Аналитическая геометрия Модуль 1. Матричная алгебра. Векторная алгебра Лекция 1.4
|
|
- Виктория Ельницкая
- 2 лет назад
- Просмотров:
Транскрипт
1 Аналитическая геометрия Модуль 1. Матричная алгебра. Векторная алгебра Лекция 1.4 Аннотация Скалярные и векторные величины. Понятие геометрического вектора, как направленного отрезка. Длина вектора. Нуль-вектор, единичный вектор (орт). Угол между двумя векторами. Коллинеарные и компланарные векторы. Равенство векторов. Связанные, скользящие и свободные векторы. Линейные операции над векторами и их свойства. Ортогональная проекция вектора на направление другого вектора и ее линейные свойства. Разложение вектора по ортам координатных осей. Линейные операции над векторами в координатной форме. Модуль вектора. Направляющие косинусы. Условие коллинеарности векторов в координатной форме. 1 Векторы. Основные понятия Величины, которые полностью определяются своим числовым значением, называются скалярными (площадь, длина, объем, температура, работа, масса). Величины, которые характеризуются не только своим числовым значением, но и направлением, называются векторными (сила, скорость, ускорение). Геометрический вектор направленный прямолинейный отрезок, т.е. отрезок, который имеет длину и направление. c Меньшова И.В.,
2 Обозначение: если A - начало вектора, а B - его конец, то вектор обозначается символом AB или a. Виды геометрических векторов: 1. Когда заданы направление и длина, но не фиксируется точка приложения, говорят, что задан свободный вектор или просто вектор. 2. Геометрические векторы, которые можно перемещать только вдоль прямых, называют скользящими (вектор угловой скорости и вектор силы, действующий на абсолютно твердое тело). 3. Геометрические векторы, точка приложения которых не может изменяться, называют связанными (скорость в потоке жидкости или газа). Вектор BA называется противоположным к вектору AB. Вектор, противоположный вектору a, обозначается a. Длиной или модулем вектора AB называется длина отрезка AB и обозначается AB. Вектор, длина которого равна нулю, называется нулевым и обозначается 0. Нулевой вектор направления не имеет. Вектор, длина которого равна единице, называется единичным вектором и обозначается e. c Меньшова И.В.,
3 Единичный вектор, направление которого совпадает с направлением вектора a, называется ортом вектора a и обозначается a 0. Очевидно, что a = a a 0 и a 0 = a/ a. Углом ϕ между векторами a и b называют угол между их направлениями. Векторы a и b называются коллинеарными, если они лежат на одной прямой или на параллельных прямых: a b. Коллинеарные векторы могут быть сонаправлены (иметь одно направление) или противоположно направлены. Нулевой вектор считается коллинеарным любому вектору. Три вектора в пространстве называются компланарными, если они лежат в одной плоскости или в параллельных плоскостях. Если среди трех векторов есть нулевой или любые два из них коллинеарны, то они компланарны. Два вектора называются равными ( a = b), если 1) они коллинеарны и сонаправлены; 2) имеют равные длины, т.е. a = b Из определения равенства векторов следует, что вектор можно переносить параллельно самому себе, а начало вектора помещать в любую точку пространства. c Меньшова И.В.,
4 2 Линейные операции над векторами Под линейными операциями над векторами понимают операции сложения, вычитания и умножения вектора на число. Сложение векторов Пусть заданы векторы a и b. Возьмем точку О и построим векторы OA = a и AB = b. Вектор OB называется суммой векторов a и b. Это правило сложения двух векторов носит название правило треугольника. Можно складывать два вектора и по правилу параллелограмма. Для этого необходимо подвести эти векторы к одному началу и построить на них параллелограмм. Тогда суммой двух векторов будет являться вектор, расположенный на диагонали параллелограмма, выходящей из их общего начала. Отметим, что если векторы коллинеарны, то их сумму по правилу параллелограмма определить не получится, а правило треугольника в этом случае применимо. При сложении трех и более векторов строим векторную ломаную, каждое звено которой есть вектор, приложенный к концу предыдущего вектора. Тогда суммой векторов будет являться вектор, направленный из начала первого вектора к концу последнего. Вычитание векторов Под разностью векторов a и b понимается вектор c = a b такой, что c = a + ( b). c Меньшова И.В.,
5 Умножение вектора на скаляр. Произведением вектора a на скаляр (число) λ называется вектор c = λ a, удовлетворяющий следующим условиям: 1) он имеет длину c = λ a ; 2) его направление совпадает с направление вектора a, если λ > 0 и противоположно вектору a, если λ < 0. Свойства линейных операций над векторами: 1. a + b = b + a; 2. ( a + b) + c = a + ( b + c); 3. λ 1 (λ 2 a) = (λ 1 λ 2 ) a; 4. (λ 1 + λ 2 ) a = λ 1 a + λ 2 a; 5. λ ( a + b) = λ a + λ b; 6. a + 0 = a; 7. для любого вектора a существует вектор a, такой что a + ( a) = 0. 3 Проекция вектора на ось Пусть в пространстве задана ось l, т.е. направленная прямая. Ортогональной проекцией (или просто проекцией) точки M на ось l называется основание M 1 перпендикуляра MM 1, опущенного из точки на ось. Точка M 1 есть точка пересечения оси l с плоскостью, проходящей через точку M перпендикулярно оси. Замечание. Если точка M лежит на оси l, то проекция точки M на эту ось совпадает с M. c Меньшова И.В.,
