ОБ УСТОЙЧИВОСТИ ТОНКОСТЕННОЙ ЦИЛИНДРИЧЕСКОЙ ОБОЛОЧКИ С КРУГОВЫМИ ВЫРЕЗАМИ БЕЗ РЕБЕР ЖЕСТКОСТИ ПРИ ЕЕ ОСЕВОМ СЖАТИИ

Размер: px
Начинать показ со страницы:

Download "ОБ УСТОЙЧИВОСТИ ТОНКОСТЕННОЙ ЦИЛИНДРИЧЕСКОЙ ОБОЛОЧКИ С КРУГОВЫМИ ВЫРЕЗАМИ БЕЗ РЕБЕР ЖЕСТКОСТИ ПРИ ЕЕ ОСЕВОМ СЖАТИИ"

Транскрипт

1 ОБ УСТОЙЧИВОСТИ ТОНКОСТЕННОЙ ЦИЛИНДРИЧЕСКОЙ ОБОЛОЧКИ С КРУГОВЫМИ ВЫРЕЗАМИ БЕЗ РЕБЕР ЖЕСТКОСТИ ПРИ ЕЕ ОСЕВОМ СЖАТИИ Меньшенин Александр Аркадьевич Ульяновский государственный университет Задача данного исследования состояла в определении критических осевых нагрузок, вызывающих потерю устойчивости цилиндрической тонкостенной оболочки, имеющей круговые вырезы. Математическая модель устойчивости цилиндрической оболочки без вырезов. Рис. а. Рис. б. Пусть начало подвижной системы координат z лежит на срединной поверхности цилиндрической оболочки. Ось х направлена вдоль образующей, ось у по касательной к окружности, а ось z по внешней нормали к срединной поверхности (рис., а). Перемещения точек срединной поверхности по направлениям осей х, у, z -,, соответственно. Координаты точек A, В, С, D элемента срединной поверхности оболочки

2 и координаты точек A, B, C, D этого элемента после деформации оболочки в системе координат хуz, связанной с точкой А (рис., б), определяются следующей таблицей. Точка z A B dφ C d dφ D d A B d d d d d C d d d d d d d d d d D d d d Деформации срединной поверхности связаны с перемещениями следующим образом: ; ; Y γ ε ε (.) А углы поворота нормали к срединной поверхности θ и θ в плоскостях z и z ; θ θ. Если пренебречь влиянием деформаций срединной поверхности на ее кривизны,, и кручение, то получим: (.) При >> и >> используются упрощенные формулы: ; θ θ (.3) ; ;. При деформациях оболочки возникают нормальные усилия Т, Т, сдвигающее усилие, изгибающие М, и скручивающий М моменты. Эти внутренние силовые факторы

3 связаны с компонентами деформаций срединной поверхности оболочки и изменением ее кривизн соотношениями упругости, основанными ва гипотезе Кирхгоффа-Лява неискривляемости физического волокна нормали в процессе деформации []: ( ) ( ε ε ), ( ε ε ), Ghγ γ, ( ) D( ); D( ); ( ) D (.4) где D изгибная жесткость оболочки. Для получения линеаризованных уравнений, описывающих потерю устойчивости цилиндрической оболочки, запишем линейные уравнения, описывающие поведение произвольно нагруженной оболочки при ее малых перемещениях. Рис.. Рассматривая равновесие элемента оболочки в недеформированном состоянии (рис. ), приходим к следующей системе уравнений []: Q Q Q,,, Q, Q, (.5) где,, z - интенсивности внешних распределенных нагрузок, действующих в направлениях соответствующих осей. Исключив из последней системы уравнений внутренние поперечные силы Q и Q, придем к системе уравнений:

4 z (.6) Используя соотношения упругости, далее получим систему уравнений равновесия в перемещениях: z D ) ( D (.7) где Для замкнутой в окружном направлении цилиндрической оболочки на каждом из ее торцов должны быть заданы по четыре граничных условия []: ) перемещение либо осевое усилие Т ; ) перемещение либо сдвигающее усилие ; 3) угол наклона нормали θ либо изгибающий момент ; 4) перемещение либо приведенное поперечное усилие Q Q * В том случае, когда выражения изменения кривизн,, берут в упрощенном виде ; ;, уравнения равновесия должны быть также упрощены. Из второго уравнения равновесия (.5) следует отбросить слагаемое Q. Тогда уравнение равновесия (.6) при и принимают вид (*) (*) (*) φ

5 (.8) Если ввести функцию усилий Ф, связанную с усилиями соотношениями Ф Ф Т х Ф ; ; (.9) то два первых уравнения системы (.8) будут удовлетворены тождественно. Исключая из системы (.) перемещения и, приходим к уравнению совместности деформаций γ ε ε Используя далее соотношения упругости (.5) и соотношение (.9), получим следующую систему уравнений: Ф D Ф (.) Уравнения, описывающие потерю устойчивости цилиндрической оболочки, получим при следующих допущениях [].. Оболочка имеет идеально правильную цилиндрическую форму, ее начальное напряженное состояние - безмоментное.. Изменением всех геометрических размеров оболочки в докритическом состоянии пренебрегаем. 3. При потере устойчивости связь между перемещениями и внутренними силовыми факторами в оболочке описывается соотношениями упругости (.4). 4. Оболочка нагружена только приложенными к торцам мертвыми контурными усилиями и внешним гидростатическим давлением интенсивности р р (х, φ). В соответствии с первым допущением в начальном докритическом состоянии в оболочке существуют только внутренние усилия,,, удовлетворяющие уравнениям равновесия безмоментной теории оболочек []: (.) Эти уравнения равновесия вытекают из Рис. 3 уравнений (.5) если в последних положить Q Q, р р и -.

6 Рассмотрим условие равновесия оболочки в отклоненном состоянии (рис. 3). Спроектируем все действующие на элемент усилия (на рис. 3 показано только усилие Т φ ) на направление нормали z и определим фиктивную нормальную нагрузку []. Ф ( ϑ ) ( ϑ ) ( ϑ ) ( ϑ ) (.) Учитывая (.) получим Ф (.3) z Если воспользуемся упрощенными выражениями кривизн и соответствующей им системой уравнений (.), то получим Ф D (.4) Ф В задачах устойчивости однородная система уравнений должна быть подчинена однородным граничным условиям. Так, если на торце замкнутой цилиндрической оболочки задано, то остальные три однородных граничных условия на этом торце будут []: ) либо ; ) либо ; 3) θ либо М. Рис 4. а. Рис. 4 б. Цилиндрическая оболочка. Для получения однородного линеаризованного уравнения, при, описывающего осесимметричную форму потери устойчивости потери устойчивости оболочки, воспользуемся широко известным уравнением изгиба цилиндрической оболочки при осесимметричной нагрузке []. Это (.) нетрудно получить из (.) при и гипотезы о том, как будет меняться геометрия оболочки (Рис. 4 б). 4 d D, (.) 4 d Здесь, как уже отмечалось, () поперечный прогиб оболочки; р z р z (х) интенсивность радиальной осесимметричной нагрузки. Учитывая, что при осесимметричной форме потери устойчивости изменение кривизны d срединной поверхности имеет вид, находим фиктивную радиальную нагрузку d (.3): Ф d d z.

7 Считая, что в начальном состоянии Т х -q,,, и заменяя в уравнении (.) р z на Ф z, приходим к однородному линеаризованному уравнению [] 4 d d D q 4 d d При х и х задаются граничные условия: d,. (.) d Решение краевой задачи (.),(.) имеет вид (х) A sin()/, где число полуволн, по которым изгибается образующая цилиндрической оболочки. Соответствующие собственные значения интенсивности нагрузки равны q D ;,,3... Если число полуволн считать достаточно большим, а величину непрерывно изменяющейся [], то из условия минимума находим dq D dη η 4 4 кр ( ) D h D qкр 3( ) При этом верхнее критическое осевое сжимающее напряжение (при,3) определяется формулой [] qкр E h h σ кр,6 E h 3( ) Неосесимметричные формы потери устойчивости цилиндрической оболочки, сжатой в осевом направлении, в классической постановке можно исследовать с помощью системы уравнений уравнений (.4), которая при Т х -q; Т у, принимает вид D Ф q Ф Если для обоих торцов оболочки задаются граничные условия (то есть при и ):,, ; ; (.4) то решение краевой задачи (.3), (.4) имеет вид η (.3)

8 ) )sin( n B sin( Ф ) )sin( n Asin(, (.5) поскольку в этом случае граничные условия удовлетворяются автоматически. Подставив эти функции в систему уравнений (.3) и сократив общий для всех слагаемых множитель ) )sin( sin( n, получим однородную систему алгебраических уравнений B n A B A q n D Равенство нулю определителя этой системы приводит к собственным значениям нагрузки η η D q n, где n η. При большом числе полуволн n или комплекс η можно рассматривать как непрерывно изменяющийся параметр []. Определяя условие минимума q n по этому параметру, снова приходим к формуле ) 3( D q кр, причем критическое значение комплекса η равно h D кр ) 3( η. Заметим, что при n кр происходи осесимметричная потеря устойчивости. Итак, оболочка становится неустойчивой, когда осевое сжимающее напряжение превысит значение h E кр ) 3( σ. Суммарная критическая сжимающая сила [] ) 3( σ h P кр кр Сложность построения математической модели оболочки с вырезами и ее аналитического изучения делает целесообразным конечно-элементный анализ, выполняемый, например, с помощью пакета программ ANY. Численный анализ устойчивости цилиндрической оболочки.

