dx dt ОБЩИЙ ВИД РЕШЕНИЯ ЛИНЕЙНОЙ НЕСТАЦИОНАРНОЙ СИСТЕМЫ ФУНКЦИОНАЛЬНО-РАЗНОСТНЫХ УРАВНЕНИЙ Теория обыкновенных дифференциальных уравнений

Размер: px
Начинать показ со страницы:

Download "dx dt ОБЩИЙ ВИД РЕШЕНИЯ ЛИНЕЙНОЙ НЕСТАЦИОНАРНОЙ СИСТЕМЫ ФУНКЦИОНАЛЬНО-РАЗНОСТНЫХ УРАВНЕНИЙ Теория обыкновенных дифференциальных уравнений"

Транскрипт

1 dx d ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ И ПРОЦЕССЫ УПРАВЛЕНИЯ N 2, 2004 Электронный журнал, рег. N П23275 от hp://www.neva.ru/journal Теория обыкновенных дифференциальных уравнений ОБЩИЙ ВИД РЕШЕНИЯ ЛИНЕЙНОЙ НЕСТАЦИОНАРНОЙ СИСТЕМЫ ФУНКЦИОНАЛЬНО-РАЗНОСТНЫХ УРАВНЕНИЙ Е.В.Кукушкина Россия, , Екатеринбург, пр.ленина, д.51, Уральский государственный университет им.а.м.горького, Кафедра теоретической механики, Аннотация. В работе для линейных нестационарных систем функциональноразностных уравнений установлены условия существования и единственности решений начальной задачи Коши в пространстве непрерывных функций. Получена формула, дающая аналитическое представление общего решения изучаемой системы функционально-разностных уравнений. Рассмотрены методы нахождения указанного представления. Полученные результаты иллюстрируются примерами.

2 1 Введение Рассматривается линейная неоднородная система функциональноразностных уравнений x () = d ϑ η (, ϑ) x ( + ϑ) + h (), (1) где x : R R n ; h C (R, R n ); матричная функция η (, ) при каждом фиксированном R имеет ограниченную вариацию на отрезке [, 0], η (, 0) = 0. Для указанной системы изучается начальная задача Коши в пространстве непрерывных функций. Пусть начальный момент R и начальная функция ϕ C ([ r, ], R n ). Функция x C ([ r, + ), R n ) является решением начальной задачи Коши, если x () = ϕ () при [ r, ] и для нее равенство (1) выполняется тождественно на полуоси (, + ). Для существования непрерывного решения начальной задачи Коши необходимо, чтобы выполнялось условие согласования ϕ ( ) = d ϑ η (, ϑ) ϕ ( + ϑ) + h ( ). (2) Условие (2) при заданной функции h накладывает ограничения на выбор начальной функции ϕ. Функционально-разностное уравнение обобщает понятие разностного уравнения с непрерывным временем также как функциональнодифференциальное уравнение обобщает понятие дифференциальноразностного уравнения. В работе для линейных нестационарных систем функционально-разностных уравнений установлены условия существования и единственности решений начальной задачи Коши в пространстве непрерывных функций. Получена формула, дающая аналитическое представление общего решения изучаемой системы функционально-разностных уравнений. Рассмотрены методы нахождения указанного представления. Полученные результаты иллюстрируются примерами. Указанный круг вопросов исследовался для линейных систем функционально-дифференциальных уравнений [1]-[4]. Для линейных систем разностных уравнений с непрерывным временем рассматриваемые проблемы изучались в работах [5]-[7]. Специальные решения линейных разностных уравнений с непрерывным временем построены в работе [8]. Для Электронный журнал. hp://www.neva.ru/journal 2

3 линейных систем разностных уравнений с дискретным временем решения рассматриваемых проблем изложены в работах [9],[10]. Для линейных стационарных систем функционально-разностных уравнений указанный круг вопросов исследовался в работе [11]. 2 Существование и единственность решения начальной задачи Коши Пусть функция x C ([ r, + ), R n ) является решением начальной задачи Коши для начального момента R и начальной функции ϕ C ([ r, ], R n ) системы функционально-разностных уравнений (1) с функцией h C ([, + ), R n ). Введем следующие обозначения: x () = x () ϕ ( ),, ϕ (s) = ϕ (s) ϕ ( ), s [ r, ], h () = h () h ( ),. Тогда x C 0 ([, + ), R n ) = { x : x C ([, + ), R n ), x ( ) = 0}, ϕ C 0 ([ r, ], R n ) = { ϕ : ϕ C ([ r, ], R n ), ϕ ( ) = 0}, } h C0 ([, + ), R n ) = { h : h C ([0, + ), R n ), h (0 ) = 0. Утверждение 2.1. Для заданного начального момента R, начальной функции ϕ C ([ r, ], R n ) и функции h C ([, + ), R n ) функция x C ([ r, + ), R n ) является решением начальной задачи Коши системы функционально-разностных уравнений (1) тогда и только тогда, когда функция x C 0 ([, + ), R n ) является решением уравнения x () = (D x) () + (H ϕ) () + (H 0 ϕ ( )) () + h (),. (1) Здесь оператор D определяется формулами: { (D x) () = 0 d s η (, s ) x (s), + r, d sη (, s ) x (s), > + r, оператор H определяется формулами: (2) { (H ϕ) () = d sη (, s ) ϕ (s) d sη (, s ) ϕ (s), + r, d sη (, s ) ϕ (s), > + r, (3) оператор H 0 определяется формулой: (H 0 ϕ ( )) () = (η (, ) η (, )) ϕ ( ),. (4) Электронный журнал. hp://www.neva.ru/journal 3

4 Доказательство. После преобразования системы уравнений (1) и условия согласования (2) при + r находим x () = h () при > + r x () = d s η (, s ) ϕ (s) + (η (, ) η (, )) ϕ ( ) + d s η (, s ) x (s) + d ϑ η (, s ) x (s) d s η (, s ) ϕ (s), d s η (, s ) ϕ (s) + + (η (, ) η (, )) ϕ ( ) + h (). Следовательно, системе (1) можно поставить в соответствие уравнение (1), где оператор D определяется формулами (2), оператор H определяется формулами (3), а оператор H 0 формулой (4). Утверждение доказано. Для любого > 0 рассмотрим сужение уравнения (1) на отрезок [, + ]. Имеем x () = (D x) () + (H ϕ) () + (H 0 ϕ ( )) () + h (), [, + ]. (5) Для сужения функций x и h на отрезок [, + ] оставляем те же обозначения, полагая что h C 0 ([, + ], R n ), x C 0 ([, + ], R n ). Здесь при r (H ϕ) () = (D x) () = d s η (, s ) ϕ (s) d s η (, s ) x (s), +, (6) d s η (, s ) ϕ (s), +, (H 0 ϕ ( )) () = (η (, ) η (, )) ϕ ( ), +, а при > r { (D x) () = 0 d s η (, s ) x (s), + r, d sη (, s ) x (s), + r < +, { (H ϕ) () = d sη (, s ) ϕ (s) d sη (, s ) ϕ (s), + r, d sη (, s ) ϕ (s), + r < +, (H 0 ϕ 0 ) () = (η (, ) η (, )) ϕ ( ), +. Электронный журнал. hp://www.neva.ru/journal 4

5 Продолжим функцию η по второму аргументу на всю числовую ось, полагая: η (, s) = 0 при s 0 и η (, s) = η (, ) при s, R. Тогда значения операторов D, H и H 0 при любом > 0 можно определить формулами: (H ϕ) () = (D x) () = d s η (, s ) ϕ (s) d s η (, s ) x (s), +, d s η (, s ) ϕ (s), +, (H 0 ϕ ( )) () = (η (, ) η (, )) ϕ ( ), +. Лемма 2.1. Пусть выполнены условия: 1) функция var η (, z) ограничена на любом отрезке числовой оси, z [,0] 2) для любого τ R отображение η (, s ) ds непрерывено на любом отрезке числовой оси. Тогда D : C 0 ([, + ], R n ) C 0 ([, + ], R n ). Доказательство. Рассмотрим функции x AC 0 ([, + ], R n ), где AC 0 ([, + ], R n ) = { x : x AC ([, + ], R n ), x ( ) = 0}. Преобразуем формулы, определяющие значения оператора D : (D x) () = d s η (, s ) x (s) = + + d s η (, s ) x (s) = = η (, s ) x (s) + η (, s ) x (s) ds = = η (, s ) x (s) ds, +. Определим значения оператора D следующими формулами: ( +r D y) () = η (, s ) y (s) ds, [, + ], y L 1 ([, + ], R n ). Для произвольной функции x AC 0 ([, + ], R n ) функция D x C 0 ([, + ], R n ) тогда и только тогда, когда функция D y C 0 ([, + ], R n ) для функции y L 1 ([, + ], R n ), y (s) = x (s), s [, + ]. Электронный журнал. hp://www.neva.ru/journal 5

6 Докажем, что оператор D : L 1 ([, + ], R n ) C ([, + ], R n ) и является непрерывным. Для оператора D выполнены условия: А) vrai sup η (, s ) <, s, [, + ] В) функция η (, s ) ds непрерывна при любом τ [, + ] на отрезке [, + ]. Действительно, по определению вариации var η (, z) z [,0] η (, ) η (, z) + η (, z) η (, 0) 2 η (, z) η (, ). Тогда, η (, z) 1 2 var η (, z) + 1 z [,0] 2 η (, ). Функции var η (, z) z [,0] и η (, ) ограничены по условию 1) леммы 2.1 на [, + ]. Тогда sup [, + ],z [,0] vrai sup [, + ],s [, +r] η (, z) <. Имеем vrai sup,s [, + ] η (, z) η (, s ) = vrai sup [, + ],z [, +r] η (, s ) vrai sup η (, z) <. Справедливость условия А) доказана. Для [, + ],z [,0] любого τ R имеем η (, s ) ds = η (, s ) ds η (, s ) ds при [, + ]. Следовательно, в силу условия 2) леммы 2.1 условие В) для оператора D выполняется. Условия А) и В) гарантируют, что оператор D : L 1 ([, + ], R n ) C ([, + ], R n ) и является непрерывным ([12], с.100). Докажем теперь, что оператор D : C 0 ([, + ], R n ) C 0 ([, + ], R n ). Для произвольного [, + ] введем оператор D : C 0 ([, + ], R n ) R n с помощью формулы D x = (D x) (). Однопараметрическое семейство операторов D, [, + ], удовлетворяет условиям: C) для любого элемента x AC 0 ([, + ], R n ) функция D x аргумента непрерывна на [, + ], D) для любого элемента x C 0 ([, + ], R n ) функция D x аргумента ограничена на [, + ]. ( Действительно, имеет место равенство D x = D y) () при [, + ], y () = x (), x AC 0 ([, + ( ], R n ). Справедливость условия C) следует из непрерывности функции D y) () на отрезке [, + ]. Электронный журнал. hp://www.neva.ru/journal 6