6 Пусть задан вектор AB и ось l. Пусть A 1 - проекция точки A, B 1 - проекция точки B на ось l. Ортогональной проекцией (или просто проекцией) вектора AB на ось l называется положительное число, A 1 B 1 если вектор A 1 B 1 и ось l одинаково направлены и отрицательное число, A 1 B 1 если вектор A 1 B 1 и ось l противоположно направлены. Если A 1 и B 1 совпадают, то проекция вектора AB равна нулю. Обозначение: пр lab Замечание. Если AB = 0 или AB l, то пр lab = 0. Основные свойства проекций: 1. Проекция вектора a на ось l равна произведению модуля вектора a на косинус угла ϕ между вектором aи осью l: пр l a = a cos ϕ. Следствия: 1) Проекция вектора на ось положительна (отрицательна), если вектор образует с осью острый (тупой) угол, и равна нулю, если этот угол прямой. 2) Проекции равных векторов на одну и ту же ось равны между собой. 2. Проекция суммы векторов на одну и ту же ось равна сумме их проекций на эту ось: пр l ( a + b) = пр l a + пр l b. 3. При умножении вектора a на число λ его проекция также умножается на это число: пр l (α a) = α пр l a. Замечание. Линейные операции над векторами приводят к линейным операциям над проекциями этих векторов. c Меньшова И.В.,
7 4 Разложение вектора по ортам координатных осей. Модуль вектора. Направляющие косинусы Рассмотрим в пространстве прямоугольную систему координат Oxyz. Выделим на координатных осях Ox, Oy, Oz единичные векторы (орты), обозначаемые соответственно i, j, k. Рассмотрим вектор a = OM. Проведем через точку М плоскости, параллельные координатным плоскостям. Тогда пр x a =, OM 1 пр y a =, OM 2 прz a =. OM 3 По определению суммы нескольких векторов находим: a = OM 1 + M 1 N + NM. Следовательно, a = OM 1 + OM 2 + OM 3. OM 1 = OM 1 i = a x i, OM 2 = OM 2 j = a y j, OM 3 = OM 3 k = az k. Таким образом, получаем разложение вектора по ортам координатных осей: a = a x i + a y j + a z k. Числа a x, a y, a z называются координатами вектора a. Обозначение: a = (a x, a y, a z ). Из теоремы о диагонали прямоугольного параллелепипеда следует: a 2 = a 2 x + a 2 y + a 2 z. c Меньшова И.В.,
8 Отсюда a = a 2 x + a 2 y + a 2 z Пусть углы вектора a с осями Ox,Oy, Oz соответственно равны α, β, γ. По определению проекции вектора на ось имеем Откуда a x = a cos α, a y = a cos β, a z = a cos γ. cos α = a x a, cos β = a y a, cos γ = a z a. Числа cos α, cos β, cos γ называются направляющими косинусами вектора a. Можно доказать, что cos 2 α + cos 2 β + cos 2 γ = 1, то есть сумма квадратов направляющих косинусов вектора равна единице. Итак, задав координаты вектора, всегда можно определить его модуль и направление, т.е. сам вектор. 5 Действия над векторами, заданными своими координатами Пусть векторы a = (a x, a y, a z ) и b = (b x, b y, b z ) заданы своими координатами или a = a x i + a y j + a z k, b = bx i + b y j + b z k. c Меньшова И.В.,
9 Тогда: 1. При сложении (вычитании) векторов их одноименные координаты складываются, то есть a + b = (a x + b x, a y + b y, a z + b z ). 2. При умножении вектора на скаляр координаты вектора умножаются на этот скаляр, то есть α a = (α a x, α a y, α a z ). 3. Два вектора a и b равны тогда и только тогда, когда равны их координаты. 4. Проекции (координаты) коллинеарных векторов пропорциональны, т. е. a b a x b x = a y b y = a z b z. Пример: При каких значениях α и β векторы a = ( 2, 3, α) и b = (β, 6, 2) коллинеарны? Решение: a b 2 β = 3 6 = α 2. Тогда α = 1, β = Координаты вектора равны разности соответствующих координат его конца и начала. Пусть A (x 1, y 1, z 1 ), B (x 2, y 2, z 2 ), тогда AB = (x 2 x 1, y 2 y 1, z 2 z 1 ). Пример: Найти длину вектора a = (2; 3; 6) и его орт. Решение: a = = 7, a 0 = a a = (2 7, 3 7, 6 7 ). c Меньшова И.В.,
Аналитическая геометрия. Лекция 1.4
Московский Государственный Технический Университет им. Н.Э. Баумана Факультет Фундаментальные науки Кафедра Высшая математика Аналитическая геометрия Модуль 1. Матричная алгебра. Векторная алгебра Лекция
Лекция 28 Глава 1. Векторная алгебра
Лекция 8 Глава Векторная алгебра Векторы Величины, которые определяются только своим числовым значением, называются скалярными Примерами скалярных величин: длина, площадь, объѐм, температура, работа, масса
Лекция 3. Алгебра векторов. Скалярное произведение
Лекция 3. Алгебра векторов. Скалярное произведение ФИЗИЧЕСКИЕ ВЕЛИЧИНЫ СКАЛЯРНЫЕ ВЕКТОРНЫЕ Определяются только числовым значением (площадь S, длина L, объем, работа, масса ) Модулем (длиной) вектора AB
Геометрические векторы
Геометрические векторы Определение Вектором называется направленный отрезок начальной точкой А и конечной точкой В (который можно перемещать параллельно самому себе) Если начало вектора - точка А, а его
5. Векторы. 5.1 Определение и начальные сведения о векторах
49 5 Векторы 51 Определение и начальные сведения о векторах Любые две точки А,В определяют направленный отрезок, если точка А определяет начало, точка В конец отрезка, направление задается от А к В Направленный
Элементы высшей математики
Кафедра математики и информатики Элементы высшей математики Учебно-методический комплекс для студентов, обучающихся с применением дистанционных технологий Модуль 5 Элементы аналитической геометрии на плоскости
Основы векторной алгебры
) Понятие вектора и линейные операции над векторами ) Скалярное произведение векторов ) Векторное и смешанное произведение векторов 4) Выражение линейных операций и произведений векторов в декартовой системе
Лекция 6. Геометрические векторы.