9 Рис. 5 Цилиндрическая оболочка в ANY Параметры цилиндрической оболочки: длина Н 4 м; толщина оболочки Н.5 м; радиус.5 м; коэффициент Пуассона.3; модуль Юнга Е * Па; плотность ρ 785 кг/м 3. Цилиндр построен так (рис.5), что его сечение плоскостью O представляет собой окружность радиусом, а, образующая цилиндра направлена вдоль оси z. Рис. 6 а. Рис. 6 б. Внешняя нагрузка Кинематические условия Далее при решении задачи с помощью ANY следует задать граничные условия (рис. 6 б) и внешние усилия (рис.6 а). Следует отметить, что при моделировании в ANY объекты должны быть закреплены, чтобы не допускалось свободное перемещение оболочки по какой-либо из шести степеней свободы как абсолютно твердого тела. Граничные условия задаются с учетом симметрии, согласно которой точки, находящиеся в сечении цилиндра, находящемся на расстоянии половины длины цилиндра от любого из торцов, не могут перемещаться вдоль оси z (на рисунке 6 б эти точки расположены на торце, находящемся в верхнем правом углу). Точкам, расположенным на торце оболочки, запрещается перемещение в плоскости O (на рисунке 6 б эти точки расположены на торце, находящемся в нижнем левом углу). Точкам, расположенным на окружности, лежащей в плоскости симметрии, запрещается перемещение вдоль оси z. Далее, для решения задачи, строилась сетка с конечными элементами he93. Полученные результаты содержатся в таблице и отражены на рисунках.

10 длина элемента сетки.5. критическое усилие σ (Н).73963E8.7396E8 критическое усилие σ (Н).73963E8.7396E8 критическое усилие σ (Н).7739E8.774E8 Рис. 7 а. ( ) Рис. 8 а. ( ) Первая форма потери устойчивости, вид сверху. (Для наглядности, все виды сверху немного увеличены). Рис. 7 б. ( ) Рис. 8 б. ( ) Первая форма потери устойчивости, вид сбоку.

11 Рис. 7 в. ( ) Рис. 8 в. ( ) Вторая форма потери устойчивости, вид сверху. Рис. 7 г ( ) Рис. 8 г. ( ) Третья форма потери устойчивости, вид сверху. Рис. 7 д. ( ) Рис. 8 д. ( ) Третья форма потери устойчивости, изометрический вид. Формы потери устойчивости не являются ни оссесимметричными, ни шахматными. Критические усилия, полученные теоретическим путем, примерно а раз больше значений, полученных с помощью моделирования в ANY, а следовательно полученные с использованием численного анализа результаты существенно ближе к известным экспериментальным данным, чем теоретические результаты (известно расхождение в 4- раз теоретических и экспериментальных результатов [4]). Это позволяет сделать заключение о высокой степени достоверности результатов. Объясняется это тем, что теоретическая модель не учитывает, например, длину оболочки. При сгущении сетки в раза, критические усилия, моделей, полученные с помощью ANY, практически не изменяются. Также практически не изменяются формы потери устойчивости цилиндрической оболочки. Анализ устойчивости цилиндрической оболочки, имеющей круговые вырезы.

12 Рис. 9 Цилиндрическая оболочка с круговыми вырезами Параметры цилиндрической оболочки: Длина Н 4 м; толщина оболочки Н.5 м; радиус.5 м; коэффициент Пуассона.3; модуль Юнга Е * Па; плотность ρ 785 кг/м 3 ; количество круговых вырезов: 4; радиус вырезов.5 м. В целом цилиндрическая оболочка та же, что и в предыдущей задаче, но только с круговыми вырезами. Граничные условия берутся те же. длина элемента сетки.5. критическое усилие σ (Н) 7.743Е Е7 критическое усилие σ (Н).387Е8.74Е8 критическое усилие σ (Н).397Е8.796Е8 Рис. а. ( ) Рис. а. ( ) Первая форма потери устойчивости, вид сверху. (Для наглядности, все виды сверху немного увеличены).

13 Рис. б. ( ) Рис. б. ( ) Первая форма потери устойчивости. Рис. в. ( ) Рис. в. ( ) Вторая форма потери устойчивости. Рис. г. ( ) Рис. г. ( ) Вторая форма потери устойчивости.

14 Рис. д. ( ) Рис. д. ( ) Третья форма потери устойчивости. Рис. е. ( ) Рис. е. ( ) Третья форма потери устойчивости. Анализ таблиц и рисунков позволяет сделать вывод о том, полученные приближенные решения близки к искомому точному решению, так как при сгущении сетки значения критических усилий и формы потери устойчивости практически не изменились. Список литературы. Алфутов Н. А. Основы расчета на устойчивость упругих систем. М., Машиностроение, с.. Вольмир А. С. Устойчивость деформируемых систем. М., Наука, с. 3. Амбарцумян С. А. Общая теория анизотропных оболочек. М., Наука, с. 4. Пикуль В.В. К теории устойчивости оболочек // Вестник ДВО РАН, 6, N4, с.8-86


АНАЛИЗ СОБСТВЕННЫХ ЧАСТОТ И ФОРМ КОЛЕБАНИЙ СВОБОДНО ОПЕРТОЙ УПРУГОЙ ЦИЛИНДРИЧЕСКОЙ ОБОЛОЧКИ

АНАЛИЗ СОБСТВЕННЫХ ЧАСТОТ И ФОРМ КОЛЕБАНИЙ СВОБОДНО ОПЕРТОЙ УПРУГОЙ ЦИЛИНДРИЧЕСКОЙ ОБОЛОЧКИ УДК 539.3 АНАЛИЗ СОБСТВЕННЫХ ЧАСТОТ И ФОРМ КОЛЕБАНИЙ СВОБОДНО ОПЕРТОЙ УПРУГОЙ ЦИЛИНДРИЧЕСКОЙ ОБОЛОЧКИ к.ф.-м.н. 1 Чигарев А.В., асп. 2 Покульницкий А.Р. 1 Белорусский национальный технический университет,

Подробнее

Матрица жесткости отсека анизотропной цилиндрической оболочки с произвольным поперечным сечением при изгибе, поперечном сдвиге и кручении

Матрица жесткости отсека анизотропной цилиндрической оболочки с произвольным поперечным сечением при изгибе, поперечном сдвиге и кручении Электронный журнал «Труды МАИ». Выпуск 4 www.mai.ru/cience/trudy/ УДК 539.3 Матрица жесткости отсека анизотропной цилиндрической оболочки с произвольным поперечным сечением при изгибе поперечном сдвиге

Подробнее

ДИНАМИКА ОБМОЛАЧИВАЕМОЙ МАССЫ В МСУ

ДИНАМИКА ОБМОЛАЧИВАЕМОЙ МАССЫ В МСУ ДИНАМИКА ОБМОЛАЧИВАЕМОЙ МАССЫ В МСУ Профессор, д.т.н. Богус Ш.Н., студент КубГАУ Лысов Д.С., Пономарев Р.В. Кубанский государственный аграрный университет Краснодар, Россия При увеличении пропускной способности

Подробнее

Л.М. Савельев ТЕОРИЯ ПЛАСТИН И ОБОЛОЧЕК. Методические указания к практическим занятиям

Л.М. Савельев ТЕОРИЯ ПЛАСТИН И ОБОЛОЧЕК. Методические указания к практическим занятиям ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «САМАРСКИЙ ГОСУДАРСТВЕННЫЙ АЭРОКОСМИЧЕСКИЙ УНИВЕРСИТЕТ ИМЕНИ АКАДЕМИКА СП КОРОЛЕВА (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ

Подробнее

РАСЧЕТ ОБОЛОЧЕК ВРАЩЕНИЯ ПЕРЕМЕННОЙ ТОЛЩИНЫ ПРИ ОСЕСИММЕТРИЧНОМ НАГРУЖЕНИИ ПО МЕТОДУ КВАДРАТУР И. С. Ахмедьянов

РАСЧЕТ ОБОЛОЧЕК ВРАЩЕНИЯ ПЕРЕМЕННОЙ ТОЛЩИНЫ ПРИ ОСЕСИММЕТРИЧНОМ НАГРУЖЕНИИ ПО МЕТОДУ КВАДРАТУР И. С. Ахмедьянов УДК 59. РАСЧЕТ ОБОЛОЧЕК ВРАЩЕНИЯ ПЕРЕМЕННОЙ ТОЛЩИНЫ ПРИ ОСЕСИММЕТРИЧНОМ НАГРУЖЕНИИ ПО МЕТОДУ КВАДРАТУР 7 И. С. Ахмедьянов Самарский государственный аэрокосмический университет Рассматривается применение

Подробнее

Сибирский научно-исследовательский институт авиации им. С. А. Чаплыгина, Новосибирск

Сибирский научно-исследовательский институт авиации им. С. А. Чаплыгина, Новосибирск ПРИКЛАДНАЯ МЕХАНИКА И ТЕХНИЧЕСКАЯ ФИЗИКА. 2001. Т. 42, N- 5 193 УДК 539.3 ОБ УРАВНЕНИЯХ КОНЕЧНОГО ИЗГИБА ТОНКОСТЕННЫХ КРИВОЛИНЕЙНЫХ ТРУБ С. В. Левяков Сибирский научно-исследовательский институт авиации

Подробнее

Кроме деформации растяжения или сжатия (см. лекцию 3) материал нагруженного элемента конструкции может испытывать деформацию сдвига.