7 Справедливость условия D) следует из неправенств sup D x sup [, + ] sup var [, + ] s [,] var [, + ] z [,0] η (, z) max η (, s ) max s [, + ] s [, + ] x (s). x (s) Условия C) и D) гарантируют, что оператор D : C 0 ([, + ], R n ) C 0 ([, + ], R n ) ([13], с. 73). Лемма доказана. Следствие 2.1. При выполнении условий леммы 2.1 оператор D : C 0 ([, + ], R n ) C 0 ([, + ], R n ) непрерывен. Доказательство. Имеем D sup var [, + ] s [,] Следствие доказано. sup [, + ] z [,0] sup η (, s ) = sup var var [, + ] z [,0] Лемма 2.2. Пусть выполнены условия: var [, + ] z [,0] η (, z), 0 < r, η (, z), > r. η (, z) 1) функция var η (, z) ограничена на любом отрезке числовой оси, z [,0] 2) отображение η (, ) непрерывно на числовой оси, 3) для любого τ R отображение η (, s ) ds непрерывено на любом отрезке числовой оси. Тогда H : C 0 ([ r, ], R n ) C 0 ([, + ], R n ) и H 0 : R n C 0 ([, + ], R n ). Доказательство. Справедливость утверждения леммы для оператора H 0 следует из условия 2). Для доказательства утверждения леммы об операторе H достаточно показать, что оператор ( H ϕ) () = d s η (, s ) ϕ (s) = d s η (, s ) ϕ (s), +, удовлетворяет условию H : C 0 ([ r, ], R n ) C ([, + ], R n ). Доказательство последнего утверждения проводится по схеме, используемой при доказательстве леммы 2.1. Для произвольной функции ϕ AC 0 ([ r, ], R n ), где AC 0 ([ r, ], R n ) = Электронный журнал. hp://www.neva.ru/journal 7

8 { ϕ : ϕ AC ([ r, ], R n ), ϕ ( ) = 0}, имеем ( H ϕ) () = η (, ) ϕ ( r) η (, s ) ϕ (s) ds, +. Учитывая условия 2) и 3) леммы устанавливаем, что H : AC 0 ([ r, ], R n ) C ([, + ], R n ). Можно показать, что для однопараметрического семейства операторов H : C 0 ([ r, ], R n ) R n, [, + ], определяемых формулами: H ϕ = (H ϕ) (), [, + ], ϕ C 0 ([ r, ], R n ), выполняются условия теоремы [13]. Следовательно, утверждение леммы доказано. Следствие 2.2. При выполнении условий леммы 2.2 операторы H : C 0 ([ r, ], R n ) C 0 ([, + ], R n ) и H 0 : R n C 0 ([, + ], R n ) непрерывны. Действительно, для нормы оператора H справедлива оценка: H = sup sup [, + ] z [, ] var [, + ] s [, ] var η (, z) + var η (, s ) + var z [,0] η (, z) 2 sup η (, s ) = s [, ] var [, + ] z [,0] Для нормы оператора H 0 справедлива оценка H 0 2 max [, + ] η (, z). На основании утверждения, лемм и следствий доказана теорема. η (, ). Теорема 2.1. Пусть h C ([, + ), R n ), ϕ C ([ r, ], R n ), выполнено условие согласования (2) и 1) функция var η (, z) ограничена на любом отрезке числовой оси, z [,0] 2) отображение η (, ) непрерывно на числовой оси, 3) для любого τ R отображение η (, s ) ds непрерывено на любом отрезке числовой оси, 4) var η (, z) 0 при 0 равномерно по на любом конечном z [,0] отрезке числовой оси. Тогда начальная задача Коши для уравнения (1) имеет единственное непрерывное решение. Следствие 2.3. При выполнении условий теоремы 2.1. для любого > 0 существует линейный непрерывный вольтерровый по Тихонову оператор (I D ) 1 : C 0 ([, + ], R n ) C 0 ([, + ], R n ). Пример 2.1. Рассмотрим скалярное разностное уравнение с непрерывным временем Электронный журнал. hp://www.neva.ru/journal 8

9 x () = sign (sin (π)) x ( 1), где sign (a) = 1, a > 0; sign (a) = 0, a = 0, sign (a) = 1, a < 0. { 0, 1 < ϑ 0, Здесь r = 1, η (, ϑ) = Функция η (, 1) = sign (sin (π)), ϑ = 1. sign sin (π) имеет разрывы первого рода для целых значений. Поэтому условие 2) теоремы 2.1 нарушено. Построим решение начальной задачи Коши для начального момента = 0 и произвольной непрерывной начальной функции ϕ на отрезке [ 1, 0], удовлетворяющей условию ϕ (0) = 0. Используя метод шагов, имеем при (0, 1] x 1 () = sign (sin (π)) ϕ ( 1) = ϕ ( 1); при (1, 2] x 2 () = sign (sin (π)) x 1 ( 1) = ϕ ( 2); при (n 1, n], n > 2, x n () = sign (sin (π)) x n 1 ( 1) = ( 1) n 1 ϕ ( n). Построенное решение имеет разрывы первого рода в точках N 0 (N множество натуральных чисел), если ϕ ( 1) 0. Пример 2.2. Рассмотрим систему функционально-разностных уравнений x () = Ax ([ 1]), где A постоянная матрица размерности n n, de A 0, [a] целая часть числа a. { 0, ϑ ( 1 {}, 0], Здесь r = 2, η (, ϑ) = R, {} A1 ( ϑ), ϑ [ 2, 1 {}], дробная часть числа, 1 ( ) функция Хевисайда. Покажем, что условие 3) теоремы 2.1 не выполняется на отрезке [0, 2] при τ = 0, т.е. отображение 2 η (, s ) ds не является непрерывным на отрезке [0, 2]. Находим 2 Таким образом, при = 1 функция рода. η (, s ) ds = A ({} 1), [0, 2]. 2 η (, s ) ds имеет разрыв первого Запишем решение начальной задачи Коши для начального момента = 0 и начальной функции ϕ C ([ 2, 0], R n ), удовлетворяющей условию согласования ϕ (0) = Aϕ ( 1). Имеем x () = A []+1 ϕ ( 1), > 0. Электронный журнал. hp://www.neva.ru/journal 9

10 Построенное решение имеет разрывы первого рода в точках N (N множество натуральных чисел), если Aϕ ( 1) ϕ ( 1). 3 Представления решений нестационарных функционально-разностных уравнений При выполнении условий теоремы 2.1 решение уравнения (5) определяется формулой x () = x ϕ () + x h () + x 0 (), [, + ], где x ϕ = (I D ) 1 H ϕ, x h = (I D ) 1 h, x 0 = (I D ) 1 H 0 ϕ ( ). Здесь функция x h является непрерывным решением системы (1) на отрезке [, + ] с начальной функцией ϕ = 0 и непрерывной неоднородностью h = h, удовлетворяющей условию h (0 ) = 0, т.е. h C 0 ([, + ], R n ); функция x ϕ является непрерывным решением системы (1) на отрезке [, + ] с непрерывной начальной функцией ϕ = ϕ, удовлетворяющей условию ϕ ( ) = 0, т.е. ϕ C 0 ([ r, ], R n ) и неоднородностью h, определяемой формулой h () = h ( ) = d ϑη (, ϑ ) ϕ (ϑ), [, + ]; функция x 0 является непрерывны решением системы (1) на отрезке [, + ] с начальной функцией ϕ (ϑ) = ϕ ( ), ϑ [ r, ], и неоднородностью, определяемой формулой h () = h ( ) = (I n + η (, )) ϕ ( ), [, + ], где I n единичная матрица размерности n n. Используя формулу представления линейного непрерывного оператора в пространстве непрерывных функций ([13], с.556) и конечномерность области определения оператора H 0, запишем x ϕ () = x h () = + dt (, s,, ) ϕ (s), [, + ], (1) ds (, s,, ) h (s), [, + ], (2) x 0 () = V (,, ) ϕ ( ), [, + ]. Здесь T (, r,, ) = 0, S (, +,, ) = 0 при + ; sup var T (, s,, ) <, sup var S (, s,, ) < ; s s + [, + ] [, + ] при любых 0 r < r, 0 < функции T (, s,, ) ds, + S (, s,, ) ds, V (,, ) непрерывны по на отрезке [, + ]. Электронный журнал. hp://www.neva.ru/journal 10

11 Так как x ϕ, x h, x 0 C 0 ([, + ], R n ) при любых ϕ C 0 ([ r, ], R n ), h C 0 ([, + ], R n ) и ϕ ( ) R n, то T (, s,, ) = 0 при s [ r, ], S (, s,, ) = 0 при s [, + ] и V (,, ) = 0. Из вольтерровости оператора (I D ) 1 и формулы (2) следует, что x h () = ds (, s,, ) h (s), [, + ]. (3) При использовании формулы (3) считаем, что S (, s,, ) = 0 при s [, + ]. Лемма 3.1. Функции T, S и V не зависят от. Доказательство. Для > имеем x ϕ () = x ϕ (), x h () = x h () и x 0 () = x 0 () при [, + ], если h () = h () при [, + ]. Следовательно, справедливы равенства d (T (, s,, ) T (, s,, )) ϕ (s) = 0, d (S (, s,, ) S (, s,, )) h (s) = 0, (V (,, ) V (,, )) ϕ ( ) = 0 при любых ϕ C 0 ([ r, ], R n ), h C 0 ([, + ], R n ), ϕ ( ) R n. Тогда T (, s,, ) = T (, s,, ) = T (, s, ) при s [ r, ], [, + ]; S (, s,, ) = S (, s,, ) = S (, s, ) при s [, ], [, + ]; V (,, ) = V (,, ) = V (, ) при [, + ]. Лемма доказана. Так как функции T и S не зависят от выбора длины отрезка [, + ], то можно определить решения x ϕ, x h и x 0 системы (1) на полуоси [, ). Решение x ϕ системы (1) с начальной функцией ϕ = ϕ, удовлетворяющей условию ϕ ( ) = 0, и неоднородностью h, определяемой формулой h () = h ( ) = d ϑη (, ϑ ) ϕ (ϑ), [, ), задается формулой x ϕ () = dt (, s, ) ϕ (s),, (4) где T (, r, ) = 0,, T (, s, ) = 0 при s [ r, ], при любом τ > выполняется неравенство sup var T (, s, ) < и при любом s [,τ) 0 r < r функция T (, s, ) ds непрерывна по на полуинтервале [, ). Электронный журнал. hp://www.neva.ru/journal 11

