкции (рис) kh g kh / m khm a m Определить реакции связей и опор Решение: Рассмотрим систему уравновешивающихся сил приложенных

Подробнее

НАГРУЗКИ И ВОЗДЕЙСТВИЯ

НАГРУЗКИ И ВОЗДЕЙСТВИЯ СОДЕРЖАНИЕ Введение.. 9 Глава 1. НАГРУЗКИ И ВОЗДЕЙСТВИЯ 15 1.1. Классификация нагрузок........ 15 1.2. Комбинации (сочетания) нагрузок..... 17 1.3. Определение расчетных нагрузок.. 18 1.3.1. Постоянные

Подробнее

Расчет на прочность при кручении

Расчет на прочность при кручении Расчет на прочность при кручении 1. При кручении стержня круглого поперечного сечения напряженное состояние материала во всех точках, за исключением точек на оси стержня, ОТВЕТ: 1) линейное (одноосное

Подробнее

ТЕХНИЧЕСКАЯ МЕХАНИКА

ТЕХНИЧЕСКАЯ МЕХАНИКА МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ АСТРАХАНСКОЙ ОБЛАСТИ Государственное автономное образовательное учреждение Астраханской области высшего профессионального образования «АСТРАХАНСКИЙ ИНЖЕНЕРНО-СТРОИТЕЛЬНЫЙ

Подробнее

Всероссийская дистанционная предметная олимпиада для студентов профессиональных образовательных организаций по дисциплине «Техническая механика»

Всероссийская дистанционная предметная олимпиада для студентов профессиональных образовательных организаций по дисциплине «Техническая механика» Всероссийская дистанционная предметная олимпиада для студентов профессиональных образовательных организаций по дисциплине «Техническая механика» Вопрос Варианты ответов Ответ 1. Какое из перечисленных

Подробнее

ТЕХНИЧЕСКАЯ МЕХАНИКА

ТЕХНИЧЕСКАЯ МЕХАНИКА Белорусский государственный университет Механико-математический факультет Кафедра теоретической и прикладной механики ТЕХНИЧЕСКАЯ МЕХАНИКА Тема 3. НАПРЯЖЕНИЯ В БРУСЬЯХ ПРИ РАСТЯЖЕНИИ- СЖАТИИ, КРУЧЕНИИ,

Подробнее

Тычина К.А. III. К р у ч е н и е

Тычина К.А. III. К р у ч е н и е Тычина К.А. tychina@mail.ru К р у ч е н и е Крутящим называют момент, вектор которого направлен вдоль оси стержня. Кручением называется такое нагружение стержня, при котором в его поперечных сечениях возникает

Подробнее

МЕТОДИЧЕСКИЕ УКАЗАНИЯ 1 к практическому занятию по «Прикладной механике» для студентов II курса медико-биологического факультета.

МЕТОДИЧЕСКИЕ УКАЗАНИЯ 1 к практическому занятию по «Прикладной механике» для студентов II курса медико-биологического факультета. МЕТОДИЧЕСКИЕ УКАЗАНИЯ 1 ТЕМА Введение. Инструктаж по технике безопасности. Входной контроль. ВВЕДЕНИЕ В ПРАКТИЧЕСКИЕ ЗАНЯТИЯ ПО КУРСУ «ПРИКЛАДНАЯ МЕХЕНИКА». ИНСТРУКТАЖ ПО ПОЖАРО- И ЭЛЕКТРОБЕЗОПАСНОСТИ.

Подробнее