Лектор Гущина Елена Николаевна, кафедра Высшей математики 2. Лекция 6. Геометрические векторы. Вектор как направленный отрезок. Сложение векторов и умножение вектора на число. Свойства линейных операций.
ЛЕКЦИЯ N4. Векторное пространство. Линейные операции над векторами. Векторная алгебра. 1.Векторное пространство.
ЛЕКЦИЯ N4. Векторное пространство. Линейные операции над векторами. Векторная алгебра. 1.Векторное пространство.... 1 2.Векторная алгебра.... 2 3.Системы координат... 6 1.Векторное пространство. Рассмотрим
4. Координаты вектора
4. Координаты вектора ОПРЕДЕЛЕНИЕ. Коэффициенты в разложении вектора по базису называются координатами этого вектора в данном базисе. Декартовой прямоугольной системой координат в пространстве называют
Лекция 3. Вектора и линейные операции над ними.
Лекция 3 Вектора и линейные операции над ними. 1. Понятие вектора. При изучении различных разделов физики, механики и технических наук встречаются величины, которые полностью определяются заданием их числовых
Лекции подготовлены доц. Мусиной М.В. Векторы. Линейные операции над векторами.
Лекции подготовлены доц Мусиной МВ Векторы Линейные операции над векторами Определение Направленный отрезок (или что то же упорядоченную пару точек) мы будем называть вектором Обозначение: AB Нулевой вектор
Векторная алгебра Цель изучения Основные понятия 4.1. Векторы и координаты
Векторная алгебра Понятие векторного пространства. Линейная зависимость векторов. Свойства. Понятие базиса. Координаты вектора. Линейные преобразования векторных пространств. Собственные числа и собственные
Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование»
ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ Московский государственный технический университет имени Н.Э. Баумана Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» À.Í. Êàíàòíèêîâ,
Введение в линейную алгебру
Введение в линейную алгебру Матрицы. Определение. Таблица m n чисел вида m m n n mn состоящая из m строк и n столбцов называется матрицей. Элементы матрицы нумеруются аналогично элементам определителя
6. Векторы. Линейные операции на множестве векторов 1. Определение вектора. Основные отношения на множестве векторов
Векторная алгебра Раздел математики, в котором изучаются свойства операций над векторами, называется векторным исчислением. Векторное исчисление подразделяют на векторную алгебру и векторный анализ. В
Лекция 1.2. Геометрические векторы, линейная зависимость, базис. Скалярное, векторное и смешанное произведения векторов
Лекция.. Геометрические векторы, линейная зависимость, базис. Скалярное, векторное и смешанное произведения векторов Аннотация: Вводится понятие линейной независимости системы геометрических векторов.
Линейная алгебра Лекция 8. Векторы (продолжение)
Линейная алгебра Лекция 8 Векторы продолжение) Геометрическая интерпретация Вектор в геометрии упорядоченная пара точек, одна из которых называется началом, вторая концом вектора В конце вектора ставится
ВЕКТОРНАЯ АЛГЕБРА Т.С. ХАЧАТРЯН, Н.П. ХОВАНСКАЯ МЕТОДИЧЕСКИЕ УКАЗАНИЯ К РЕШЕНИЮ ЗАДАЧ
МОСКОВСКИЙ АВТОМОБИЛЬНО-ДОРОЖНЫЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ (МАДИ) Т.С. ХАЧАТРЯН, Н.П. ХОВАНСКАЯ ВЕКТОРНАЯ АЛГЕБРА МЕТОДИЧЕСКИЕ УКАЗАНИЯ К РЕШЕНИЮ ЗАДАЧ МОСКОВСКИЙ АВТОМОБИЛЬНО-ДОРОЖНЫЙ ГОСУДАРСТВЕННЫЙ
Аналитическая геометрия Модуль 2. Аналитическая геометрия на плоскости и в пространстве Текст 2.1
Аналитическая геометрия Модуль 2. Аналитическая геометрия на плоскости и в пространстве Текст 2.1 Аннотация Декартова прямоугольная система координат на плоскости и в пространстве. Координаты точки. Связь
1. a + b = b + a. 2. (a + b) + c = a + (b + c).