12 Решение x h системы (1) с начальной функцией ϕ = 0 и неоднородностью h = h C 0 ([, + ], R n ) задается формулой x h () = ds (, s, ) h (s),, (5) где S (, s, ) = 0 при s <, S (, s, ) = 0 при s ; при любом τ > выполняется неравенство sup var S (, s, ) < и функция s [,τ] S (, s, ) ds непрерывна по на полуинтервале [, ). Решение x 0 системы (1) с начальной функцией ϕ (ϑ) = ϕ ( ), ϑ [ r, ], и неоднородностью, определяемой формулой h () = h ( ) = (I n + η (, )) ϕ ( ),, задается формулой x 0 () = V (, ) ϕ ( ),, где V (, ) = 0 и функция V (, ) непрерывна по аргументу на полуоси [, ). Лемма 3.2. Функция S не зависит от. Доказательство. Пусть x решение (5), отвечающее начальному h моменту. Для 1 > имеем x () = x 1 () при [ 1, ), если h () = 0 h h при [, 1 ]. Следовательно, x () x 1 () = h h = ds (, s, ) h (s) 1 d (S (, s, ) S (, s, 1 )) h (s) = 0 1 ds (, s, 1 ) h (s) = при любых h C 1 ([ 1, ), R n ). Тогда S (, s, 1 ) = S (, s, ) = S (, s) при s [ 1, ], [ 1, ). Лемма доказана. Согласно доказанной лемме имеем x h () = ds (, s) h (s),, где S (, s) = 0 при s; при любом τ > выполняется неравенство sup var S (, s) < и функция [,τ] s S (, s) ds непрерывна по на полуинтервале [, ). Электронный журнал. hp://www.neva.ru/journal 12

13 Теорема 3.1. Пусть выполнены условия теоремы 2.1. Тогда непрерывное решение начальной задачи Коши допускает представление x () = dt (, s, ) ϕ (s)+ ds (, s) h (s)+(v (, ) + I n ) ϕ ( ),, где ϕ (s) = ϕ (s) ϕ ( ), s [ r, ]; h () = h () h (0 ), ; T (, r, ) = 0 при ; T (, s, ) = 0 при s [ r, ]; S (, s) = 0 при s; при любом τ > выполняются неравенства sup var T (, s, ) <, sup var S (, s) <, при любом s s [,τ) [,τ] τ > и любом 0 r < r функции S (, s) ds и T (, s, ) ds непрерывны по на полуинтервале [, ). 4 Уравнение для функции S Представление решения x h системы (1) связано с нахождением функции S. Теорема 4.1. При выполнении условий теоремы 2.1 функция S является решением уравнения S (, τ) = τ d ϑ η (, ϑ) с начальным условием S (, τ) = 0 при τ. S ( + ϑ, s) ds I n, > τ, (1) Доказательство. Рассмотрим решения уравнения (1) с нулевыми начальными функциями и неоднородностями h C 2 ([, + ), R n ), h ( ) = h ( ) = 0. Имеем x h () = S (, s) ds h (τ) dτ, >, Тогда x h ( + ϑ) = = +ϑ +ϑ h () = ( τ) h (τ) dτ, >. S ( + ϑ, s) ds h (τ) dτ = +ϑ S ( + ϑ, s) ds h (τ) dτ, ϑ [, 0], >. S ( + ϑ, s) ds h (τ) dτ Электронный журнал. hp://www.neva.ru/journal 13

14 Следовательно, после подстановки в систему (1) получим: S (, s) ds h (τ) dτ = + d ϑ η (, ϑ) ( τ) h (τ) dτ, >. S ( + ϑ, s) ds h (τ) dτ+ Так как интеграл S ( + ϑ, s) ds, ϑ [, 0], τ [, ], >, непрерывно зависит от ϑ на отрезке [, 0], то S (, s) ds h (τ) dτ = + d ϑ η (, ϑ) S ( + ϑ, s) ds h (τ) dτ+ ( τ) h (τ) dτ, >. (2) Равенство (2) должно выполняться для любой функции h C ([, + ), R n ). Это условие выполняется, если имеет место равенство S (, s) ds = d ϑ η (, ϑ) S ( + ϑ, s) ds+( τ) I n, τ [, ], >. Правая часть полученного равенства является абсолютно непрерывной функцией аргумента τ на отрезке [, ] при фиксированном. Следовательно, интеграл d ϑη (, ϑ) S ( + ϑ, s) ds задает абсолютно непрерывную функцию аргумента τ на отрезке [, ]. Продифференцировав это равенство по τ, получим искомое уравнение. Теорема доказана. Утверждение 4.1. Пусть выполнены условия теоремы 2.1. Функция η абсолютно непрерывна по второму аргументу на отрезке [, 0] и для любого T > τ выполнено условие vrai sup η ϑ (, ϑ) <. Тогда функция S [τ,t ], ϑ [,0] при фиксированном τ R является единственным решением уравнения S (, τ) = η ϑ (, ϑ) S ( + ϑ, τ) dϑ I n, > τ, (3) с начальным условием S (, τ) = 0 при τ, в пространстве матричных функций, ограниченных в существенном на любом конечном интервале полуоси (τ, + ). Доказательство. Преобразуем уравнение (1) для функции S, меняя Электронный журнал. hp://www.neva.ru/journal 14

15 порядок интегрирования и дифференцируя по τ: + τ = S (, τ) = τ d ϑ η (, ϑ) η ϑ (, ϑ) S ( + ϑ, s) dϑds = η ϑ (, z ) S (z, τ) dz I n = τ S ( + ϑ, s) ds I n = I n + η ϑ (, ϑ) S ( + ϑ, τ) dϑ I n = η ϑ (, z ) S (z, τ) dz I n, > τ. При каждом фиксированном τ R на любом конечном интервале полуоси (τ, + ) уравнение (3) является матричным интегральным уравнением Вольтерра второго рода в пространстве функций, ограниченных в существенном на этом интервале. Поэтому оно имеет единственное решение [14, с.153]. Утверждение доказано. Пример 4.1. Дано однородное скалярное уравнение (1) с функцией η (, ϑ) = ϑ, ϑ [ 1, 0], R, и r = 1. Уравнение (3) имеет вид S (, τ) = 1 При τ τ + 1 получаем уравнение S (, τ) = 1 S ( + ϑ, τ) dϑ 1, > τ. S (y, τ) dy 1 = τ S (y, τ) dy 1. Функция α (, τ) = τ S (y, τ) dy, τ τ + 1, является решением дифференциального уравнения α (, τ) = α (, τ) 1 с начальным условием α (τ + 0, τ) = 0. Находим α (, τ) = τ e 2( 1 2 y 2 ) dy. Тогда S (, τ) = 1 τ e 2( 1 2 y 2 ) dy. Пусть η является матричной функцией скачков с конечным числом точек разрыва, определяемой формулой η (, ϑ) = A m () 1 (ϑ m ϑ), ϑ [, 0], ϑ N <... < ϑ 1 < 0, (4) { 0, < 0, где 1 () = 1, 0, на числовой оси. A m заданные непрерывные матричные функции Электронный журнал. hp://www.neva.ru/journal 15

16 Проверим выполнение условий теоремы 2.1: 1) функция var η (, z) ограничена на любом отрезке числовой оси, т.к. z [,0] A m непрерывные матричные функции на числовой оси, 2) отображение η (, ) непрерывно на числовой оси, т.к. A m непрерывные матричные функции на числовой оси, 3) для любого фиксированного τ R отображение η (, s ) ds непрерывено на [τ, τ + r]. Действительно, ϑm +r η (, s ) ds = A m () 1 (ϑ m ϑ) dϑ = A m () 1 (ξ) dξ ϑ m τ+ = A m () [(τ ϑ m ) 1 (ϑ m τ + ) + (ϑ m + r)]. Полученная функция непрерывно зависит от на отрезке [τ, τ + r]. 4) отображение (, s) η (, s) непрерывно при s = 0 равномерно относительно на любом конечном отрезке, т.к. η (, s) = 0 при s (ϑ 1, 0]. Утверждение 4.2. Если η матричная функция скачков с конечным числом точек разрыва, определяемая формулой (4), то матричная функция S является единственным решением матричного разностного уравнения с непрерывным временем S (, τ) = A m () S ( + ϑ m, τ) I n, > τ, (5) с начальным условием S (, τ) = 0 при τ. Это решение матричная функция, на произвольном интервале полуоси (τ, ) ограниченная в существенном и имеющая конечное число точек разрыва. Доказательство. Подставим выражение (4) для функции η в уравнение (1) и преобразуем входящий в него интеграл: = = S (, τ) = τ A m () τ A m () τ d ϑ η (, ϑ) d ϑ 1 (ϑ m ϑ) S ( + ϑ, s) ds I n = S ( + ϑ m, s) ds I n = S ( + ϑ, s) ds I n = A m () S ( + ϑ m, τ) I n. Электронный журнал. hp://www.neva.ru/journal 16

17 При каждом фиксированном τ уравнение (5) является матричным разностным уравнением с непрерывным временем. Поэтому при заданной нулевой начальной функции оно имеет единственное решение. Требуемое решение можно найти методом шагов [2]. Из этого метода следует справедливость второй части утверждения. Пример 4.2. Рассмотрим разностное уравнение с непрерывным временем x () = A () x ( 1) + h (), где A непрерывная матричная функция на числовой оси. Это уравнение можно записать в форме (1) с функцией η, определяемой формулой { 0, 1 < ϑ 0, η (, ϑ) = A (), ϑ 1, и r = 1. Уравнение (3) имеет вид S (, τ) = A () S ( 1, τ) I n, > τ. При каждом фиксированном τ это уравнение решается методом шагов: при (τ, τ + 1] S (, τ) = I n, при (τ + 1, τ + 2] при (τ + 2, τ + 3] S (, τ) = A () I n, S (, τ) = A () [ A ( 1) I n ] I n = A () A ( 1) A () I n, при (τ + m 1, τ + m] S (, τ) = A () A ( 1)...A ( m + 2) A () A ( 1)...A ( m + 3) A () I n. Пусть теперь матричная функция η имеет вид η (, ϑ) = A m () 1 (ϑ m ϑ) + η 1 (, ϑ), ϑ [, 0], (6) где ϑ N <... < ϑ 1 < 0, η 1 абсолютно непрерывная функция аргумента ϑ на отрезке [, 0], удовлетворяющая условиям теоремы 2.1. Электронный журнал. hp://www.neva.ru/journal 17