Кроме деформации растяжения или сжатия (см. лекцию 3) материал нагруженного элемента конструкции может испытывать деформацию сдвига. Сдвиг элементов конструкций Определение внутренних усилий напряжений и деформаций при сдвиге Понятие о чистом сдвиге Закон Гука для сдвига Удельная потенциальная энергия деформации при чистом сдвиге Расчеты

Подробнее

Примеры изгиба пластин

Примеры изгиба пластин Примеры изгиба пластин. Цилиндрический изгиб пластины Рассмотрим пластину, бесконечно длинную в направлении оси, загруженную постоянной в направлении этой оси нагрузкой (рис., а). Вдоль оси нагрузка может

Подробнее

Решение. При кручении возникает напряженное состояние чистого сдвига,. В соответствии с обобщенным законом Гука

Решение. При кручении возникает напряженное состояние чистого сдвига,. В соответствии с обобщенным законом Гука Задача 1 1 Стержень загружен крутящим моментом На поверхности стержня в точке к была замерена главная деформация Требуется определить угол поворота сечения, в котором приложен момент Решение При кручении

Подробнее

Задачи к экзамену Задача 1. Задача 2.

Задачи к экзамену Задача 1. Задача 2. Вопросы к экзамену 1. Модель упругого тела, основные гипотезы и допущения. Механика твердого тела, основные разделы. 2. Внешние и внутренние силы, напряжения и деформации. Принцип независимого действия

Подробнее

Изгиб цилиндрической оболочки при поперечном обтекании ее идеальной жидкостью

Изгиб цилиндрической оболочки при поперечном обтекании ее идеальной жидкостью Глава 2 Изгиб цилиндрической оболочки при поперечном обтекании ее идеальной жидкостью 2.1. Постановка задачи об обтекании цилиндрической оболочки Рассмотрим плоскую деформацию неподвижной бесконечной цилиндрической

Подробнее

Сравнительный анализ решений задачи об изгибе пластины с использованием различных вариантов теории пластин

Сравнительный анализ решений задачи об изгибе пластины с использованием различных вариантов теории пластин #, декабрь 2015 УДК 539.3 Сравнительный анализ решений задачи об изгибе пластины с использованием различных вариантов теории пластин Баксараев Г.Д., студент Россия, 105005, г. Москва, МГТУ им Н.Э. Баумана

Подробнее

Л.4 Прочность, жесткость, устойчивость. Силовые нагрузки элементов

Л.4 Прочность, жесткость, устойчивость. Силовые нагрузки элементов Л. Прочность, жесткость, устойчивость. Силовые нагрузки элементов Под прочностью понимают способность конструкции, ее частей и деталей выдерживать определенную нагрузку без разрушений. Под жесткостью подразумевают

Подробнее

ОПРЕДЕЛЕНИЕ КРИТИЧЕСКОЙ ДИНАМИЧЕСКОЙ НАГРУЗКИ КОМПОЗИЦИОННОЙ ОБОЛОЧКИ ПРИ СЛОЖНОМ ТЕРМОСИЛОВОМ НАГРУЖЕНИИ. Е.А.Ларичев, В.С. Сафронов, И.К.

ОПРЕДЕЛЕНИЕ КРИТИЧЕСКОЙ ДИНАМИЧЕСКОЙ НАГРУЗКИ КОМПОЗИЦИОННОЙ ОБОЛОЧКИ ПРИ СЛОЖНОМ ТЕРМОСИЛОВОМ НАГРУЖЕНИИ. Е.А.Ларичев, В.С. Сафронов, И.К. удк:69.7..:6.9() ОПРЕДЕЛЕНИЕ КРИТИЧЕСКОЙ ДИНАМИЧЕСКОЙ НАГРУЗКИ КОМПОЗИЦИОННОЙ ОБОЛОЧКИ ПРИ СЛОЖНОМ ТЕРМОСИЛОВОМ НАГРУЖЕНИИ. Е.А.Ларичев, В.С. Сафронов, И.К.Туркин В статье представлена методика определения

Подробнее

Тычина К.А. В в е д е н и е.

Тычина К.А. В в е д е н и е. www.tchina.pro Тычина К.А. I В в е д е н и е. «Теоретическая механика» разработала уравнения равновесия тел, считая их абсолютно твёрдыми и неразрушимыми. Курс «Сопротивление материалов», следующий шаг

Подробнее

В сопротивлении материалов различают изгиб плоский, косой и сложный.

В сопротивлении материалов различают изгиб плоский, косой и сложный. Лекция 10 Плоский поперечный изгиб балок. Внутренние усилия при изгибе. Дифференциальные зависимости внутренних усилий. Правила проверки эпюр внутренних усилий при изгибе. Нормальные и касательные напряжения

Подробнее

Лекция 11. Полная система уравнений теории упругости. Уравнения равновесия. Соотношения Коши: (2) z yz. Соотношения Закона Гука (3)

Лекция 11. Полная система уравнений теории упругости. Уравнения равновесия. Соотношения Коши: (2) z yz. Соотношения Закона Гука (3) Полная система уравнений теории упругости si F () i Лекция Полная система уравнений теории упругости. Уравнения совместности деформаций. Уравнения Бельтрами. Уравнения Ламе. Плоское напряженное и плоское

Подробнее

Лекция 3. Плоская задача теории упругости.

Лекция 3. Плоская задача теории упругости. Лекция 3 Плоская задача теории упругости. 3.1 Плоское напряженное состояние. 3. Плоская деформация. 3.3 Основные уравнения плоской задачи. 3.4 Использование функции напряжений 3.5 Решение плоской задачи

Подробнее

. В этот же момент начинается разгрузка. Напряжения, деформации и перемещения естественно начнут изменяться, но они должны

. В этот же момент начинается разгрузка. Напряжения, деформации и перемещения естественно начнут изменяться, но они должны Лекция 9. Теорема о разгрузке. Итак, рассмотрен ряд теорий о поведении материала за пределами упругости. Теперь обратимся к другому вопросу: что будет, если начать разгружать образец, который уже находится

Подробнее

Тычина К.А. XIV Б е з м о м е н т н а я т е о р и я о б о л о ч е к в р а щ е н и я.

Тычина К.А. XIV Б е з м о м е н т н а я т е о р и я о б о л о ч е к в р а щ е н и я. www.ychina.pro Тычина К.А. XIV Б е з м о м е н т н а я т е о р и я о б о л о ч е к в р а щ е н и я. Вспоминаем: Оболочка это тело, один из размеров которого много меньше двух других. Этот наименьший размер

Подробнее

Тычина К.А. В в е д е н и е.

Тычина К.А. В в е д е н и е. Тычина К.А. tychina@mail.ru В в е д е н и е. «Теоретическая механика» разработала уравнения равновесия тел, считая их абсолютно твёрдыми и неразрушимыми. Курс «Сопротивление материалов», следующий шаг

Подробнее

d / ds, N определяющие функции пластичности;

d / ds, N определяющие функции пластичности; УДК 59. ВАРИАНТ РЕШЕНИЯ ЗАДАЧИ БИУРКАЦИИ ЦИЛИНДРИЧЕСКОЙ ОБОЛОЧКИ ПРИ КОМБИНИРОВАННОМ НАГРУЖЕНИИ Н.Л. Охлопков.В. Нигоматулин А.К. Самхарадзе Решение задачи бифуркации тонкостенной круговой цилиндрической

Подробнее

ТЕХНИЧЕСКАЯ МЕХАНИКА

ТЕХНИЧЕСКАЯ МЕХАНИКА Белорусский государственный университет Механико-математический факультет Кафедра теоретической и прикладной механики ТЕХНИЧЕСКАЯ МЕХАНИКА Тема 5. РАСЧЕТ ТОЛСТОСТЕННЫХ ЦИЛИНДРОВ 4.. ПОСТАНОВКА ЗАДАЧИ Цилиндр

Подробнее

3. СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ

3. СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ 3. СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ 3.1. Сопротивление материалов. Задачи и определения. Сопротивление материалов - наука о прочности, жесткости и устойчивости элементов инженерных конструкций. Первая задача сопротивления

Подробнее

РАСЧЕТ ГОФРИРОВАННОЙ ПО ДВУМ КООРДИНАТНЫМ ОСЯМ ЦИЛИНДРИЧЕСКОЙ ОБОЛОЧКИ

РАСЧЕТ ГОФРИРОВАННОЙ ПО ДВУМ КООРДИНАТНЫМ ОСЯМ ЦИЛИНДРИЧЕСКОЙ ОБОЛОЧКИ УДК 64.074.4 РАСЧЕТ ГОФРИРОВАННОЙ ПО ДВУМ КООРДИНАТНЫМ ОСЯМ ЦИЛИНДРИЧЕСКОЙ ОБОЛОЧКИ В.Ф. УВАКИН, В.Б. ОЛЬКОВА Институт техники, технологии и управления Балаково При расчете упругой характеристики гофрированная

Подробнее

Оглавление Введение... 3

Оглавление Введение... 3 Оглавление Введение... 3 Глава 1. Основные предпосылки, понятия и определения, используемые в курсе сопротивления материалов - механике материалов и конструкций... 4 1.1. Модель материала. Основные гипотезы

Подробнее

Расчет круглого звена цепи

Расчет круглого звена цепи Расчет круглого звена цепи Дана цепь с круглыми звеньями (Рис. ). Для одного звена необходимо: Построить эпюру изгибающих моментов, найти максимальный момент и опасное сечение; Найти изменение размера

Подробнее

удлинениям. Обозначив продольную силу в первом стержне N 1, для второго

удлинениям. Обозначив продольную силу в первом стержне N 1, для второго Задача Система, состоящая из трех одинаковых стержней с равными параметрами l, A, E, загружена наклонной силой F. При каком угле наклона силы α (см. рис.) точка приложения силы будет смещаться по вертикали?