Занятие 5 Линейные операции над векторами 5.1 Сложение векторов. Умножение векторов на числа Закрепленным вектором называется направленный отрезок, определенный двумя точками A и B. Точка A называется
Семинар 5. ОСНОВЫ ВЕКТОРНОЙ АЛГЕБРЫ Теоретические вопросы для самостоятельного изучения:
Семинар 5. ОСНОВЫ ВЕКТОРНОЙ АЛГЕБРЫ Теоретические вопросы для самостоятельного изучения: 1. Определение вектора. Коллинеарные и компланарные векторы.. Сложение и вычитание векторов. Умножение вектора на
Тема: Смешанное произведение векторов. Аффинные и прямоугольные координаты на плоскости
Лекция 7 МЕТОД КООРДИНАТ ПРЯМАЯ И ПЛОСКОСТЬ Тема: Смешанное произведение векторов Аффинные и прямоугольные координаты на плоскости План лекции Определение и геометрический смысл смешанного произведения
b a b c а O a ПРИЛОЖЕНИЕ ЭЛЕМЕНТЫ ВЕКТОРНОЙ АЛГЕБРЫ П.1. Понятие вектора. Сложение векторов
05 ПРИЛОЖЕНИЕ ЭЛЕМЕНТЫ ВЕКТОРНОЙ АЛГЕБРЫ П.1. Понятие вектора. Сложение векторов В механике различают величины скалярные и векторные. К скалярным величинам относятся: масса, энергия, механическая работа,
-1-2. Вычислить площадь треугольника, построенного на векторах.. Найти высоту грани ОВС тетраэдра ОАВС, опущенную из конца вектора OB.
--. Показать, что векторы a { ;2;0 }, b { 2; ; }, c { ;; } компланарны и найти разложение вектора 2 a + b по векторам a и b. 2. Вычислить площадь треугольника, построенного на векторах a m n, b 2 m + 3n
Занятие 1. Векторный анализ Краткое теоретическое введение. Физические величины, Z. для определения которых K
Занятие 1. Векторный анализ. 1.1. Краткое теоретическое введение. Физические величины, Z Z (M) для определения которых K достаточно задать одно число Y K (положительное или Y отрицательное) называются
8. Дать определение ортогональной скалярной проекции вектора на направление.
1. Дать определение равенства геометрический векторов. Два геометрических вектора называют равными, если: они коллинеарны и однонаправлены; их длины совпадают. 2. Дать определение суммы векторов и умножения
Скалярное произведение векторов и его приложения. Векторное произведение векторов и его приложения.
Лекция 7 Скалярное произведение векторов и его приложения. Векторное произведение векторов и его приложения. Определение 1. Углом между векторами ~a 6= ~ 0 и ~ b 6= ~ 0 называется наименьший угол между
Векторная алгебра. Глава Векторы на плоскости и в пространстве
Глава 6 Векторная алгебра 6.1. Векторы на плоскости и в пространстве Геометрическим вектором, или просто вектором, называется направленный отрезок, т. е. отрезок, в котором одна из граничных точек названа
ЛЕКЦИЯ 3 ЭЛЕМЕНТЫ ВЕКТОРНОЙ АЛГЕБРЫ. 1 Основные понятия. Линейные операции над векторами.
ЛЕКЦИЯ 3 ЭЛЕМЕНТЫ ВЕКТОРНОЙ АЛГЕБРЫ 1 Основные понятия. Линейные операции над векторами. Отрезок, имеющий определенную длину и определенное направление, называется вектором. Вектор служит для геометрического
определения которых K Y отрицательное) называются скалярами. Два скаляра X X одинаковой размерности Рис. 1.
Занятие 1. Векторный анализ. Краткое теоретическое введение. Физические величины, для Z Z ϕ (M) определения которых K достаточно задать одно число Y K (положительное или Y отрицательное) называются скалярами.
Лекция 2. Векторы. Определения.
Лекция 2 Векторы Определения. Вектором (геометрическим вектором) называется направленный отрезок, т.е. отрезок, у которого указаны начало и конец. B конец вектора A начало вектора Обозначение вектора:
«Элементы векторной алгебры» Тема4. Минестерство образования Республики Беларусь. Кафедра теоретической и прикладной математики.
Минестерство образования Республики Беларусь УО «Витебский государственный технологический университет» Тема4. «Элементы векторной алгебры» Уи льям Ро уэн Га мильтон Кафедра теоретической и прикладной
0.5 setgray0 0.5 setgray1
0.5 setgray0 0.5 setgray1 1 Лекция 3 ВЕКТОРЫ 1. Определение вектора. Свободные и скользящие векторы Дадим определение направленного отрезка. Определение 1. Отрезок, концы которого упорядочены, называется
Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование»
ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ Московский государственный технический университет имени Н.Э. Баумана Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» À.Í. Êàíàòíèêîâ,
Уравнения прямой и плоскости
Уравнения прямой и плоскости Уравнение прямой на плоскости.. Общее уравнение прямой. Признак параллельности и перпендикулярности прямых. В декартовых координатах каждая прямая на плоскости Oxy определяется
Аналитическая геометрия Модуль 1. Матричная алгебра. Векторная алгебра
Аналитическая геометрия Модуль 1 Матричная алгебра Векторная алгебра Текст 4 (самостоятельное изучение) Аннотация Линейная зависимость векторов Критерии линейной зависимости двух, трех и четырех векторов
МИНИСТЕРСТВО ТРАНСПОРТА И СВЯЗИ УКРАИНЫ Государственный департамент по вопросам связи и информатизации
МИНИСТЕРСТВО ТРАНСПОРТА И СВЯЗИ УКРАИНЫ Государственный департамент по вопросам связи и информатизации ОДЕССКАЯ НАЦИОНАЛЬНАЯ АКАДЕМИЯ СВЯЗИ им АС ПОПОВА Кафедра высшей математики ВЕКТОРНАЯ АЛГЕБРА Учебное
Глава II. Векторная алгебра.