18 Утверждение 4.3. В случае функции η, заданной при помощи формулы (6), функция S является единственным решением уравнения S (, τ) = A m () S ( + ϑ m, τ) + η 1 ϑ (, ϑ) S ( + ϑ, τ) dϑ I n, > τ, (7) с начальным условием S (, τ) = 0 при τ, в пространстве матричных функций, ограниченных в существенном на любом конечном интервале полуоси (τ, + ). Доказательство. Подставим выражение (6) для функции η в уравнение (1) и преобразуем входящий в него интеграл: ( 0 N ) d ϑ A m () 1 (ϑ m ϑ) + η 1 (, ϑ) S ( + ϑ, s) ds = τ = A m () d ϑ 1 (ϑ m ϑ) S ( + ϑ, s) ds+ τ + η 1 τ ϑ (, ϑ) S ( + ϑ, s) dsdϑ = A m () S ( + ϑ m, s) ds+ τ + η 1 ϑ (, ϑ) S ( + ϑ, τ) dϑ. Таким образом, уравнение (1) преобразуется к виду (7). При каждом фиксированном τ R ищем решение в пространстве функций ограниченных в существенном на любом интервале полуоси (τ, ). Применяем метод шагов с шагом ϑ 1. В результате, задача сводится к нахождению решения уравнения Вольтерра 2 рода в пространстве функций, ограниченных в существенном. Полученное уравнение имеет единственное решение в этом пространстве. Утверждение доказано. Пример 4.3. Дано однородное скалярное уравнение (1) с функцией { 0, ϑ ( π, 0], η (, ϑ) = cos ( + ϑ), ϑ [ 2π, π], R и r = 2π. Функция η допускает представление (6) η (, ϑ) = cos () 1 ( π ϑ) + η 1 (, ϑ), ϑ [ 2π, 0], Электронный журнал. hp://www.neva.ru/journal 18

19 где η 1 (, ϑ) = вид { 0, ϑ ( π, 0], cos ( + ϑ) cos (), ϑ [ 2π, π]. Уравнение (7) имеет S (, τ) = cos () S ( π, τ) π 2π sin ( + ϑ) S ( + ϑ, τ) dϑ 1, > τ. (8) Решение уравнения (8) имеет вид: при τ < π + τ S (, τ) = 1, при π + τ < 2π + τ S (, τ) = cos () + π τ sin (z) dz 1 = 2 cos () + cos (τ) 1. 5 Связь функций S и V. Для нахождения функции V можно воспользоваться утверждением. Утверждение 5.1. Пусть выполнены условия теоремы 2.1. Тогда функция V определяется формулой V (, ) = S (, ) η (, ) ds (, s) η (s, ), >. Доказательство. Решение x 0 совпадает с решением x h, где h определяется формулой: Преобразуем последнее решение h () = (η (0, ) η (, )) ϕ ( ), >. x h () = ds (, s) (η (, ) η (s, )) ϕ ( ) = ( 0 ) = ds (, s) η (, ) ds (, s) η (s, ) ϕ ( ) = ( 0 ) = S (, ) η (, ) ds (, s) η (s, ) ϕ ( ). Утверждение доказано. 6 Связь функций S и T. Для нахождения функции T можно воспользоваться теоремой. Электронный журнал. hp://www.neva.ru/journal 19

20 Теорема 6.1. Функция T определяется формулой T (, s, ) = d ds >, s [ r, ]. ds (, ξ) s ξ [η (ξ, ϑ) η (ξ, )] dϑ, (1) Доказательство. Рассмотрим решение x ϕ с начальной функцией ϕ C 2 ([ r, ], R n ). Это решение при > совпадает с решением x h, где h определяется формулами: { h () = d ϑ η (, ϑ) ϕ ( + ϑ) d ϑη (, ϑ) ϕ ( + ϑ), [, + r], d ϑη (, ϑ) ϕ ( + ϑ), > + r. (2) Преобразуем интеграл в формуле (2): Находим d ϑ η (, ϑ) ϕ ( + ϑ) = η (, ) ϕ ( r) = [η (, ) η (, ϑ)] ϕ ( ) dϑ+ η (, ϑ) ϕ ( + ϑ) dϑ = s + [η (, ) η (, ϑ)] dϑ ϕ (s) ds, [, + r]. h () = [η (, ) η (, ϑ)] ϕ ( ) dϑ + s d ϑ η (, ϑ) ϕ ( + ϑ) + [η (, ) η (, ϑ)] dϑ ϕ (s) ds, [, + r], h () = d ϑ η (, ϑ) ϕ ( + ϑ), > + r. Преобразуем выражение для решения x h: +r x h () = = ds (, ξ) 0 0 ds (, ξ) ξ +r s ξ ds (, ξ) h (ξ) = [η (ξ, ) η (ξ, ϑ)] dϑ ϕ ( ) [η (ξ, ) η (ξ, ϑ)] dϑ ϕ (s) ds. Электронный журнал. hp://www.neva.ru/journal 20

21 Теперь преобразуем выражение для решения x ϕ : x ϕ () = = T (, τ, ) dτ ϕ ( ) + T (, τ, ) ϕ (τ) dτ = s T (, τ, ) dτ ϕ (s) ds. Запишем условия совпадения решений x h и x ϕ для произвольных функций ϕ C 2 ([ r, ], R n ): +r ds (, ξ) ds (, ξ) ξ s ξ [η (ξ, ) η (ξ, ϑ)] dϑ = [η (ξ, ) η (ξ, ϑ)] dϑ = >, s [ r, ]. s T (, τ, ) dτ, T (, τ, ) dτ, При выполнении второго условия первое условие выполняется. Дифференцируемость по s левой части второго условия следует из дифференцируемости правой части этого условия. Дифференцируя второе равенство по s и сделав замену переменной, получаем искомую формулу (1). Теорема доказана. Утверждение 6.1. В случае дискретной меры η, заданной формулой (4) с абсолютно непрерывными A m ( m = 1, N), функция T определяется формулой T (, s, ) = S (, ) A m ( ) (1 (ϑ m s + ) 1) S (, ξ) A m (ξ) (1 (ϑ m s + ξ) 1) dξ+ + d S (, ξ) A m (ξ) 1 (ϑ m s + ξ) dξ ds S (, s + r) A m (s + r), >, s [ r, ]. Электронный журнал. hp://www.neva.ru/journal 21

22 Доказательство. Преобразуем формулу (1) T (, s, ) = d ds = d ds ds (, ξ) ds (, ξ) d ds s ξ A m (ξ) ds (, ξ) [η (ξ, ϑ) η (ξ, )] dϑ = s ξ 1 (ϑ m ϑ) dϑ A m (ξ) (s ξ + r). Введем обозначания и проинтегрируем по частям: F 2 (, s, ) = S (, ) F 1 (, s, ) = = S (, ) S (, ξ) + ds (, ξ) A m ( ) S (, ξ) s ξ A m (ξ) 1 (ϑ m ϑ) dϑ = s 0 1 (ϑ m ϑ) dϑ s ξ A m (ξ) 1 (ϑ m ϑ) dϑdξ+ A m (ξ) 1 (ϑ m s + ξ) dξ; ds (, ξ) A m (ξ) (s ξ + r) = S (, ξ) A m (ξ) dξ A m ( ) (s + r) S (, ξ) A m (ξ) (s ξ + r) dξ. Продифференцируем F 1 (, s, ) и F 2 (, s, ) по s: d ds (F 1(, s, )) = d S (, ξ) A m (ξ) 1 (ϑ m s + ξ) dξ ds S (, ξ) A m (ξ) 1 (ϑ m s + ξ) dξ S (, ) A m ( ) 1 (ϑ m s + ) ; Электронный журнал. hp://www.neva.ru/journal 22

23 d ds (F 2(, s, )) = S (, ) В результате получаем S (, s + r) + S (, s + r) T (, s, ) = S (, ) A m ( ) A m (s + r) + d ds Утверждение доказано. A m (s + r). S (, ξ) A m (ξ) dξ+ A m ( ) (1 (ϑ m s + ) 1) S (, ξ) A m (ξ) 1 (ϑ m s + ξ) dξ S (, ξ) A m (ξ) (1 (ϑ m s + ξ) 1) dξ Пример 6.1. Рассмотрим разностное уравнение с непрерывным временем x () = A () x ( 1) + h (), > 0, где A абсолютно непрерывная матричная функция на числовой оси. Это уравнение можно записать в форме (1) с функцией η: { 0, 1 < ϑ 0, η (, ϑ) = A (), ϑ = 1, R, и r = 1. Используя утверждение 6.1, имеем T (, s, 0) = S (, 0) A (0) (1 ( 1 s) 1) +S (, s + 1) A (s + 1) = s+1 0 s+1 0 S (, ξ) A (ξ) dξ+ ds (, ξ) A (ξ) + S (, 0) A (0) 1 ( 1 s), > 0, s [ 1, 0]. 1) Пусть (0, 1]. Если 1 s < 1, то из примера 4.2 следует, что S (, ξ) = I n при ξ [0, s + 1]. Находим, Электронный журнал. hp://www.neva.ru/journal 23

24 T (, s, 0) = A (0) 1 ( 1 s) = { A (0), s = 1, 0, s ( 1, 0]. { Если 1 s 0, то из примера 4.2 следует, что S (, ξ) = 0, ξ s + 1, Находим, I n, 0 ξ <. { A () A (0), s = 1, T (, s, 0) = A () A (0) 1 ( 1 s) = A (), s ( 1, 0]. 2) Пусть (1, 2]. Если 1 s < 2, то из примера 4.2 следует, что S (, ξ) = A () I n при ξ [0, s + 1]. Находим, { (A () + I n ) A (0), s = 1, T (, s, 0) = (A () + I n ) A (0) 1 ( 1 s) = 0, s ( 1, 0]. Если { 2 s 0, то из примера 4.2 следует, что S (, ξ) = I n, 1 ξ s + 1, A () I n, 0 ξ < 1. Находим, T (, s, 0) = A () A ( 1) (A () + I n ) A (0) 1 ( 1 s) = { = A () A ( 1) (A () + I n ) A (0), s = 1, A () A ( 1), s ( 1, 0]. Пример 6.2. Дано однородное скалярное уравнение (1) с функцией η (, ϑ) = ϑ, r = 1. Находим s ξ 1 [η (ξ, ϑ) η (ξ, 1)] dϑ = s ξ 1 ξ [, s + 1], s [ 1, ]. Следовательно, формула (1) имеет вид T (, s, ) = d ds s+1 ξ (ϑ + 1) dϑ = ξ 2 (s ξ + 1)2, ds (, ξ) ξ 2 (s ξ + 1)2, >, s [ 1, ]. Пусть (, + 1]. Если 1 s 1, то из примера 4.1 следует, что Электронный журнал. hp://www.neva.ru/journal 24

28. Устойчивость решений систем обыкновенных дифференциальных уравнений. Прямой метод Ляпунова.