Подробнее

5. КЛАССИФИКАЦИЯ ВИДОВ ИЗГИБА

5. КЛАССИФИКАЦИЯ ВИДОВ ИЗГИБА Прямой и поперечный изгиб. 5. КЛАССИФИКАЦИЯ ВИДОВ ИЗГИБА Изгиб стержня вид нагружения, при котором в поперечных сечениях возникают изгибающие моменты и (или) (N = 0, T = 0).. Чистый изгиб. Поперечный изгиб

Подробнее

ЭФФЕКТЫ ВТОРОГО ПОРЯДКА И ПРИНЦИП СЕН-ВЕНАНА В ЗАДАЧЕ КРУЧЕНИЯ НЕЛИНЕЙНО-УПРУГОГО СТЕРЖНЯ

ЭФФЕКТЫ ВТОРОГО ПОРЯДКА И ПРИНЦИП СЕН-ВЕНАНА В ЗАДАЧЕ КРУЧЕНИЯ НЕЛИНЕЙНО-УПРУГОГО СТЕРЖНЯ ПРИКЛАДНАЯ МЕХАНИКА И ТЕХНИЧЕСКАЯ ФИЗИКА. 26. Т. 47, N- 6 129 УДК 539.3 ЭФФЕКТЫ ВТОРОГО ПОРЯДКА И ПРИНЦИП СЕН-ВЕНАНА В ЗАДАЧЕ КРУЧЕНИЯ НЕЛИНЕЙНО-УПРУГОГО СТЕРЖНЯ В. В. Калашников, М. И. Карякин Ростовский

Подробнее

А. А. Семенов, А. А. Овчаров. Математическая модель деформирования ортотропных конических оболочек

А. А. Семенов, А. А. Овчаров. Математическая модель деформирования ортотропных конических оболочек А. А. Семенов, А. А. Овчаров Математическая модель деформирования ортотропных конических оболочек Введение Наиболее широкое применение конические оболочки находят в авиационной технике и машиностроении.

Подробнее

В. Л. Якушев, Д. Г. Кучерявенко. Расчет сильфонов с учетом геометрической нелинейности

В. Л. Якушев, Д. Г. Кучерявенко. Расчет сильфонов с учетом геометрической нелинейности Стр. 1 из 7 22.09.2010 15:42 В. Л. Якушев, Д. Г. Кучерявенко Расчет сильфонов с учетом геометрической нелинейности Предлагается численный метод и алгоритм расчета сильфонов с косинусоидальной гофрировкой

Подробнее

17. ЭНЕРГЕТИЧЕСКИЕ МЕТОДЫ РАСЧЕТА ДЕФОРМАЦИЙ УПРУГИХ СИСТЕМ

17. ЭНЕРГЕТИЧЕСКИЕ МЕТОДЫ РАСЧЕТА ДЕФОРМАЦИЙ УПРУГИХ СИСТЕМ Лекция 17 Энергетические методы расчета упругих систем. Потенциальная энергия деформации. Обобщенные силы и обобщенные перемещения. Основные энергетические уравнения механики (теорема Кастильяно). Метод

Подробнее

Труды международного симпозиума «Надежность и качество 2009», Пенза том 1

Труды международного симпозиума «Надежность и качество 2009», Пенза том 1 Труды международного симпозиума «Надежность и качество 009», Пенза том Горячев ВЯ, Савин АВ ОПРЕДЕЛЕНИЕ СВЯЗИ МЕЖДУ УСКОРЕНИЕМ И ПОПЕРЕЧНОЙ ДЕФОРМАЦИЕЙ УПРУГОГО ЭЛЕМЕНТА ДАТЧИКА Упругий элемент является

Подробнее

Потеря устойчивости круговой цилиндрической оболочки под действием равномерного осевого сжатия. Если приведенная длина оболочки

Потеря устойчивости круговой цилиндрической оболочки под действием равномерного осевого сжатия. Если приведенная длина оболочки Потеря устойчивости круговой цилиндрической оболочки под действием равномерного осевого сжатия При осевом сжатии цилиндрическая оболочка может сохранять свою первоначальную цилиндрическую форму лишь при

Подробнее

ТЕОРИЯ И КРИТЕРИИ ОБРАЗОВАНИЯ СУКРУТИН ПРИ ВЯЗАНИИ

ТЕОРИЯ И КРИТЕРИИ ОБРАЗОВАНИЯ СУКРУТИН ПРИ ВЯЗАНИИ УДК [677.05.07.5. : 677.5] : 677.07. ТЕОРИЯ И КРИТЕРИИ ОБРАЗОВАНИЯ СУКРУТИН ПРИ ВЯЗАНИИ В. П. ЩЕРБАКОВ, В. А. ЗАВАРУЕВ (Московский государственный текстильный университет им. А. Н. Косыгина) Особую важность

Подробнее

Задача 1. Рис.1.1. Решение.

Задача 1. Рис.1.1. Решение. Задача 1 Стержень квадратного поперечного сечения со стороной квадрата равной a и длиной 2l изготовлен из изотропного упругого материала с модулем упругости и коэффициентом Пуассона μ. Стержень вставляется

Подробнее

Рабочая программа дисциплины (с аннотацией) Математические модели процесса потери устойчивости динамических систем

Рабочая программа дисциплины (с аннотацией) Математические модели процесса потери устойчивости динамических систем Министерство образования и науки Российской Федерации ФГБОУ ВО «Тверской государственный университет» Утверждаю: Руководитель ООП: 20 г. Рабочая программа дисциплины (с аннотацией) Математические модели

Подробнее

ЛАБОРАТОРНАЯ РАБОТА 1-11: ОПРЕДЕЛЕНИЕ МОДУЛЯ СДВИГА ПРИ ПОМОЩИ КРУТИЛЬНЫХ КОЛЕБАНИЙ

ЛАБОРАТОРНАЯ РАБОТА 1-11: ОПРЕДЕЛЕНИЕ МОДУЛЯ СДВИГА ПРИ ПОМОЩИ КРУТИЛЬНЫХ КОЛЕБАНИЙ Доц. Кузьменко В.С. ЛАБОРАТОРНАЯ РАБОТА -: ОПРЕДЕЛЕНИЕ МОДУЛЯ СДВИГА ПРИ ПОМОЩИ КРУТИЛЬНЫХ КОЛЕБАНИЙ Студент группы Допуск Выполнение Защита Цель работы: изучить виды деформации твердого тела и определить

Подробнее

ПЕРЕСТРОЙКА ГАРМОНИК ПРИ ИЗГИБЕ ЦИЛИНДРИЧЕСКОЙ ОБОЛОЧКИ ВСЛЕДСТВИЕ ДИНАМИЧЕСКОГО СЖАТИЯ. М. А. Ильгамов

ПЕРЕСТРОЙКА ГАРМОНИК ПРИ ИЗГИБЕ ЦИЛИНДРИЧЕСКОЙ ОБОЛОЧКИ ВСЛЕДСТВИЕ ДИНАМИЧЕСКОГО СЖАТИЯ. М. А. Ильгамов ПРИКЛАДНАЯ МЕХАНИКА И ТЕХНИЧЕСКАЯ ФИЗИКА. 2. Т. 52, N- 67 УДК 54 ПЕРЕСТРОЙКА ГАРМОНИК ПРИ ИЗГИБЕ ЦИЛИНДРИЧЕСКОЙ ОБОЛОЧКИ ВСЛЕДСТВИЕ ДИНАМИЧЕСКОГО СЖАТИЯ М. А. Ильгамов Институт механики Уфимского научного

Подробнее

Кручение простой вид сопротивления (нагружения), при котором на стержень действуют моменты в плоскостях, перпендикулярных к продольной оси стержня.