Глава II. Векторная алгебра. Раздел математики, в котором изучаются свойства операций над векторами, называется векторным исчислением. Векторное исчисление подразделяют на векторную алгебру и векторный
Векторная алгебра Направленные отрезки и векторы.
ГЛАВА 1. Векторная алгебра. 1.1. Направленные отрезки и векторы. Рассмотрим евклидово пространство. Пусть прямые (AB) и (CD) параллельны. Тогда лучи [AB) и [CD) называются одинаково направленными (соответственно
1. ЭЛЕМЕНТЫ ЛИНЕЙНОЙ АЛГЕБРЫ
ЭЛЕМЕНТЫ ЛИНЕЙНОЙ АЛГЕБРЫ ЗАНЯТИЕ МАТРИЦЫ И ДЕЙСТВИЯ НАД НИМИ Дать определение матрицы Классификация матриц по размерам Что такое нулевая и единичная матрицы? При каких условиях матрицы считаются равными?
~ 1 ~ ВЕКТОРНАЯ АЛГЕБРА. Скалярные и векторные величины, виды векторов. Определение: Скалярной называется величина, которая характеризуется только
~ ~ ВЕКТОРНАЯ АЛГЕБРА калярные и векторные величины, виды векторов. Определение: калярной называется величина, которая характеризуется только o своим значением m, T C. Определение: Векторной называется
МЕТОДИЧЕСКИЕ УКАЗАНИЯ К ВЫПОЛНЕНИЮ КОНТРОЛЬНОЙ РАБОТЫ ПО УЧЕБНОЙ ДИСЦИПЛИНЕ ЕН.01 «МАТЕМАТИКА»
НЕГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ ЧАСТНОЕ УЧРЕЖДЕНИЕ ПРОФЕССИОНАЛЬНАЯ ОБРАЗОВАТЕЛЬНАЯ ОРГАНИЗАЦИЯ КОЛЛЕДЖ ПРЕДПРИНИМАТЕЛЬСТВА И СОЦИАЛЬНОГО УПРАВЛЕНИЯ МЕТОДИЧЕСКИЕ УКАЗАНИЯ К ВЫПОЛНЕНИЮ КОНТРОЛЬНОЙ РАБОТЫ
ТИПОВОЙ РАСЧЕТ «Векторная алгебра. Аналитическая геометрия»
ТИПОВОЙ РАСЧЕТ «Векторная алгебра Аналитическая геометрия» Задание 1: а) показать, что векторы p, q, r образуют базис Найти координаты вектора x в этом базисе; б) проверить коллинеарность векторов и c
4. Векторная алгебра
15 4 Векторная алгебра Вариант 1 11 Даны две точки М( 5; 7; 6) и N (7; 9; 9) Найти проекцию вектора a ( 1; 3; 1) на направление вектора MN 12 Вычислить работу силы F ( 3; 2; 5) приложенной к точке А(2;
ЭЛЕМЕНТЫ ВЕКТОРНОГО ИСЧИСЛЕНИЯ УЧЕБНОЕ ПОСОБИЕ
Быкова Л.М., Добрынина Н.Н., Свердлова О.Л. ЭЛЕМЕНТЫ ВЕКТОРНОГО ИСЧИСЛЕНИЯ УЧЕБНОЕ ПОСОБИЕ Рекомендовано учебно-методическим советом факультета технической кибернетики Ангарской государственной технической
Векторная алгебра. Термин вектор (от лат. Vector - несущий ) впервые появился в 1845 г. у ирландского математика Уильяма Гамильтона.
Векторная алгебра Содержание 1. Вектор. Действия над векторами 3. Линейная зависимость векторов 4. Координаты вектора в базисе 5. Действия с векторами в коорд. форме 6. Декартова система координат 7. Проекция
ТИПОВОЙ РАСЧЕТ «ЛИНЕЙНАЯ АЛГЕБРА. АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ»
ТИПОВОЙ РАСЧЕТ «ЛИНЕЙНАЯ АЛГЕБРА АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ» ВАРИАНТ Даны вершины треугольника: А(-); В(5-) и С(-) Определить его внешний угол при вершине А Определить длины диагоналей параллелограмма построенного
1. ВЕКТОРЫ. ДЕЙСТВИЯ НАД ВЕКТОРАМИ
Оглавление 1. Векторы. Действия над векторами 4 2. Скалярное произведение векторов 14 3. Векторное произведение векторов 19 4. Смешанное произведение векторов 24 5. Прямая на плоскости 28 6. Плоскость
МАТЕМАТИКА Векторы на плоскости и в пространстве. Уравнение плоскости
Агентство образования администрации Красноярского края Красноярский государственный университет Заочная естественно-научная школа при КрасГУ Математика: Модуль 3 для класса. Учебно-методическая часть./
Тема 1-13: Скалярное произведение векторов
Тема 1-13: Скалярное произведение векторов А. Я. Овсянников Уральский федеральный университет Институт естественных наук и математики Департамент математики, механики и компьютерных наук Алгебра и геометрия
Основная форма учебных занятий студентов-заочников самостоятельная работа над учебным материалом, слагающаяся из следующих составных элементов:
1 2 Основная форма учебных занятий студентов-заочников самостоятельная работа над учебным материалом, слагающаяся из следующих составных элементов: изучение материала по учебникам, решение задач, самопроверка
Лекция 4 СКАЛЯРНОЕ, ВЕКТОРНОЕ И СМЕШАННОЕ ПРОИЗВЕДЕНИЯ ВЕКТОРОВ. 1. Проекция вектора на ось
Лекция 4 СКАЛЯРНОЕ, ВЕКТОРНОЕ И СМЕШАННОЕ ПРОИЗВЕДЕНИЯ ВЕКТОРОВ В этой лекции мы введем понятие скалярного произведения векторов и рассмотрим его свойства. Для этого нам понадобятся некоторые геометрические
a + x = a + ( ( a) + b ) = ( a + ( a) ) + b = 0 + b = b.
ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ Московский государственный технический университет имени Н.Э. Баумана Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» А.Н. Канатников, А.П. Крищенко
ЛЕКЦИЯ 12. Поверхности в пространстве и их уравнения.
ЛЕКЦИЯ Поверхности в пространстве и их уравнения Поверхность Поверхность, определенная некоторым уравнением в данной системе координат, есть геометрическое место точек, координаты которых удовлетворяют
a b, a если векторы имеют противоположное направление, то
ВЕКТОРЫ В ПРОСТРАНСТВЕ R 3 4 Геометрические векторы 4Основные понятия Геометрическим вектором или просто вектором называется направленный отрезок Вектор как правило обозначают B, при этом точки и B обозначают
Рассмотрены Линейные операции над векторами: сложение, вычитание векторов, умножение вектора на число
Рассмотрены Линейные операции над векторами: сложение, вычитание векторов, умножение вектора на число Далее - несколько нелинейных операций над векторами Для пары векторов, число вектор скалярное произведение
R может быть задана с помощью
5... Уравнения плоскости. Плоскость в пространстве 5.. ПЛОСКОСТЬ. R может быть задана с помощью n, B, C, вектора перпендикулярного плоскости, и точки M,, этой плоскости. Вектор n, B, C,, лежащей на E перпендикулярный
Н.Н. Корнеева, М.Ф. Насрутдинов, Ф.Ф. Шарифуллина СБОРНИК ЗАДАЧ ПО АНАЛИТИЧЕСКОЙ ГЕОМЕТРИИ
КАЗАНСКИЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ ВЫСШАЯ ШКОЛА ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ И ИНФОРМАЦИОННЫХ СИСТЕМ Н.Н. Корнеева, М.Ф. Насрутдинов, Ф.Ф. Шарифуллина СБОРНИК ЗАДАЧ ПО АНАЛИТИЧЕСКОЙ ГЕОМЕТРИИ УЧЕБНО-МЕТОДИЧЕСКОЕ
Аналитическая геометрия Модуль 1. Матричная алгебра. Векторная алгебра
Аналитическая геометрия Модуль 1 Матричная алгебра Векторная алгебра Текст 5 (самостоятельное изучение) Аннотация Декартова прямоугольная система координат на плоскости и в пространстве Формулы для расстояния
Министерство образования и науки Российской Федерации
Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Комсомольский-на-Амуре государственный технический
Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование»
ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ Московский государственный технический университет имени Н.Э. Баумана Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» À.Í. Êàíàòíèêîâ, À.Ï. Êðèùåíêî
Векторная алгебра 1.1. СКАЛЯРНЫЕ И ВЕКТОРНЫЕ ВЕЛИЧИНЫ. М.Л. Каган, Т.С. Кузина, Т.А. Мацеевич.
МЛ Каган ТС Кузина ТА Мацеевич Векторная алгебра Предлагаемый электронный вариант учебного пособия подготовлен на основе книги МЛ Кагана и МВ Самохина «Математика в инженерном вузе Алгебра и геометрия»
Практические указания по векторной алгебре (варианты курсовых работ)
Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования «МАТИ» - Российский государственный технологический университет им. К.Э.Циолковского
ТИПОВОЙ РАСЧЕТ «АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ, ВЕКТОРНАЯ И МАТРИЧНАЯ АЛГЕБРА»
ТИПОВОЙ РАСЧЕТ «АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ ВЕКТОРНАЯ И МАТРИЧНАЯ АЛГЕБРА» ВАРИАНТ Даны вершины треугольника А ( ) В ( ) С ( ) Определить его внешний угол при вершине А Определить длины диагоналей параллелограмма
РЕШЕНИЯ ЗАДАЧ по теме "ВЕКТОРНАЯ АЛГЕБРА" Составитель: В.П.Белкин. Занятие 1. Действия над векторами. x 1
РЕШЕНИЯ ЗАДАЧ по теме "ВЕКТОРНАЯ АЛГЕБРА" Составитель: ВПБелкин Пример Занятие Действия над векторами Построить векторы,,, где ( 4;) и ( ; ) Найти их проекции на координатные оси Решение Построим точки
уравнением первой степени и при любом другом выборе декартовой прямоугольной системы. Расположим оси Ox и Oy в плоскости π, а ось Oz направим
Уравнения плоскости. Общее уравнение плоскости. Неполные уравнения плоскости. Уравнение плоскости в отрезках Угол между двумя плоскостями. Условия параллельности и перпендикулярности плоскостей. Уравнение
Лекция 2: Линейные операции над векторами
Лекция 2: Линейные операции над векторами Уральский федеральный университет, Институт математики и компьютерных наук, кафедра алгебры и дискретной математики Вступительные замечания Мы приступаем к изучению
Векторная алгебра. Аналитическая геометрия. Ищанов Т.Р.