28. Устойчивость решений систем обыкновенных дифференциальных уравнений. Прямой метод Ляпунова. 8 Устойчивость решений систем обыкновенных дифференциальных уравнений Прямой метод Ляпунова ВДНогин 1 о Введение Для того чтобы можно было поставить задачу об устойчивости, необходимо располагать объектом,

Подробнее

ТЕМА 3. Собственные значения и собственные векторы вполне непрерывного самосопряженного оператора.

ТЕМА 3. Собственные значения и собственные векторы вполне непрерывного самосопряженного оператора. ТЕМА 3 Собственные значения и собственные векторы вполне непрерывного самосопряженного оператора Основные определения и теоремы Оператор A : E E, действующий в евклидовом пространстве, называется сопряженным

Подробнее

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование»

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ Московский государственный технический университет имени НЭ Баумана Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» ÀÍ Êàíàòíèêîâ, ÀÏ Êðèùåíêî ÔÓÍÊÖÈÈ

Подробнее

Р. М. Гаврилова, Г. С. Костецкая, А. Н. Карапетянц. Методические указания

Р. М. Гаврилова, Г. С. Костецкая, А. Н. Карапетянц. Методические указания МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ РОСТОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ Р. М. Гаврилова, Г. С. Костецкая, А. Н. Карапетянц Методические указания для студентов 1 курса физического факультета

Подробнее

НЕОБХОДИМОЕ И ДОСТАТОЧНОЕ УСЛОВИЕ СУЩЕСТВОВАНИЯ ЭКСТРЕМАЛЬНЫХ ФУНКЦИЙ ЛИНЕЙНОГО ФУНКЦИОНАЛА НАД H 1 В. Г. Рябых

НЕОБХОДИМОЕ И ДОСТАТОЧНОЕ УСЛОВИЕ СУЩЕСТВОВАНИЯ ЭКСТРЕМАЛЬНЫХ ФУНКЦИЙ ЛИНЕЙНОГО ФУНКЦИОНАЛА НАД H 1 В. Г. Рябых Сибирский математический журнал Ноябрь декабрь, 27. Том 48, 6 УДК 517.53/.57 НЕОБХОДИМОЕ И ДОСТАТОЧНОЕ УСЛОВИЕ СУЩЕСТВОВАНИЯ ЭКСТРЕМАЛЬНЫХ ФУНКЦИЙ ЛИНЕЙНОГО ФУНКЦИОНАЛА НАД H 1 В. Г. Рябых Аннотация. Рассмотрена

Подробнее

Тема 9. Обыкновенные дифференциальные уравнения

Тема 9. Обыкновенные дифференциальные уравнения Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования «Санкт-Петербургский государственный морской технический университет» (СПбГМТУ) Кафедра

Подробнее

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование»

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ Московский государственный технический университет имени Н.Э. Баумана Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» À.Í. Êàíàòíèêîâ,

Подробнее

10. Определенный интеграл

10. Определенный интеграл 1. Определенный интеграл 1.1. Пусть f ограниченная функция, заданная на отрезке [, b] R. Разбиением отрезка [, b] называют такой набор точек τ = {x, x 1,..., x n 1, x n } [, b], что = x < x 1 < < x n 1

Подробнее

Лекция 14: Линейный оператор

Лекция 14: Линейный оператор Уральский федеральный университет, Институт математики и компьютерных наук, кафедра алгебры и дискретной математики Вступительные замечания В этой лекции мы приступаем к рассмотрению функций из векторного

Подробнее

ТРИГОНОМЕТРИЧЕСКИЕ РЯДЫ ФУРЬЕ

ТРИГОНОМЕТРИЧЕСКИЕ РЯДЫ ФУРЬЕ Московский физико-технический институт государственный университет) О.В. Бесов ТРИГОНОМЕТРИЧЕСКИЕ РЯДЫ ФУРЬЕ Учебно-методическое пособие Москва, 004 Составитель О.В.Бесов УДК 517. Тригонометрические ряды

Подробнее

Функция Грина и ее применение

Функция Грина и ее применение Министерство образования и науки Украины Харьковский национальный университет имени В. Н. Каразина А. В. Луценко, В. А. Скорик Функция Грина и ее применение Методическое пособие по курсу Дифференциальные

Подробнее

ТЕМА 7. Задача Штурма-Лиувилля. Собственные значения и собственные функции. Сведение задачи Штурма-Лиувилля к интегральному уравнению.

ТЕМА 7. Задача Штурма-Лиувилля. Собственные значения и собственные функции. Сведение задачи Штурма-Лиувилля к интегральному уравнению. ТЕМА 7 Задача Штурма-Лиувилля Собственные значения и собственные функции Сведение задачи Штурма-Лиувилля к интегральному уравнению Основные определения и теоремы Оператором Штурма-Лиувилля называется дифференциальный

Подробнее

ПРЕДЕЛ ДИСКРЕТНЫХ ПОВЕРХНОСТЕЙ КУНСА

ПРЕДЕЛ ДИСКРЕТНЫХ ПОВЕРХНОСТЕЙ КУНСА ПРЕДЕЛ ДИСКРЕТНЫХ ПОВЕРХНОСТЕЙ КУНСА Н. В. Чашников nik239@list.ru 5 декабря 29 г. В [1] было показано, как строить дискретную поверхность Кунса, натянутую на сеть из остовных кривых. Остовные кривые при

Подробнее

ЧИСЛЕННЫЕ МЕТОДЫ РЕШЕНИЯ ПЛОСКОЙ ЗАДАЧИ ТЕПЛОПРОВОДНОСТИ

ЧИСЛЕННЫЕ МЕТОДЫ РЕШЕНИЯ ПЛОСКОЙ ЗАДАЧИ ТЕПЛОПРОВОДНОСТИ Казанский государственный университет Р.Ф. Марданов ЧИСЛЕННЫЕ МЕТОДЫ РЕШЕНИЯ ПЛОСКОЙ ЗАДАЧИ ТЕПЛОПРОВОДНОСТИ Учебно-методическое пособие Издательство Казанского государственного университета 2007 УДК 517.9

Подробнее

ИНТЕГРАЛЬНЫЕ УРАВНЕНИЯ. ТЕОРЕМЫ ФРЕДГОЛЬМА

ИНТЕГРАЛЬНЫЕ УРАВНЕНИЯ. ТЕОРЕМЫ ФРЕДГОЛЬМА ЛАБОРАТОРНАЯ РАБОТА 5 ИНТЕГРАЛЬНЫЕ УРАВНЕНИЯ. ТЕОРЕМЫ ФРЕДГОЛЬМА. О С Н О В Н Ы Е П О Н Я Т И Я И Т Е О Р Е М Ы Определение. Интегральным уравнением Фредгольма рода называется уравнение x ( s, ds f (.

Подробнее

Тема 2-8: Образ и ядро линейного отображения

Тема 2-8: Образ и ядро линейного отображения Тема 2-8: Образ и ядро линейного отображения А. Я. Овсянников Уральский федеральный университет Институт математики и компьютерных наук кафедра алгебры и дискретной математики алгебра и геометрия для механиков

Подробнее

1. Производная и её свойства

1. Производная и её свойства ЭЛЕМЕНТЫ ДИФФЕРЕНЦИАЛЬНОГО ИСЧИСЛЕНИЯ 1. Производная и её свойства Определение 1. Пусть функция y = f(x) определена в интервале (a,b) и x 0 точка этого интервала. Пусть x такая величина, что x 0 ± x (a,b),

Подробнее

Лекция 7: Прямая на плоскости

Лекция 7: Прямая на плоскости Уральский федеральный университет, Институт математики и компьютерных наук, кафедра алгебры и дискретной математики Вступительные замечания Эта и следующие две лекции посвящены изучению прямых и плоскостей.

Подробнее

Неопределенный и определенный интегралы

Неопределенный и определенный интегралы ~ ~ Неопределенный и определенный интегралы Понятие первообразной и неопределѐнного интеграла. Определение: Функция F называется первообразной по отношению к функции f, если эти функции связаны следующим

Подробнее

НЕЛОКАЛЬНАЯ ОБРАТНАЯ ЗАДАЧА ДЛЯ УРАВНЕНИЯ ЭЛЛИПТИКО-ГИПЕРБОЛИЧЕСКОГО ТИПА

НЕЛОКАЛЬНАЯ ОБРАТНАЯ ЗАДАЧА ДЛЯ УРАВНЕНИЯ ЭЛЛИПТИКО-ГИПЕРБОЛИЧЕСКОГО ТИПА Современная математика и ее приложения. Том 68 (211). С. 4 5 УДК 517.95 НЕЛОКАЛЬНАЯ ОБРАТНАЯ ЗАДАЧА ДЛЯ УРАВНЕНИЯ ЭЛЛИПТИКО-ГИПЕРБОЛИЧЕСКОГО ТИПА c 211 г. К. Б. САБИТОВ, Н. В. МАРТЕМЬЯНОВА АННОТАЦИЯ. Доказывается

Подробнее

1. О С Н О В Н Ы Е П О Н Я Т И Я И Т Е О Р Е М Ы

1. О С Н О В Н Ы Е П О Н Я Т И Я И Т Е О Р Е М Ы ЛАБОРАТОРНАЯ РАБОТА СПЕКТР ОПЕРАТОРА. О С Н О В Н Ы Е П О Н Я Т И Я И Т Е О Р Е М Ы Пусть : ограниченный линейный оператор в банаховом пространстве над полем. C. Определение. Точка C называется регулярной

Подробнее

7. Общие понятия. U n (x),n N, определены в области D. Выра-

7. Общие понятия. U n (x),n N, определены в области D. Выра- Глава Функциональные ряды 7 Общие понятия U (), N, определены в области D Выра- Определение 7 Пусть функции жение () U() U() U(), D U (5) называется функциональным рядом Каждому значению D соответствует

Подробнее

Лекция 15: Собственные значения и собственные векторы. оператора

Лекция 15: Собственные значения и собственные векторы. оператора Лекция 15: Собственные значения и собственные векторы линейного оператора Уральский федеральный университет, Институт математики и компьютерных наук, кафедра алгебры и дискретной математики Определение

Подробнее

Лекция 17: Евклидово пространство

Лекция 17: Евклидово пространство Уральский федеральный университет, Институт математики и компьютерных наук, кафедра алгебры и дискретной математики Вступительные замечания При решении многих задач возникает необходимость иметь числовые

Подробнее

4 Определенный интеграл Римана. Определение,

4 Определенный интеграл Римана. Определение, 4 Определенный интеграл Римана. Определение, обобщенная теорема о среднем значении, интеграл с переменным верхним пределом, формула замены переменной, интегрирование по частям, некоторые неравенства. 4.1