Кручение простой вид сопротивления (нагружения), при котором на стержень действуют моменты в плоскостях, перпендикулярных к продольной оси стержня. Кручение стержней с круглым поперечным сечением. Внутренние усилия при кручении, напряжения и деформации. Напряженное состояние и разрушение при кручении. Расчет на прочность и жесткость вала круглого

Подробнее

Министерство образования и науки Российской Федерации. Нижегородский государственный университет им. Н.И. Лобачевского

Министерство образования и науки Российской Федерации. Нижегородский государственный университет им. Н.И. Лобачевского Министерство образования и науки Российской Федерации Нижегородский государственный университет им. Н.И. Лобачевского Национальный исследовательский университет Учебно-научный и инновационный комплекс

Подробнее

6.1 Работа силы на перемещении

6.1 Работа силы на перемещении 6. ПРИНЦИП ВОЗМОЖНЫХ ПЕРЕМЕЩЕНИЙ. ТЕОРЕМА ВЗАИМНОСТИ РАБОТ ФОРМУЛА МАКСВЕЛЛА-МОРА 6.1 Работа силы на перемещении Пусть к точке приложена сила F и точка получает перемещение u по направлению действия силы

Подробнее

УСТОЙЧИВОСТЬ КОЛЬЦЕВОЙ ПЛАСТИНЫ ИЗ СПЛАВА С ПАМЯТЬЮ ФОРМЫ. А. А. Мовчан, И. А. Мовчан, Л. Г. Сильченко

УСТОЙЧИВОСТЬ КОЛЬЦЕВОЙ ПЛАСТИНЫ ИЗ СПЛАВА С ПАМЯТЬЮ ФОРМЫ. А. А. Мовчан, И. А. Мовчан, Л. Г. Сильченко 44 ПРИКЛАДНАЯ МЕХАНИКА И ТЕХНИЧЕСКАЯ ФИЗИКА. 0. Т. 5, N- УДК 539.4 УСТОЙЧИВОСТЬ КОЛЬЦЕВОЙ ПЛАСТИНЫ ИЗ СПЛАВА С ПАМЯТЬЮ ФОРМЫ А. А. Мовчан, И. А. Мовчан, Л. Г. Сильченко Институт прикладной механики РАН,

Подробнее

О двойственности решения задачи отыскания относительной жесткости упругих краевых ребер цилиндрической оболочки

О двойственности решения задачи отыскания относительной жесткости упругих краевых ребер цилиндрической оболочки УДК 534.113 + 517.984.54 О двойственности решения задачи отыскания относительной жесткости упругих краевых ребер цилиндрической оболочки по двум собственным частотам ее осесимметричных колебаний А. М.

Подробнее

ТЕХНИЧЕСКАЯ МЕХАНИКА

ТЕХНИЧЕСКАЯ МЕХАНИКА Белорусский государственный университет Механико-математический факультет Кафедра теоретической и прикладной механики ТЕХНИЧЕСКАЯ МЕХАНИКА Тема 3. НАПРЯЖЕНИЯ В БРУСЬЯХ ПРИ РАСТЯЖЕНИИ- СЖАТИИ, КРУЧЕНИИ,

Подробнее

УДК Мирсалимов М. В. ЗАРОЖДЕНИЕ ТРЕЩИНЫ В ПОЛОСЕ ПЕРЕМЕННОЙ ТОЛЩИНЫ. (Тульский государственный университет)

УДК Мирсалимов М. В. ЗАРОЖДЕНИЕ ТРЕЩИНЫ В ПОЛОСЕ ПЕРЕМЕННОЙ ТОЛЩИНЫ. (Тульский государственный университет) ВЕСТНИК ЧГПУ им И Я ЯКОВЛЕВА МЕХАНИКА ПРЕДЕЛЬНОГО СОСТОЯНИЯ 7 УДК 5975 Мирсалимов М В ЗАРОЖДЕНИЕ ТРЕЩИНЫ В ПОЛОСЕ ПЕРЕМЕННОЙ ТОЛЩИНЫ (Тульский государственный университет) Рассматривается задача механики

Подробнее

СПИСОК ЭКЗАМЕНАЦИОННЫХ ВОПРОСОВ ПО «СОПРОТИВЛЕНИЮ МАТЕРИАЛОВ» 1) ДЛЯ СТУДЕНТОВ СПЕЦИАЛЬНОСТИ ПТМ

СПИСОК ЭКЗАМЕНАЦИОННЫХ ВОПРОСОВ ПО «СОПРОТИВЛЕНИЮ МАТЕРИАЛОВ» 1) ДЛЯ СТУДЕНТОВ СПЕЦИАЛЬНОСТИ ПТМ СПИСОК ЭКЗАМЕНАЦИОННЫХ ВОПРОСОВ ПО «СОПРОТИВЛЕНИЮ МАТЕРИАЛОВ» (часть 1) ДЛЯ СТУДЕНТОВ СПЕЦИАЛЬНОСТИ ПТМ 2014-2015 уч. год 1. Какие допущения о свойствах материалов приняты в курсе "Сопротивление материалов

Подробнее

УДК Семененко Н.В., Годунова Д.И. Харьковский государственный технический университет строительства и архитектуры

УДК Семененко Н.В., Годунова Д.И. Харьковский государственный технический университет строительства и архитектуры УДК 64.04 Семененко Н.В. Годунова Д.И. Харьковский государственный технический университет строительства и архитектуры ИССЛЕДОВАНИЕ ВЛИЯНИЯ ГЕОМЕТРИИ ТОРОВОЙ ОБОЛОЧКИ С ШПАНГОУТАМИ НА КОНТАКТНЫЕ СИЛЫ Задача

Подробнее

Об определении переменной жёсткости круглой пластины

Об определении переменной жёсткости круглой пластины Вычислительные технологии Том 17, 6, 212 Об определении переменной жёсткости круглой пластины Т. А. Аникина 1, А. О. Ватульян 2, П. С. Углич 3 1 Донской государственный технический университет, Ростов-на-Дону,

Подробнее

p = λ x x x x (. (7.3) 3xx

p = λ x x x x (. (7.3) 3xx 7 НЕКОТОРЫЕ КЛАССИЧЕСКИЕ ЗАДАЧИ ТЕОРИИ УПРУГОСТИ 7 Задача о всестороннем равномерном давлении на тело Одна из простейших задач теории упругости это задача о теле произвольной формы, нагруженном всесторонним

Подробнее

ОПТИМИЗАЦИЯ ПОДКРЕПЛЕННОЙ РЕБРАМИ ПЛАСТИНЫ ПО КРИТЕРИЮ УСТОЙЧИВОСТИ В.А. Постнов, Г.А. Тумашик

ОПТИМИЗАЦИЯ ПОДКРЕПЛЕННОЙ РЕБРАМИ ПЛАСТИНЫ ПО КРИТЕРИЮ УСТОЙЧИВОСТИ В.А. Постнов, Г.А. Тумашик ПРОБЛЕМЫ ПРОЧНОСТИ И ПЛАСТИЧНОСТИ вып. 67 5 г. УДК 59. 6 ОПТИМИЗАЦИЯ ПОДКРЕПЛЕННОЙ РЕБРАМИ ПЛАСТИНЫ ПО КРИТЕРИЮ УСТОЙЧИВОСТИ В.А. Постнов Г.А. Тумашик Санкт-Петербург Приведено точное решение задачи устойчивости

Подробнее

Лекция 19 Вычисление перемещений по формуле Мора 19.1 Формула Мора Вычисление интеграла Мора по правилу Верещагина Примеры вычислений

Лекция 19 Вычисление перемещений по формуле Мора 19.1 Формула Мора Вычисление интеграла Мора по правилу Верещагина Примеры вычислений Лекция 19 Вычисление перемещений по формуле Мора 191 Формула Мора 192 Вычисление интеграла Мора по правилу Верещагина 193 Примеры вычислений перемещений по формуле Мора при кручении, растяжении-сжатии

Подробнее

Анализ напряженно-деформированного состояния зубьев цилиндрической зубчатой передачи в области контакта

Анализ напряженно-деформированного состояния зубьев цилиндрической зубчатой передачи в области контакта УДК 6.833.5 САВЕНКОВ В. Н., к.т.н., доцент (ДонНТУ); ТИМОХИН Ю. В., к.т.н., доцент (ДонИЖТ); ТИМОХИНА В. Ю., ассистент (ДонИЖТ). Анализ напряженно-деформированного состояния зубьев цилиндрической зубчатой

Подробнее

ВЛИЯНИЕ ФОРМЫ ОСЕСИММЕТРИЧНОЙ НАГРУЗКИ НА НАПРЯЖЕННО-ДЕФОРМИРОВАННОЕ СОСТОЯНИЕ УПРУГОПЛАСТИЧЕСКОГО ПОЛУПРОСТРАНСТВА

ВЛИЯНИЕ ФОРМЫ ОСЕСИММЕТРИЧНОЙ НАГРУЗКИ НА НАПРЯЖЕННО-ДЕФОРМИРОВАННОЕ СОСТОЯНИЕ УПРУГОПЛАСТИЧЕСКОГО ПОЛУПРОСТРАНСТВА Системы Методы Технологии К 594 ПМ Огар* ВА Тарасов ВЛИЯНИЕ ФОРМЫ ОСЕСИММЕТРИЧНОЙ НАГРУЗКИ НА НАПРЯЖЕННО-ДЕФОРМИРОВАННОЕ СОСТОЯНИЕ УПРУГОПЛАСТИЧЕСКОГО ПОЛУПРОСТРАНСТВА Получены выражения описывающие напряженно-деформированное