Векторная алгебра Аналитическая геометрия Ищанов ТР h://schowru/veor-lger-lches-geomerhml Задача Написать разложение вектора по векторам r 8 r Требуется представить вектор в виде r где числа Найдем их
ЛЕКЦИЯ 3 УСКОРЕНИЯ ТОЧЕК ПРИ ПЛОСКОМ ДВИЖЕНИИ. КИНЕМАТИЧЕСКИЕ ИНВАРИАНТЫ. СЛОЖНОЕ ДВИЖЕНИЕ. КИНЕМАТИЧЕСКИЕ УРАВНЕНИЯ ЭЙЛЕРА
ЛЕКЦИЯ 3 УСКОРЕНИЯ ТОЧЕК ПРИ ПЛОСКОМ ДВИЖЕНИИ. КИНЕМАТИЧЕСКИЕ ИНВАРИАНТЫ. СЛОЖНОЕ ДВИЖЕНИЕ. КИНЕМАТИЧЕСКИЕ УРАВНЕНИЯ ЭЙЛЕРА 1. Ускорения точек при плоском движении На прошлой лекции были освещены почти
Практические указания по векторной алгебре (варианты курсовых работ)
Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования «МАТИ» - Российский государственный технологический университет им. К.Э.Циолковского
ЛЕКЦИЯ N5. Скалярное, векторное, смешанное произведение векторов, арифметические векторные пространства, евклидовы пространства.
ЛЕКЦИЯ N5. Скалярное, векторное, смешанное произведение векторов, арифметические векторные пространства, евклидовы пространства..скалярное произведение векторов..... Векторное произведение двух векторов...
ВАРИАНТ Даны точки А(1,1,1) и В(4,5,-3). Найти проекцию AB на ось, составляющую с координатными осями равные острые углы.
ВАРИАНТ 1 1. ABCDEF вершины правильного шестиугольника. Равны ли векторы a) 4 BC и 2 AD b) 2 DC и 2 AF 2. Найти скалярное произведение векторов a = 2 p + 3q 3r и b = 3 p + 4q где p, q, r - единичные векторы,
3.4 Векторы. Метод координат
3.4. ВЕКТОРЫ. МЕТОД КООРДИНАТ 167 3.4 Векторы. Метод координат 3.4.1 Понятие вектора. Свойства Будем называть направленным отрезком AB упорядоченную пару (см. определение 16) точек A; B трехмерного пространства
ВЕКТОРЫ. 1 Определение вектора. Линейные операции над векторами.
ВЕКТОРЫ Определение вектора Линейные операции над векторами Вектором на плоскости или в пространстве называется направленный отрезок, для которого указаны начало и конец Обозначения: AB, Точка А начало
Лекция 3. Базис. Вычтем из первого разложения второе:
Лекция 3 Базис Теорема 3.1. Любой вектор d единственным образом раскладывается по данному базису, b, c в пространстве. Аналогично, любой вектор c на плоскости единственным образом раскладывается по данному
Примеры решений контрольных работ
Примеры решений контрольных работ Л.И. Терехина, И.И. Фикс 1 Контрольная работа 2 Векторная алгебра 1. Даны три вектора a = {0; 1; 3}, b = {3; 2; 1}, c = {4; 0; 4}. Требуется найти: a) вектор d = 2 a b
10.1 класс (технологический профиль) уч. год. Геометрия. УМК Атанасян Л.С. Модуль 8.
0 класс (технологический профиль) 208 209 уч год Геометрия УМК Атанасян ЛС Модуль 8 Тема модуля: «Векторы в пространстве Метод координат в пространстве» В процессе изучения данного модуля ученик научится/получит
Основы векторной алгебры
Федеральное агентство по образованию Уральский государственный экономический университет Ю. Б. Мельников Основы векторной алгебры Раздел электронного учебника для сопровождения лекции Изд. 4-е, испр. и
ГУРЬЯНОВ Н.Г., ТЮЛЕНЕВА О.Н. АЛГЕБРА. Учебное пособие. Казань
Казанский (Приволжский) федеральный университет Институт математики и механики им НИ Лобачевского ГУРЬЯНОВ НГ ТЮЛЕНЕВА ОН АЛГЕБРА Учебное пособие Казань УДК 7 Печатается по решению учебно-методической
ЛИНЕЙНАЯ И ВЕКТОРНАЯ АЛГЕБРА. АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ. Методические указания к выполнению индивидуальных
ЛИНЕЙНАЯ И ВЕКТОРНАЯ АЛГЕБРА АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ Методические указания к выполнению индивидуальных домашних заданий ЭЛЕМЕНТЫ ЛИНЕЙНОЙ АЛГЕБРЫ m n называется прямоугольная табли- Матрицей размера ца
ЛИНЕЙНАЯ АЛГЕБРА Лекция 10. Прямая и плоскость в пространстве
ЛИНЕЙНАЯ АЛГЕБРА Лекция Прямая и плоскость в пространстве Содержание: Уравнение плоскости Взаимное расположение плоскостей Векторно-параметрическое уравнение прямой Уравнения прямой по двум точкам Прямая
Тема 04. Скалярное произведение векторов. Координатное представление скалярного произведения. Векторное. Определение Определение 04.2.