Подробнее

Лекция 10: Умножение матриц

Лекция 10: Умножение матриц Уральский федеральный университет, Институт математики и компьютерных наук, кафедра алгебры и дискретной математики Вступительные замечания В данной лекции вводится операция умножения матриц, изучаются

Подробнее

УДК 517.926. c 2010 Перов А. И. Сибирский математический журнал Март апрель, 2010. Том 51, 2

УДК 517.926. c 2010 Перов А. И. Сибирский математический журнал Март апрель, 2010. Том 51, 2 Сибирский математический журнал Март апрель, 21. Том 51, 2 УДК 517.926 КАНОНИЧЕСКАЯ СИСТЕМА ДВУХ ЛИНЕЙНЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ С ПЕРИОДИЧЕСКИМИ КОЭФФИЦИЕНТАМИ И ТЕОРИЯ ПУАНКАРЕ ДАНЖУА ДИФФЕРЕНЦИАЛЬНЫХ

Подробнее

2 Сильно непрерывные полугруппы

2 Сильно непрерывные полугруппы 2 Сильно непрерывные полугруппы Определение 1 Полугруппа линейных ограниченных операторов T), действующих в банаховом пространстве, называется сильно непрерывной или C -полугруппой), если lim T)x = x x

Подробнее

Тема 2-2: Линейная зависимость

Тема 2-2: Линейная зависимость Тема 2-2: Линейная зависимость А. Я. Овсянников Уральский федеральный университет Институт математики и компьютерных наук кафедра алгебры и дискретной математики алгебра и геометрия для механиков (2 семестр)

Подробнее

С. А. Бутерин. обратная спектральная задача восстановления одномерного возмущения

С. А. Бутерин. обратная спектральная задача восстановления одномерного возмущения С А Бутерин обратная спектральная задача восстановления одномерного возмущения МАТЕМАТИКА УДК 517984 ОБРАТНАЯ СПЕКТРАЛЬНАЯ ЗАДАЧА ВОССТАНОВЛЕНИЯ ОДНОМЕРНОГО ВОЗМУЩЕНИЯ ИНТЕГРАЛЬНОГО ВОЛЬТЕРРОВА ОПЕРАТОРА

Подробнее

Лекция 16: Образ и ядро линейного оператора

Лекция 16: Образ и ядро линейного оператора Лекция 16: Образ и ядро линейного оператора Уральский федеральный университет, Институт математики и компьютерных наук, кафедра алгебры и дискретной математики Вступительные замечания В этой лекции мы

Подробнее

2 Дифференцируемость функций многих переменных. точке. Достаточные условия дифференцируемости

2 Дифференцируемость функций многих переменных. точке. Достаточные условия дифференцируемости В.В. Жук, А.М. Камачкин Дифференцируемость функций многих переменных. Дифференцируемость функции в точке. Достаточные условия дифференцируемости в терминах частных производных. Дифференцирование сложной

Подробнее

Достаточные условия существования решения задачи об условном экстремуме методом Лагранжа. В.В. Колыбасова, Н.Ч. Крутицкая

Достаточные условия существования решения задачи об условном экстремуме методом Лагранжа. В.В. Колыбасова, Н.Ч. Крутицкая Достаточные условия существования решения задачи об условном экстремуме методом Лагранжа ВВ Колыбасова, НЧ Крутицкая В В Колыбасова, Н Ч Крутицкая Достаточные условия существования решения задачи об условном

Подробнее

Лекция 18: Ортонормированный базис

Лекция 18: Ортонормированный базис Уральский федеральный университет, Институт математики и компьютерных наук, кафедра алгебры и дискретной математики Ортогональные и ортонормированные наборы векторов Из определения угла между векторами

Подробнее

Лекция 2.1.6. Определенный интеграл Римана

Лекция 2.1.6. Определенный интеграл Римана Лекция 6 Определенный интеграл Римана Аннотация: Отмечается что кроме интеграла Римана существуют и другие интегралы Рассматриваются свойства определенного интеграла Понятие определенного интеграла настолько

Подробнее

Лекция 13: Пространство решений однородной системы линейных уравнений

Лекция 13: Пространство решений однородной системы линейных уравнений Лекция 13: Пространство решений однородной системы линейных уравнений Уральский федеральный университет, Институт математики и компьютерных наук, кафедра алгебры и дискретной математики Вступительные замечания

Подробнее

Теоретический материал.

Теоретический материал. 0.5 Логарифмические уравнения и неравенства. Используемая литература:. Алгебра и начала анализа 0- под редакцией А.Н.Колмогорова. Самостоятельные и контрольные работы по алгебре 0- под редакцией Е.П.Ершова

Подробнее

ОПТИМАЛЬНОЕ УПРАВЛЕНИЕ ПОВЕДЕНИЕМ РЕШЕНИЙ ОДНОЙ НАЧАЛЬНО-КРАЕВОЙ ЗАДАЧИ, ВОЗНИКАЮЩЕЙ В МЕХАНИКЕ ДИСКРЕТНО-КОНТИНУАЛЬНЫХ СИСТЕМ

ОПТИМАЛЬНОЕ УПРАВЛЕНИЕ ПОВЕДЕНИЕМ РЕШЕНИЙ ОДНОЙ НАЧАЛЬНО-КРАЕВОЙ ЗАДАЧИ, ВОЗНИКАЮЩЕЙ В МЕХАНИКЕ ДИСКРЕТНО-КОНТИНУАЛЬНЫХ СИСТЕМ 1779 УДК 517.977.56 ОПТИМАЛЬНОЕ УПРАВЛЕНИЕ ПОВЕДЕНИЕМ РЕШЕНИЙ ОДНОЙ НАЧАЛЬНО-КРАЕВОЙ ЗАДАЧИ, ВОЗНИКАЮЩЕЙ В МЕХАНИКЕ ДИСКРЕТНО-КОНТИНУАЛЬНЫХ СИСТЕМ Е.П. Кубышкин Ярославский государственный университет

Подробнее

Лекция 7: Векторные пространства

Лекция 7: Векторные пространства Уральский федеральный университет, Институт математики и компьютерных наук, кафедра алгебры и дискретной математики Вступительные замечания В этой лекции мы приступаем к изучению линейной алгебры как таковой,

Подробнее

Тема 2-11: Собственные векторы и собственные значения

Тема 2-11: Собственные векторы и собственные значения Тема 2-11: Собственные векторы и собственные значения А. Я. Овсянников Уральский федеральный университет Институт математики и компьютерных наук кафедра алгебры и дискретной математики алгебра и геометрия

Подробнее

Лекция 13: Пространство решений однородной системы линейных уравнений

Лекция 13: Пространство решений однородной системы линейных уравнений Лекция 13: Пространство решений однородной системы линейных уравнений Уральский федеральный университет, Институт математики и компьютерных наук, кафедра алгебры и дискретной математики Вступительные замечания

Подробнее

Глава 7. Определенный интеграл

Глава 7. Определенный интеграл 68 Глава 7 Определенный интеграл 7 Определение и свойства К понятию определенного интеграла приводят разнообразные задачи вычисления площадей, объемов, работы, объема производства, денежных потоков и тп

Подробнее

Лекция 11: Обратная матрица

Лекция 11: Обратная матрица Уральский федеральный университет, Институт математики и компьютерных наук, кафедра алгебры и дискретной математики Определение обратной матрицы Определение Пусть A произвольная матрица. Матрица B называется

Подробнее

Институт гидродинамики им. М. А. Лаврентьева СО РАН, 630090 Новосибирск

Институт гидродинамики им. М. А. Лаврентьева СО РАН, 630090 Новосибирск ПРИКЛАДНАЯ МЕХАНИКА И ТЕХНИЧЕСКАЯ ФИЗИКА. 2004. Т. 45, N- 2 5 УДК 517.91 ГРУППОВАЯ КЛАССИФИКАЦИЯ УРАВНЕНИЙ ВИДА y = f(x, y) Л. В. Овсянников Институт гидродинамики им. М. А. Лаврентьева СО РАН, 630090

Подробнее

Лекция 1. Мера Лебега плоских множеств

Лекция 1. Мера Лебега плоских множеств Лекция 1. Мера Лебега плоских множеств Корпусов Максим Олегович, Панин Александр Анатольевич Курс лекций по линейному функциональному анализу 5 сентября 2012 г. Введение Функция Дирихле не интегрируема

Подробнее

16. Криволинейные координаты. Замена переменных в дифференциальных выражениях

16. Криволинейные координаты. Замена переменных в дифференциальных выражениях 16. Криволинейные координаты. Замена переменных в дифференциальных выражениях 16.1. Математическое описание какого-либо процесса нередко сопровождается выделением набора числовых его характеристик и заданием

Подробнее

Функции непрерывные на отрезке (теоремы Больцано-Коши, Вейерштрасса, Кантора). Функционалы

Функции непрерывные на отрезке (теоремы Больцано-Коши, Вейерштрасса, Кантора). Функционалы 1 Функции непрерывные на отрезке (теоремы Больцано-Коши, Вейерштрасса, Кантора). Функционалы непрерывные на компакте. 1.1 Теорема о промежуточных значениях Теорема 1. (Больцано-Коши) Пусть функция f непрерывна на отрезке [a, b], причем f(a) f(b). Тогда для любого числа C, заключенного между f(a) и f(b) найдется точка γ (a, b), что f(γ) = C. Доказательство. Пусть, например, f(a) = A < B = f(b) и A < C < B. Функция g(x) = f(x) C, очевидно, непрерывна на [a, b]. Кроме того, g(a) < 0, g(b) > 0. Для доказательства теоремы достаточно показать, что существует такая точка γ (a, b), что g(γ) = 0. Разделим отрезок [a, b] точкой x 0 на два равных по длине отрезка, тогда либо g(x 0 ) = 0 и, значит, искомая точка γ = x 0 найдена, либо g(x 0 ) 0 и тогда на концах одного из полученных промежутков функция g принимает значения разных знаков, точнее, на левом конце значение меньше нуля, на правом - больше. Обозначим этот отрезок [a 1, b 1 ] и разделим его снова на два равных по длине отрезка и т.д. В результате, либо через конечное число шагов придем к искомой точке γ, в которой g(γ) = 0, либо получим последовательность вложенных отрезков [a n, b n ] по длине стремящихся к нулю и таких, что g(a n ) < 0 < g(b n ) (1) Пусть γ - общая точка всех отрезков [a n, b n ], n = 1, 2,... Тогда γ = lim a n = lim b n. Поэтому, в силу непрерывности функции g Из (1) находим, что g(γ) = lim g(a n ) = lim g(b n ) (2) Из (2) и (3) следует, что g(γ) = 0. lim g(a n ) 0 lim g(b n ) (3) Следствие 1. Если функция непрерывна на отрезке и на его концах принимает значения разных знаков, то на этом отрезке есть хотя бы одна точка, в которой функция обращается в нуль. 1.2 Первая и вторая теоремы Вейерштрасса Будем говорить, что функция f, определенная на множестве E достигает на нем своей верхней (нижней) границы β = sup E f (α = inf E f), если существует такая точка x 0 E, что f(x 0 ) = β (f(x 0 ) = α). 1