Подробнее

ТЕОРИЯ УПРУГОСТИ. Л.Т. Шкелев, А.Н. Станкевич

ТЕОРИЯ УПРУГОСТИ. Л.Т. Шкелев, А.Н. Станкевич МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ Киевский национальный университет строительства и архитектуры ЛТ Шкелев, АН Станкевич ТЕОРИЯ УПРУГОСТИ Конспект лекций для иностранных студентов, которые учатся

Подробнее

Рассмотрим стержень упруго растянутый центрально приложенными сосредоточенными

Рассмотрим стержень упруго растянутый центрально приложенными сосредоточенными Растяжение (сжатие) элементов конструкций. Определение внутренних усилий, напряжений, деформаций (продольных и поперечных). Коэффициент поперечных деформаций (коэффициент Пуассона). Гипотеза Бернулли и

Подробнее

главному вектору R, R, R и главному

главному вектору R, R, R и главному Лекция 08 Общий случай сложного сопротивления Косой изгиб Изгиб с растяжением или сжатием Изгиб с кручением Методики определения напряжений и деформаций, использованные при решении частных задач чистого

Подробнее

Ульяновский государственный технический университет, Ульяновск

Ульяновский государственный технический университет, Ульяновск 36 ПРИКЛАДНАЯ МЕХАНИКА И ТЕХНИЧЕСКАЯ ФИЗИКА. 211. Т. 52, N- 4 УДК 622.233.6 ВЫЧИСЛЕНИЕ КРИТИЧЕСКОЙ СКОРОСТИ СТУПЕНЧАТОЙ СТЕРЖНЕВОЙ СИСТЕМЫ ПРИ ПРОДОЛЬНОМ УДАРЕ А. А. Битюрин Ульяновский государственный

Подробнее

Тема 2 Основные понятия. Лекция 2

Тема 2 Основные понятия. Лекция 2 Тема 2 Основные понятия. Лекция 2 2.1 Сопротивление материалов как научная дисциплина. 2.2 Схематизация элементов конструкций и внешних нагрузок. 2.3 Допущения о свойствах материала элементов конструкций.

Подробнее

5. ОСНОВЫ ТЕОРИИ НАПРЯЖЕННОГО СОСТОЯНИЯ 5.1. Напряжения в точке. Главные напряжения и главные площадки

5. ОСНОВЫ ТЕОРИИ НАПРЯЖЕННОГО СОСТОЯНИЯ 5.1. Напряжения в точке. Главные напряжения и главные площадки Теория напряженного состояния Понятие о тензоре напряжений, главные напряжения Линейное, плоское и объемное напряженное состояние Определение напряжений при линейном и плоском напряженном состоянии Решения

Подробнее

Вопросы к вступительным экзаменам в аспирантуру по специальности « Строительная механика»

Вопросы к вступительным экзаменам в аспирантуру по специальности « Строительная механика» Вопросы к вступительным экзаменам в аспирантуру по специальности «05.23.17 Строительная механика» СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ Основные понятия 1. Задачи сопротивления материалов. Стержень. Основные гипотезы

Подробнее

1. УЧЕБНЫЙ ПЛАН ДИСЦИПЛИНЫ 2. ЦЕЛИ И ЗАДАЧИ ДИСЦИПЛИНЫ

1. УЧЕБНЫЙ ПЛАН ДИСЦИПЛИНЫ 2. ЦЕЛИ И ЗАДАЧИ ДИСЦИПЛИНЫ 3 СОДЕРЖАНИЕ 1. УЧЕБНЫЙ ПЛАН ДИСЦИПЛИНЫ...4 2. ЦЕЛИ И ЗАДАЧИ ДИСЦИПЛИНЫ...4 2.1. Цель преподавания дисциплины...4 2.2. Задачи изучения дисциплины...4 2.3. Перечень базовых дисциплин...5 2.4. Перечень дисциплин,

Подробнее

Л.М. Савельев. Теория пластин и оболочек Конспект лекций

Л.М. Савельев. Теория пластин и оболочек Конспект лекций ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «САМАРСКИЙ ГОСУДАРСТВЕННЫЙ АЭРОКОСМИЧЕСКИЙ УНИВЕРСИТЕТ ИМЕНИ АКАДЕМИКА С.П. КОРОЛЕВА (НАЦИОНАЛЬНЫЙ

Подробнее

Следующим шагом является отыскание x наиболее напряженного сечения. Для этого A

Следующим шагом является отыскание x наиболее напряженного сечения. Для этого A Лекция 05 Изгиб Проверка прочности балок Опыт показывает, что при нагружении призматического стержня с прямой осью силами и парами сил, расположенными в плоскости симметрии, наблюдаются деформации изгиба

Подробнее

Институт гидродинамики им. М. А. Лаврентьева СО РАН, Новосибирск

Институт гидродинамики им. М. А. Лаврентьева СО РАН, Новосибирск 36 ПРИКЛАДНАЯ МЕХАНИКА И ТЕХНИЧЕСКАЯ ФИЗИКА. 200. Т. 42, N- 6 УДК 539.3 ПЛОСКАЯ ЗАДАЧА ТЕОРИИ УПРУГОСТИ ДЛЯ НЕОДНОРОДНОГО СЛОИСТОГО ТЕЛА А. Е. Алексеев, В. В. Алехин, Б. Д. Аннин Институт гидродинамики

Подробнее

Определение прогибов балок с гофрированной стенкой с учетом сдвиговых деформаций

Определение прогибов балок с гофрированной стенкой с учетом сдвиговых деформаций Определение прогибов балок с гофрированной стенкой с учетом сдвиговых деформаций А.О. Лукин Двутавровые балки с гофрированными стенками (БГС активно применяют в современном строительстве. Согласно работам

Подробнее

Тычина К.А. И з г и б.

Тычина К.А. И з г и б. Тычина К.А. tchina@mail.ru V И з г и б. Изгиб вид нагружения, при котором в поперечных сечениях стержня возникают внутренние изгибающие моменты и (или) : упругая ось стержня стержень Рис. V.1. М изг М

Подробнее

Лабораторная работа 8 ОПРЕДЕЛЕНИЕ МОДУЛЯ СДВИГА МЕТОДОМ КРУТИЛЬНЫХ КОЛЕБАНИЙ. Краткая теория

Лабораторная работа 8 ОПРЕДЕЛЕНИЕ МОДУЛЯ СДВИГА МЕТОДОМ КРУТИЛЬНЫХ КОЛЕБАНИЙ. Краткая теория Лабораторная работа 8 ОПРЕДЕЛЕНИЕ МОДУЛЯ СДВИГА МЕТОДОМ КРУТИЛЬНЫХ КОЛЕБАНИЙ. Цель работы: определить модуль сдвига материала проволоки методом крутильных колебаний. Краткая теория. Деформация кручения

Подробнее

Анализ применимости различных типов КЭ САПР I-DEAS для моделирования судовых конструкций при низкой степени дискретизации

Анализ применимости различных типов КЭ САПР I-DEAS для моделирования судовых конструкций при низкой степени дискретизации Анализ применимости различных типов КЭ САПР I-DEAS для моделирования судовых конструкций при низкой степени дискретизации Нижний Новгород 2008 Содержание Введение 4 1 Исследование влияния типов КЭ, начальных

Подробнее

ЛЕКЦИЯ 20 Энергетические методы определения перемещений. 1 Обобщенные силы и перемещения

ЛЕКЦИЯ 20 Энергетические методы определения перемещений. 1 Обобщенные силы и перемещения В.Ф. ДЕМЕНКО МЕХАНИКА МАТЕРИАЛОВ И КОНСТРУКЦИЙ 013 1 ЛЕКЦИЯ 0 Энергетические методы определения перемещений 1 Обобщенные силы и перемещения Обобщенной силой (ОС) называется некоторое внешнее силовое воздействие

Подробнее

УДК c Н.С. Бондаренко

УДК c Н.С. Бондаренко ISSN 683-470 Труды ИПММ НАН Украины. 009. Том 8 УДК 53.3 c 009. Н.С. Бондаренко ФУНДАМЕНТАЛЬНОЕ РЕШЕНИЕ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ ТЕРМОУПРУГОСТИ {,0-АППРОКСИМАЦИИ ДЛЯ ТРАНСВЕРСАЛЬНО-ИЗОТРОПНЫХ ПЛАСТИН

Подробнее

1. Расчет оболочек. Рис Система координат оболочки. γ h/2 ds α. =Adα ds β. =Bdβ. h/2 α R 1 R 2

1. Расчет оболочек. Рис Система координат оболочки. γ h/2 ds α. =Adα ds β. =Bdβ. h/2 α R 1 R 2 3 Содержание Введение...4 1. Расчет оболочек...5 1.1. Безмоментная теория оболочек...5 1.1.1. Основные определения...5 1.1.. Основные соотношения безмоментной теории оболочек вращения...8 1.1.3. Осесимметричное