Тема 04 Скалярное произведение векторов Координатное представление скалярного произведения Векторное произведение векторов Координатное представление векторного произведения Смешанное произведение тройки
Линейная алгебра Лекция 7. Векторы
Линейная алгебра Лекция 7 Векторы Введение В математике есть два рода величин скаляры и векторы Скаляр это число, а вектор интуитивно понимается как объект, имеющий величину и направление Векторное исчисление
Лекция 3 ВЕКТОР И ЕГО КООРДИНАТЫ. 1. Направленные отрезки и вектор
Лекция 3 ВЕКТОР И ЕГО КООРДИНАТЫ 1. Направленные отрезки и вектор Прежде всего напомним определение направленного отрезка. Определение 1. Упорядоченная пара точек (A,B) называется направленным отрезком
Векторное и смешанное произведение векторов
Векторное и смешанное произведение векторов 1. Правые и левые тройки векторов и систем координат Определение. Три вектора называются упорядоченной тройкой (или просто тройкой), если указано, какой из этих
ЛЕКЦИЯ 4 ПРОИЗВЕДЕНИЯ ВЕКТОРОВ. 1 Скалярное произведение векторов. Заметив, что есть проекция вектора на направление вектора, мы можем записать
ЛЕКЦИЯ 4 ПРОИЗВЕДЕНИЯ ВЕКТОРОВ 1 Скалярное произведение векторов Скалярным произведением двух векторов называется число, равное произведению их длин (модулей), умноженному на косинус угла между ними. Скалярное
ЗАДАЧИ по теме «ВЕКТОРЫ»
УТВЕРЖДАЮ: ДЕ Капуткин, Председатель Учебно-методической комиссии по реализации Соглашения с Департаментом образования г Москвы "30" августа 013г ЗАДАЧИ по теме «ВЕКТОРЫ» МИСиС-013 1 Какие векторы равны
Линейная алгебра Лекция 9. Прямая линия на плоскости
Линейная алгебра Лекция 9 Прямая линия на плоскости Пусть дана декартовая прямоугольная система координат Oxy на плоскости Геометрическое место точек (ГМТ) Определение Уравнением линии на плоскости Оху
ВЕКТОРНАЯ АЛГЕБРА. Часть 1. Методические указания для самостоятельной работы студентов. Составители, О.В. Иванова
Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования «Томский государственный архитектурно-строительный университет»
0.5 setgray0 0.5 setgray1
0.5 setgray0 0.5 setgray1 1 Лекция 5 СИСТЕМЫ КООРДИНАТ 1. Проекция вектора на ось Дадим определение. Определение 4. Осью называется прямая, на которой указано направление. Рис. 1. Ось. Пусть A и B это
МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ГОУ ВПО «СИБИРСКАЯ ГОСУДАРСТВЕННАЯ ГЕОДЕЗИЧЕСКАЯ АКАДЕМИЯ» Г.П. Мартынов МАТЕМАТИКА.
МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ГОУ ВПО «СИБИРСКАЯ ГОСУДАРСТВЕННАЯ ГЕОДЕЗИЧЕСКАЯ АКАДЕМИЯ» Г.П. Мартынов МАТЕМАТИКА Часть ВЕКТОРНАЯ АЛГЕБРА Методические указания для студентов -го
ВЕКТОРНАЯ АЛГЕБРА АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ
. ВЕКТОРНАЯ АЛГЕБРА и АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ 1 1. Векторная алгебра 1. Понятие вектора Вектором будем называть направленный отрезок, т. е. отрезок с заданным на нём направлением. На рисунке направление
Чистопольский филиал «Восток» Кафедра Естественнонаучных дисциплин. Методические указания по дисциплине Математика часть 1
Министерство образования и науки Российской Федерации федеральное государственное бюджетное образовательное учреждение высшего образования «Казанский национальный исследовательский технический университет
Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование»
ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ Московский государственный технический университет имени Н.Э. Баумана Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» À.Í. Êàíàòíèêîâ,
Лекции подготовлены доц. Мусиной М.В. Аналитическая геометрия в пространстве.
Аналитическая геометрия в пространстве Поверхность в пространстве можно рассматривать как геометрическое место точек, удовлетворяющих какому-либо условию Прямоугольная система координат Охy в пространстве
Банк заданий по теме «Векторы в пространстве. Метод координат в пространстве»
Банк заданий по теме «Векторы в пространстве Метод координат в пространстве» Учащиеся должны знать/понимать: Понятие вектора, способ его изображения и названия Определение равенства векторов, их коллинеарности,
Аналитическая геометрия. Задачи для самостоятельного решения.
Аналитическая геометрия Задачи для самостоятельного решения 1 Векторы 11 Даны вершины треугольника: A( 1; 2; 4), B ( 4; 2;0) и C(3; 2; 1) Найти угол между медианой AM и стороной AB 12 Выяснить при каком
Глава I. Векторная алгебра.
Глава I Векторная алгебра Линейные операции над векторами Основные обозначения: - вектор; АВ - вектор с началом в точке и концом в точке B ; B -длина вектора АВ, те расстояние между точками и B ; b - коллинеарные
Уравнение плоскости, проходящей через заданную точку, перпендикулярно заданному вектору.
Уравнение плоскости, проходящей через заданную точку, перпендикулярно заданному вектору. Положение плоскости в пространстве можно задать точкой M 0 (x 0, y 0, z 0 ), принадлежащей этой плоскости и вектором