Подробнее

Лекция 6: Крамеровские системы линейных уравнений

Лекция 6: Крамеровские системы линейных уравнений Лекция 6: Крамеровские системы линейных уравнений Уральский федеральный университет, Институт математики и компьютерных наук, кафедра алгебры и дискретной математики Вступительные замечания В курсе аналитической

Подробнее

Лекция 8: Базис векторного пространства

Лекция 8: Базис векторного пространства Уральский федеральный университет, Институт математики и компьютерных наук, кафедра алгебры и дискретной математики Вступительные замечания В курсе аналитической геометрии важную роль играли понятия базиса

Подробнее

Выпуклые ленточные матрицы и их положительная определенность*

Выпуклые ленточные матрицы и их положительная определенность* Выпуклые ленточные матрицы и их положительная определенность* В. Н. РАЗЖЕВАЙКИН Аннотация. Доказывается теорема о положительной определенности ленточных матриц широко используемых в задачах математической

Подробнее

Глава 4 НЕПРЕРЫВНОСТЬ ФУНКЦИЙ. 1 НЕПРЕРЫВНОСТЬ ФУНКЦИИ В ТОЧКЕ И НА МНОЖЕСТВЕ. , если выполняются следующие три условия :

Глава 4 НЕПРЕРЫВНОСТЬ ФУНКЦИЙ. 1 НЕПРЕРЫВНОСТЬ ФУНКЦИИ В ТОЧКЕ И НА МНОЖЕСТВЕ. , если выполняются следующие три условия : 57 Глава 4 НЕПРЕРЫВНОСТЬ ФУНКЦИЙ. 1 НЕПРЕРЫВНОСТЬ ФУНКЦИИ В ТОЧКЕ И НА МНОЖЕСТВЕ Определение 1 Функция = f ( ) называется непрерывной в точке, если выполняются следующие три условия : 1) функция = f (

Подробнее

системы линейных уравнений Б.М.Верников Лекция 3: Однородные и неоднородные системы

системы линейных уравнений Б.М.Верников Лекция 3: Однородные и неоднородные системы Лекция 3: Однородные и неоднородные системы линейных уравнений Система линейных уравнений Определение Линейным уравнением (или уравнением первого порядка) с n неизвестными x 1, x 2,..., x n называется

Подробнее

15 Степень отображения. Определение Говорят, что на многообразии М n задана ориентация, если оно разбито на области действия локальных координат

15 Степень отображения. Определение Говорят, что на многообразии М n задана ориентация, если оно разбито на области действия локальных координат 87 Теорема Фундаментальная группа окружности S является бесконечной циклической группой с образующей α, где α - гомотопический класс петли l: I S, где l () t = ( os πt,sin π t ), t [ 0 ; ] 5 Степень отображения

Подробнее

Факультативно. Ковариантная форма физических законов.

Факультативно. Ковариантная форма физических законов. Факультативно. Ковариантная форма физических законов. Ковариантность и контравариантность. Слово "ковариантный" означает "преобразуется так же, как что-то", а слово "контравариантный" означает "преобразуется

Подробнее

В.П. Максимов П.М. Симонов ТЕОРИЯ ОПТИМАЛЬНОГО УПРАВЛЕНИЯ. Учебное пособие

В.П. Максимов П.М. Симонов ТЕОРИЯ ОПТИМАЛЬНОГО УПРАВЛЕНИЯ. Учебное пособие МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Государственное образовательное учреждение высшего профессионального образования «Пермский государственный университет» ВП Максимов ПМ Симонов ТЕОРИЯ

Подробнее

4 Основные свойства определенного интеграла

4 Основные свойства определенного интеграла 178 4 Основные свойства определенного интеграла Рассмотрим основные свойства определенного интеграла. 1) Если нижний и верхний пределы интегрирования равны (=), то интеграл равен нулю f ( ) d = 0 Данное

Подробнее

Лекция 9: Подпространства

Лекция 9: Подпространства Уральский федеральный университет, Институт математики и компьютерных наук, кафедра алгебры и дискретной математики Определение подпространства. Примеры подпространств (1) Определение Непустое подмножество

Подробнее

Лекция 2. Степенные ряды

Лекция 2. Степенные ряды С А Лавренченко wwwlwreekoru Лекция Степенные ряды Понятие степенного ряда Степенной ряд можно рассматривать как многочлен с бесконечным числом членов Определение (степенного ряда) Степенным рядом называется

Подробнее

ПЛАН УЧЕБНЫХ ЗАНЯТИЙ ПО ДИСЦИПЛИНЕ МАТЕМАТИЧЕСКИЙ АНАЛИЗ ДЛЯ СТУДЕНТОВ 1 КУРСА СПЕЦИАЛЬНОСТИ 230101

ПЛАН УЧЕБНЫХ ЗАНЯТИЙ ПО ДИСЦИПЛИНЕ МАТЕМАТИЧЕСКИЙ АНАЛИЗ ДЛЯ СТУДЕНТОВ 1 КУРСА СПЕЦИАЛЬНОСТИ 230101 ПЛАН УЧЕБНЫХ ЗАНЯТИЙ ПО ДИСЦИПЛИНЕ МАТЕМАТИЧЕСКИЙ АНАЛИЗ ДЛЯ СТУДЕНТОВ 1 КУРСА СПЕЦИАЛЬНОСТИ 230101 РЕКОМЕНДУЕМАЯ ЛИТЕРАТУРА Основная 1. Бугров Я. С., Никольский С.М. Высшая математика. Т.2. Дифференциальное

Подробнее

28. Фундаментальная система решений однородной системы линейных уравнений

28. Фундаментальная система решений однородной системы линейных уравнений 28. Фундаментальная система решений однородной системы линейных уравнений Уральский федеральный университет, Институт математики и компьютерных наук, кафедра алгебры и дискретной математики Размерность

Подробнее

Д. Г. Орловский. ОПРЕДЕЛЕННЫЙ ИНТЕГРАЛ. ПРАКТИКУМ Часть 1

Д. Г. Орловский. ОПРЕДЕЛЕННЫЙ ИНТЕГРАЛ. ПРАКТИКУМ Часть 1 Министерство образования и науки Российской Федерации Национальный исследовательский ядерный университет МИФИ Д. Г. Орловский ОПРЕДЕЛЕННЫЙ ИНТЕГРАЛ. ПРАКТИКУМ Часть Рекомендовано УМО Ядерные физика и технологии

Подробнее

Тема 1: Системы линейных уравнений

Тема 1: Системы линейных уравнений Тема 1: Системы линейных уравнений А. Я. Овсянников Уральский федеральный университет Институт математики и компьютерных наук кафедра алгебры и дискретной математики алгебра и геометрия для физиков-инженеров

Подробнее

Тема 4. Определенные интегралы, зависящие от параметра

Тема 4. Определенные интегралы, зависящие от параметра Тема 4. Определенные интегралы, зависящие от параметра На этом занятии рассматриваются различные примеры вычисления интегралов с помощью метода дифференцирования и интегрирования по параметру, от которого

Подробнее

8. Определенный интеграл

8. Определенный интеграл 8. Определенный интеграл 8.. Пусть f ограниченная функция, заданная на отрезке [, b] R. Разбиением отрезка [, b] называют такой набор точек τ = {x, x,..., x n, x n } [, b], что = x < x < < x n < x n =

Подробнее

Тема6. «Определенный интеграл»

Тема6. «Определенный интеграл» Министерство образования Республики Беларусь УО «Витебский государственный технологический университет» Тема6. «Определенный интеграл» Кафедра теоретической и прикладной математики. разработана доц. Е.Б.Дуниной

Подробнее

Скачано с antigtu.ru. Скачано с http://antigtu.ru. Задача Кузнецов Пределы 1-22. Условие задачи. Доказать, что (указать ). Решение

Скачано с antigtu.ru. Скачано с http://antigtu.ru. Задача Кузнецов Пределы 1-22. Условие задачи. Доказать, что (указать ). Решение Скачано с http://antigtu.ru Задача Кузнецов Пределы 1-22 Доказать, что (указать ). По определению предела: Проведем преобразования: (*) Очевидно, что предел существует и равен 2. Из (*) легко посчитать

Подробнее

Лекция 2. Инварианты плоских кривых

Лекция 2. Инварианты плоских кривых Лекция 2. Инварианты плоских кривых План лекции. Гладкие кривые на плоскости, число вращения, классификация кривых с точностью до гладкой гомотопии, точки самопересечения, число Уитни, теорема Уитни..1

Подробнее

Интегрируемость функции (по Риману) и определенный интеграл

Интегрируемость функции (по Риману) и определенный интеграл Интегрируемость функции (по Риману) и определенный интеграл Примеры решения задач 1. Постоянная функция f(x) = C интегрируема на [a, b], так как для любых разбиений и любого выбора точек ξ i интегральные

Подробнее

Вариационное исчисление: задачи, алгоритмы, примеры. А.В. Ожегова, Р.Г. Насибуллин

Вариационное исчисление: задачи, алгоритмы, примеры. А.В. Ожегова, Р.Г. Насибуллин Вариационное исчисление: задачи, алгоритмы, примеры. А.В. Ожегова, Р.Г. Насибуллин Казань, 213 УДК 519.6, 517.97 ББК Печатается по решению методической комиссии Института математики и механики им. Н.И.

Подробнее

О ВОЗМОЖНОСТИ ОБОБЩЕННО АНАЛИТИЧЕСКОГО ПРОДОЛЖЕНИЯ В ОБЛАСТЬ ФУНКЦИЙ, ЗАДАННЫХ НА КУСКЕ ЕЕ ГРАНИЦЫ Т. Ишанкулов

О ВОЗМОЖНОСТИ ОБОБЩЕННО АНАЛИТИЧЕСКОГО ПРОДОЛЖЕНИЯ В ОБЛАСТЬ ФУНКЦИЙ, ЗАДАННЫХ НА КУСКЕ ЕЕ ГРАНИЦЫ Т. Ишанкулов Сибирский математический журнал Ноябрь декабрь, 2000. Том 4, 6 УДК 57.5 О ВОЗМОЖНОСТИ ОБОБЩЕННО АНАЛИТИЧЕСКОГО ПРОДОЛЖЕНИЯ В ОБЛАСТЬ ФУНКЦИЙ, ЗАДАННЫХ НА КУСКЕ ЕЕ ГРАНИЦЫ Т. Ишанкулов Аннотация: Рассматривается

Подробнее

Глава 2. Дифференциальное и интегральное исчисление функции одной переменной 1. Основные понятия

Глава 2. Дифференциальное и интегральное исчисление функции одной переменной 1. Основные понятия 35 Глава 2 Дифференциальное и интегральное исчисление функции одной переменной 1 Основные понятия Пусть D некоторое множество чисел Если задан закон, по которому каждому числу из множества D ставится в

Подробнее

РЕШЕНИЕ РЕКУРРЕНТНЫХ УРАВНЕНИЙ

РЕШЕНИЕ РЕКУРРЕНТНЫХ УРАВНЕНИЙ РЕШЕНИЕ РЕКУРРЕНТНЫХ УРАВНЕНИЙ Обозначим через значение некоторого выражения при подстановке в него целого числа Тогда зависимость члена последовательности от членов последовательности F F со значениями

Подробнее

4. Понятие числового ряда. Критерий Коши сходимости числового ряда.