Подробнее

В.А. МОДЕЛИРОВАНИЕ НЕСТАЦИОНАРНЫХ ПРОЦЕССОВ В КОНСТРУКЦИЯХ РЭС ЦИЛИНДРИЧЕСКОЙ ФОРМЫ ПРИ УДАРНОМ ВОЗБУЖДЕНИИ МОДЕЛИ

В.А. МОДЕЛИРОВАНИЕ НЕСТАЦИОНАРНЫХ ПРОЦЕССОВ В КОНСТРУКЦИЯХ РЭС ЦИЛИНДРИЧЕСКОЙ ФОРМЫ ПРИ УДАРНОМ ВОЗБУЖДЕНИИ МОДЕЛИ Таньков Г.В., Селиванов В.Ф., Трусов В.А. МОДЕЛИРОВАНИЕ НЕСТАЦИОНАРНЫХ ПРОЦЕССОВ В КОНСТРУКЦИЯХ РЭС ЦИЛИНДРИЧЕСКОЙ ФОРМЫ ПРИ УДАРНОМ ВОЗБУЖДЕНИИ МОДЕЛИ Действие динамических внешних нагрузок на радиоэлектронные

Подробнее

НЕКОТОРЫЕ ГЕОМЕТРИЧЕСКИ НЕЛИНЕЙНЫЕ ЗАДАЧИ ФОРМОИЗМЕНЕНИЯ НЕУПРУГИХ ПЛАСТИН И ПОЛОГИХ ОБОЛОЧЕК

НЕКОТОРЫЕ ГЕОМЕТРИЧЕСКИ НЕЛИНЕЙНЫЕ ЗАДАЧИ ФОРМОИЗМЕНЕНИЯ НЕУПРУГИХ ПЛАСТИН И ПОЛОГИХ ОБОЛОЧЕК ПРИКЛАДНАЯ МЕХАНИКА И ТЕХНИЧЕСКАЯ ФИЗИКА. 2005. Т. 46, N- 2 151 УДК 539.37 НЕКОТОРЫЕ ГЕОМЕТРИЧЕСКИ НЕЛИНЕЙНЫЕ ЗАДАЧИ ФОРМОИЗМЕНЕНИЯ НЕУПРУГИХ ПЛАСТИН И ПОЛОГИХ ОБОЛОЧЕК И. Ю. Цвелодуб Институт гидродинамики

Подробнее

РАСЧЕТ НАПРЯЖЕННО-ДЕФОРМИРОВАННОГО СОСТОЯНИЯ ЭЛЕМЕНТОВ ОБОЛОЧЕК СПЛАЙНОВЫМ ВАРИАНТОМ МЕТОДА КОНЕЧНЫХ ЭЛЕМЕНТОВ

РАСЧЕТ НАПРЯЖЕННО-ДЕФОРМИРОВАННОГО СОСТОЯНИЯ ЭЛЕМЕНТОВ ОБОЛОЧЕК СПЛАЙНОВЫМ ВАРИАНТОМ МЕТОДА КОНЕЧНЫХ ЭЛЕМЕНТОВ УДК 59. Х.Г. Киямов кандидат технических наук доцент кафедры прикладной математики Н.М. Якупов доктор технических наук профессор кафедры строительной механики заведующий лабораторией ИММ КазНЦ РАН И.Х.

Подробнее

ПРИБОРЫ ТОЧНОЙ МЕХАНИКИ

ПРИБОРЫ ТОЧНОЙ МЕХАНИКИ ПРИБОРЫ ТОЧНОЙ МЕХАНИКИ УДК 6.69.4 С. П. ПИРОГОВ, А. Ю. ЧУБА РАСЧЕТ ЧАСТОТ СОБСТВЕННЫХ КОЛЕБАНИЙ МАНОМЕТРИЧЕСКИХ ТРУБЧАТЫХ ПРУЖИН Представлен вывод уравнений движения манометрической трубчатой пружины.

Подробнее

Тычина К.А. И з г и б.

Тычина К.А. И з г и б. www.tchina.pro Тычина К.А. V И з г и б. Изгибом называется такой вид нагружения стержня, при котором в его поперечных сечениях остаётся не равным нулю только внутренний изгибающий момент. Прямым изгибом

Подробнее

1. Рассматривается оболочка вращения, срединная поверхность которой представляет собой катеноид поверхность, образуемую вращением цепной линии.

1. Рассматривается оболочка вращения, срединная поверхность которой представляет собой катеноид поверхность, образуемую вращением цепной линии. УДК 59.7 НАПРЯЖЕННО-ДЕФОРМИРОВАННОЕ СОСТОЯНИЕ КАТЕНОИДНОЙ ОБОЛОЧКИ ВРАЩЕНИЯ ИЗ ОРТОТРОПНОГО МАТЕРИАЛА М.С. Ганеева З.В. Скворцова ganeeva@kfti.knc.ru ara.skvortsova@mail.ru Для катеноидной оболочки из

Подробнее

Лабораторная работа 5.2 ОПРЕДЕЛЕНИЕ МОДУЛЯ ЮНГА ИЗ ДЕФОРМАЦИИ ИЗГИБА

Лабораторная работа 5.2 ОПРЕДЕЛЕНИЕ МОДУЛЯ ЮНГА ИЗ ДЕФОРМАЦИИ ИЗГИБА Глава 5. Упругие деформации Лабораторная работа 5. ОПРЕДЕЛЕНИЕ МОДУЛЯ ЮНГА ИЗ ДЕФОРМАЦИИ ИЗГИБА Цель работы Определение модуля Юнга материала равнопрочной балки и радиуса кривизны изгиба из измерений стрелы

Подробнее

Белорусский Государственный Университет, г. Минск ПРОИЗВОЛЬНО ОРИЕНТИРОВАННАЯ ТРЕЩИНА В АНИЗОТРОПНОЙ КУСОЧНО-ОДНОРОДНОЙ ПЛОСКОСТИ. Савенков В.А.

Белорусский Государственный Университет, г. Минск ПРОИЗВОЛЬНО ОРИЕНТИРОВАННАЯ ТРЕЩИНА В АНИЗОТРОПНОЙ КУСОЧНО-ОДНОРОДНОЙ ПЛОСКОСТИ. Савенков В.А. Белорусский Государственный Университет г. Минск ПРОИЗВОЛЬНО ОРИЕНТИРОВАННАЯ ТРЕЩИНА В АНИЗОТРОПНОЙ КУСОЧНО-ОДНОРОДНОЙ ПЛОСКОСТИ. Савенков В.А. Two-dieio eticity outio d the te iteity cto e deteied o iite

Подробнее

АНАЛИЗ И ОСОБЕННОСТИ МЕТОДОВ ПРИ РАСЧЕТЕ ПЛАСТИН И ОБОЛОЧЕК НА ИЗГИБ. Авторы : Косауров А.П., Тимофеев П.В Научный руководитель: доцент Скворцов В.И.

АНАЛИЗ И ОСОБЕННОСТИ МЕТОДОВ ПРИ РАСЧЕТЕ ПЛАСТИН И ОБОЛОЧЕК НА ИЗГИБ. Авторы : Косауров А.П., Тимофеев П.В Научный руководитель: доцент Скворцов В.И. АНАЛИЗ И ОСОБЕННОСТИ МЕТОДОВ ПРИ РАСЧЕТЕ ПЛАСТИН И ОБОЛОЧЕК НА ИЗГИБ Авторы : Косауров А.П., Тимофеев П.В Научный руководитель: доцент Скворцов В.И. г. Москва 03 Задачи об изгибе пластин и оболочек играют

Подробнее

Часть 1 Сопротивление материалов

Часть 1 Сопротивление материалов Часть Сопротивление материалов Рисунок Правило знаков Проверки построения эпюр: Эпюра поперечных сил: Если на балке имеются сосредоточенные силы, то на эпюре, должен быть скачок на величину и по направлению

Подробнее

РАСЧЕТ УПРУГОЙ ХАРАКТЕРИСТИКИ ГОФРИРОВАННОЙ В ОКРУЖНОМ И РАДИАЛЬНОМ НАПРАВЛЕНИЯХ МЕМБРАНЫ

РАСЧЕТ УПРУГОЙ ХАРАКТЕРИСТИКИ ГОФРИРОВАННОЙ В ОКРУЖНОМ И РАДИАЛЬНОМ НАПРАВЛЕНИЯХ МЕМБРАНЫ УДК -78 РАСЧЕТ УПРУГОЙ ХАРАКТЕРИСТИКИ ГОФРИРОВАННОЙ В ОКРУЖНОМ И РАДИАЛЬНОМ НАПРАВЛЕНИЯХ МЕМБРАНЫ В.Ф. УВАКИН, В.Б. ОЛЬКОВА Институт техники, технологии и управления Балаково Полученные ранее нелинейные

Подробнее

МАТЕМАТИЧЕСКАЯ МОДЕЛЬ ДИНАМИЧЕСКОЙ ТЕРМОУПРУГОСТИ МИКРОПОЛЯРНЫХ ТОНКИХ БАЛОК Саркисян Л. С.

МАТЕМАТИЧЕСКАЯ МОДЕЛЬ ДИНАМИЧЕСКОЙ ТЕРМОУПРУГОСТИ МИКРОПОЛЯРНЫХ ТОНКИХ БАЛОК Саркисян Л. С. ՇԻՐԱԿԻ Մ ՆԱԼԲԱՆԴՅԱՆԻ ԱՆՎԱՆ ՊԵՏԱԿԱՆ ՀԱՄԱԼՍԱՐԱՆ ШИРАКСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ М НАЛБАНДЯНА SHIRAK STATE UNIVERSITY AFTER M NALBANDYAN У Ч Е Н Ы Е З А П И С К И Գ Ի Տ Ա Կ Ա Ն Տ Ե Ղ Ե Կ Ա Գ Ի

Подробнее

ТОЧНЫЕ И ПРИБЛИЖЕННЫЕ ФОРМУЛЫ ДЛЯ ПРОГИБОВ УПРУГО ЗАКРЕПЛЕННОГО СТЕРЖНЯ ПОД ДЕЙСТВИЕМ ПОПЕРЕЧНОЙ НАГРУЗКИ

ТОЧНЫЕ И ПРИБЛИЖЕННЫЕ ФОРМУЛЫ ДЛЯ ПРОГИБОВ УПРУГО ЗАКРЕПЛЕННОГО СТЕРЖНЯ ПОД ДЕЙСТВИЕМ ПОПЕРЕЧНОЙ НАГРУЗКИ ПРИКЛАДНАЯ МЕХАНИКА И ТЕХНИЧЕСКАЯ ФИЗИКА. 007. Т. 48, N- 5 УДК 539.3 ТОЧНЫЕ И ПРИБЛИЖЕННЫЕ ФОРМУЛЫ ДЛЯ ПРОГИБОВ УПРУГО ЗАКРЕПЛЕННОГО СТЕРЖНЯ ПОД ДЕЙСТВИЕМ ПОПЕРЕЧНОЙ НАГРУЗКИ Ю. В. Захаров, К. Г. Охоткин,

Подробнее

ТЕОРЕТИЧЕСКАЯ МЕХАНИКА ЛЕКЦИЯ 3

ТЕОРЕТИЧЕСКАЯ МЕХАНИКА ЛЕКЦИЯ 3 ТЕОРЕТИЧЕСКАЯ МЕХАНИКА 2 СЕМЕСТР ЛЕКЦИЯ 3 УРАВНЕНИЯ ЛАГРАНЖА ПЕРВОГО РОДА ПРИНЦИП ДАЛАМБЕРА-ЛАГРАНЖА (ОБЩЕЕ УРАВНЕНИЕ ДИНАМИКИ) ПРИНЦИП ВИРТУАЛЬНЫХ ПЕРЕМЕЩЕНИЙ РАБОТА СИЛ ИНЕРЦИИ ТВЁРДОГО ТЕЛА Лектор:

Подробнее

ЛЕКЦИЯ 5 Построение эпюр внутренних силовых факторов для основных видов деформации бруса

ЛЕКЦИЯ 5 Построение эпюр внутренних силовых факторов для основных видов деформации бруса В.Ф. ДЕМЕНКО МЕХАНИКА МАТЕРИАЛОВ И КОНСТРУКЦИЙ 2013 1 ЛЕКЦИЯ 5 Построение эпюр внутренних силовых факторов для основных видов деформации бруса 1 Эпюры и основные правила их построения Определение Эпюрами

Подробнее

плоскости, а поперечные сечения поворачиваются. Их центры тяжести получают поступательные перемещения y(x). Искривленная

плоскости, а поперечные сечения поворачиваются. Их центры тяжести получают поступательные перемещения y(x). Искривленная В.Ф. ДЕМЕНКО МЕХАНИКА МАТЕРИАЛОВ И КОНСТРУКЦИЙ 01 1 ЛЕКЦИЯ 16 Деформации при плоском изгибе. Основы расчета на жесткость при плоском изгибе. Дифференциальное уравнение упругой линии Ранее были рассмотрены

Подробнее

1.5 Поток вектора напряженности электрического поля

1.5 Поток вектора напряженности электрического поля 1.5 Поток вектора напряженности электрического поля Ранее отмечалось, что величина вектора напряженности электрического поля равна количеству силовых линий, пронизывающих перпендикулярную к ним единичную

Подробнее

Напряженно-деформированное состояние заряда РДТТ, скрепленного с ортотропным корпусом

Напряженно-деформированное состояние заряда РДТТ, скрепленного с ортотропным корпусом УДК 6.455(075.8) Напряженно-деформированное состояние заряда РДТТ, скрепленного с ортотропным корпусом В.П. Печников МГТУ им. Н.Э. Баумана, Москва, 05005, Россия Исследовано совместное деформирование корпуса

Подробнее

Указания к выполнению контрольной работы 3

Указания к выполнению контрольной работы 3 Указания к выполнению контрольной работы Пример решения задачи 7 Для стального стержня (рис..) круглого поперечного сечения, находящегося под действием осевых сил F и F и F, требуется: ) построить в масштабе

Подробнее

Расчёт сжатых стержней на статическую устойчивость

Расчёт сжатых стержней на статическую устойчивость Расчёт сжатых стержней на статическую устойчивость # 04, декабрь 018 Наумов А. М. 1, Андриевская С. И. 1,* УДК: 5-55 1 Россия, МГТУ им. Н.Э. Баумана nam63@mail.ru * steandr@mail.ru Введение Некоторые элементы

Подробнее

ИССЛЕДОВАНИЕ ПРОДОЛЬНО-СЖАТЫХ СТЕРЖНЕЙ ПЕРЕМЕННОЙ ЖЕСТКОСТИ

ИССЛЕДОВАНИЕ ПРОДОЛЬНО-СЖАТЫХ СТЕРЖНЕЙ ПЕРЕМЕННОЙ ЖЕСТКОСТИ 5 УДК 69.7..44 В.Е. Приходько ИССЛЕДОВАНИЕ ПРОДОЛЬНО-СЖАТЫХ СТЕРЖНЕЙ ПЕРЕМЕННОЙ ЖЕСТКОСТИ Оценивание несущей способности конструкции помимо прочностного расчета должна включать вопросы устойчивости всей

Подробнее

Математическая модель напряженно-деформируемого состояния. состояния манометрической трубчатой пружины с переменной

Математическая модель напряженно-деформируемого состояния. состояния манометрической трубчатой пружины с переменной Математическая модель напряженно-деформируемого состояния... 119 С.П. Пирогов, Н.Н. Устинов piro-gow@yandex.ru, UstinovNikNik@mail.ru УДК 622.691.4 Математическая модель напряженно-деформируемого состояния

Подробнее

Т е м а 13. ТОЧНОСТЬ ФОРМООБРАЗОВАНИЯ ПРИ РЕЗАНИИ. Содержание

Т е м а 13. ТОЧНОСТЬ ФОРМООБРАЗОВАНИЯ ПРИ РЕЗАНИИ. Содержание Т е м а 13. ТОЧНОСТЬ ФОРМООБРАЗОВАНИЯ ПРИ РЕЗАНИИ Цель изучение взаимодействия инструмента и заготовки, видов отклонения формы поверхности заготовки, возникающих при резании; исследование влияния факторов

Подробнее

90 лет со дня рождения академика А.В. Александрова. Решения задач олимпиады 45 по Сопротивлению материалов 2-й тур 2017 г МИИТ Задача 1

90 лет со дня рождения академика А.В. Александрова. Решения задач олимпиады 45 по Сопротивлению материалов 2-й тур 2017 г МИИТ Задача 1 Задача 1 Рассматривается два загружения плоской рамы, состоящей из стержневых элементов квадратного поперечного сечения При загружении распределенными нагрузками q и 2q в точке к указанного на рисунке

Подробнее

МПа, предел текучести Т 240 МПа и коэффициент запаса прочности по отношению к пределу текучести n Т

МПа, предел текучести Т 240 МПа и коэффициент запаса прочности по отношению к пределу текучести n Т Номер варианта Номер схемы по рис..6 Задача. Ступенчатый брус нагружен силами, и F, направленными вдоль его оси. Заданы длины участков l, l, l и соотношение площадей их поперечных сечений и. Модуль упругости

Подробнее

ПРОСТРАНСТВЕННЫЕ ПАРАМЕТРИЧЕСКИЕ КОЛЕБАНИЯ ТРУБОПРОВОДА ПОД ДЕЙСТВИЕМ ПЕРЕМЕННОГО ВНУТРЕННЕГО ДАВЛЕНИЯ. Российской академии наук, г.

ПРОСТРАНСТВЕННЫЕ ПАРАМЕТРИЧЕСКИЕ КОЛЕБАНИЯ ТРУБОПРОВОДА ПОД ДЕЙСТВИЕМ ПЕРЕМЕННОГО ВНУТРЕННЕГО ДАВЛЕНИЯ. Российской академии наук, г. ПРОСТРАНСТВЕННЫЕ ПАРАМЕТРИЧЕСКИЕ КОЛЕБАНИЯ ТРУБОПРОВОДА ПОД ДЕЙСТВИЕМ ПЕРЕМЕННОГО ВНУТРЕННЕГО ДАВЛЕНИЯ. ЧАСТЬ П. ИССЛЕДОВАНИЕ ВЛИЯНИЯ ХАРАКТЕРИСТИК ВНУТРЕННЕГО ДАВЛЕНИЯ В ЖИДКОСТИ, СИЛЫ АРХИМЕДА, СИЛ ИНЕРЦИИ

Подробнее

Аттестационное тестирование в сфере профессионального образования

Аттестационное тестирование в сфере профессионального образования Page 1 of 15 Аттестационное тестирование в сфере профессионального образования Специальность: 170105.65 Взрыватели и системы управления средствами поражения Дисциплина: Механика (Сопротивление материалов)

Подробнее