4. Понятие числового ряда. Критерий Коши сходимости числового ряда. 4. Понятие числового ряда. Критерий Коши сходимости числового ряда. Под словом "ряд"в математическом анализе понимают сумму бесконечного числа слагаемых. Рассмотрим произвольную числовую последовательность

Подробнее

Контрольная работа 1.

Контрольная работа 1. Контрольная работа...4. Найти общее решение (общий интеграл) дифференциального уравнения. Сделать проверку. 4 y y y y y y 4 y y y 4 4 Это уравнение Бернулли. Сделаем замену: y y y 4 4 4 z y ; z y y Тогда

Подробнее

2. РЕШЕНИЕ НЕЛИНЕЙНЫХ УРАВНЕНИЙ И СИСТЕМ НЕЛИНЕЙНЫХ УРАВНЕНИЙ 2.1. РЕШЕНИЕ НЕЛИНЕЙНЫХ УРАВНЕНИЙ

2. РЕШЕНИЕ НЕЛИНЕЙНЫХ УРАВНЕНИЙ И СИСТЕМ НЕЛИНЕЙНЫХ УРАВНЕНИЙ 2.1. РЕШЕНИЕ НЕЛИНЕЙНЫХ УРАВНЕНИЙ . РЕШЕНИЕ НЕЛИНЕЙНЫХ УРАВНЕНИЙ И СИСТЕМ НЕЛИНЕЙНЫХ УРАВНЕНИЙ.. РЕШЕНИЕ НЕЛИНЕЙНЫХ УРАВНЕНИЙ вида Численное решение нелинейных алгебраических или трансцендентных уравнений. заключается в нахождении значений

Подробнее

12. Определенный интеграл

12. Определенный интеграл 58 Определенный интеграл Пусть на промежутке [] задана функция () Будем считать функцию непрерывной, хотя это не обязательно Выберем на промежутке [] произвольные числа,, 3,, n-, удовлетворяющие условию:

Подробнее

ПРОГРАММА ВСТУПИТЕЛЬНОГО ИСПЫТАНИЯ ПО ПРЕДМЕТУ «ВЫСШАЯ МАТЕМАТИКА»

ПРОГРАММА ВСТУПИТЕЛЬНОГО ИСПЫТАНИЯ ПО ПРЕДМЕТУ «ВЫСШАЯ МАТЕМАТИКА» ПРОГРАММА ВСТУПИТЕЛЬНОГО ИСПЫТАНИЯ ПО ПРЕДМЕТУ «ВЫСШАЯ МАТЕМАТИКА» Тема 1. Множества. Введение в логику. Понятие функции. Кривые второго порядка. Основные понятия о множествах. Символика, ее использование.

Подробнее

3 Формула Тейлора. Различные формы записи остаточного члена.

3 Формула Тейлора. Различные формы записи остаточного члена. В.В. Жук, А.М. Камачкин 3 Формула Тейлора. Различные формы записи остаточного члена. 3.1 Формула Тейлора для многочленов. Пусть P - многочлен степени не выше n: a 0 + a 1 x +... + a n x n. Дифференцируя

Подробнее

О СВЯЗИ МЕЖДУ КОЭФФИЦИЕНТАМИ ПРОСТОЙ И МНОЖЕСТВЕННОЙ РЕГРЕССИОННЫХ МОДЕЛЕЙ В. Г. Панов, А. Н. Вараксин

О СВЯЗИ МЕЖДУ КОЭФФИЦИЕНТАМИ ПРОСТОЙ И МНОЖЕСТВЕННОЙ РЕГРЕССИОННЫХ МОДЕЛЕЙ В. Г. Панов, А. Н. Вараксин Сибирский математический журнал Январь февраль, 2010. Том 51, 1 УДК 519.233.5+519.654 О СВЯЗИ МЕЖДУ КОЭФФИЦИЕНТАМИ ПРОСТОЙ И МНОЖЕСТВЕННОЙ РЕГРЕССИОННЫХ МОДЕЛЕЙ В. Г. Панов, А. Н. Вараксин Аннотация. Рассмотрена

Подробнее

Интегралы Определенные и Неопределенные

Интегралы Определенные и Неопределенные 1 Интегралы Определенные и Неопределенные Опр. Интеграл функции это естественный аналог суммы последовательности. Опр. Интегрирование процесс нахождения интеграла. Зам. Интегрирование это операция обратная

Подробнее

Лекция 12: Ранг матрицы

Лекция 12: Ранг матрицы Уральский федеральный университет, Институт математики и компьютерных наук, кафедра алгебры и дискретной математики Вступительные замечания В данной лекции изучается важная числовая характеристика матрицы

Подробнее

ЛИНЕЙНЫЕ ОПЕРАТОРЫ И ФУНКЦИОНАЛЫ В НОРМИРОВАННЫХ ПРОСТРАНСТВАХ. НОРМА ЛИНЕЙНОГО ОПЕРАТОРА И ФУНКЦИОНАЛА

ЛИНЕЙНЫЕ ОПЕРАТОРЫ И ФУНКЦИОНАЛЫ В НОРМИРОВАННЫХ ПРОСТРАНСТВАХ. НОРМА ЛИНЕЙНОГО ОПЕРАТОРА И ФУНКЦИОНАЛА ЛАБОРАТОРНАЯ РАБОТА 9 ЛИНЕЙНЫЕ ОПЕРАТОРЫ И ФУНКЦИОНАЛЫ В НОРМИРОВАННЫХ ПРОСТРАНСТВАХ. НОРМА ЛИНЕЙНОГО ОПЕРАТОРА И ФУНКЦИОНАЛА. О С Н О В Н Ы Е П О Н Я Т И Я И Т Е О Р Е М Ы Определение. Пусть и векторные

Подробнее

Соприкосновение линейчатых развертывающихся поверхностей. А.С. Нитейский, К.Л. Панчук ОмГТУ, каф. ИГ и САПР, г.омск

Соприкосновение линейчатых развертывающихся поверхностей. А.С. Нитейский, К.Л. Панчук ОмГТУ, каф. ИГ и САПР, г.омск Соприкосновение линейчатых развертывающихся поверхностей АС Нитейский, КЛ Панчук ОмГТУ, каф ИГ и САПР, гомск В работах [,] были представлены результаты исследования соприкосновения косых неразвертывающихся)

Подробнее

Лекция 9: Прямая в пространстве

Лекция 9: Прямая в пространстве Уральский федеральный университет, Институт математики и компьютерных наук, кафедра алгебры и дискретной математики Вступительные замечания Эта лекция посвящена изучению прямой в пространстве. Излагаемый

Подробнее

МАТЕМАТИКА ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ. НЕЛИНЕЙНОЕ ПРОГРАММИРОВАНИЕ

МАТЕМАТИКА ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ. НЕЛИНЕЙНОЕ ПРОГРАММИРОВАНИЕ ООО «Резольвента» www.resolventa.ru resolventa@list.ru (495) 509-8-0 Учебный центр «Резольвента» Доктор физико-математических наук профессор К. Л. САМАРОВ МАТЕМАТИКА Учебно-методическое пособие по разделу

Подробнее

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование»

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ Московский государственный технический университет имени Н.Э. Баумана Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» À.Í. Êàíàòíèêîâ, À.Ï. Êðèùåíêî

Подробнее

Глава 3. Определители

Глава 3. Определители Глава Определители Перестановки Q Рассмотрим множество первых натуральных чисел которое обозначим как Определение Перестановкой P множества элементов из Q назовем любое расположение этих элементов в некотором

Подробнее

Равномерная непрерывность функций одной переменной.

Равномерная непрерывность функций одной переменной. МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ им. М.В. Ломоносова Ф И З И Ч Е С К И Й Ф А К У Л Ь Т Е Т КАФЕДРА МАТЕМАТИКИ В.Ф. Бутузов, Н.Т. Левашова, Н.Е. Шапкина Равномерная непрерывность функций одной переменной.

Подробнее

Лекция 2: Многочлены

Лекция 2: Многочлены Уральский федеральный университет, Институт математики и компьютерных наук, кафедра алгебры и дискретной математики Понятие многочлена Определения Многочленом от одной переменной называется выражение вида

Подробнее

Лекция 1: Комплексные числа

Лекция 1: Комплексные числа Уральский федеральный университет, Институт математики и компьютерных наук, кафедра алгебры и дискретной математики Вступительные замечания В школьном курсе математики понятие числа постепенно расширяется.

Подробнее

О НАЧАЛЬНО-КРАЕВОЙ ЗАДАЧЕ, ПОРОЖДАЮЩЕЙ ВНУТРЕННЮЮ ЗАДАЧУ СОПРЯЖЕНИЯ Старков П.А.

О НАЧАЛЬНО-КРАЕВОЙ ЗАДАЧЕ, ПОРОЖДАЮЩЕЙ ВНУТРЕННЮЮ ЗАДАЧУ СОПРЯЖЕНИЯ Старков П.А. УДК 517.98 О НАЧАЛЬНО-КРАЕВОЙ ЗАДАЧЕ, ПОРОЖДАЮЩЕЙ ВНУТРЕННЮЮ ЗАДАЧУ СОПРЯЖЕНИЯ Старков П.А. ТАВРИЧЕСКИЙ НАЦИОНАЛЬНЫЙ УНИВЕРСИТЕТ ИМ. В.И. ВЕРНАДСКОГО, ФАКУЛЬТЕТ МАТЕМАТИКИ и ИНФОРМАТИКИ ПР-Т ВЕРНАДСКОГО,

Подробнее

, то из включения (*) получаем MUN MUN.. Из двух противоположных включений следует равенство MUN = MUN. что и требовалось доказать.

, то из включения (*) получаем MUN MUN.. Из двух противоположных включений следует равенство MUN = MUN. что и требовалось доказать. 9 Так как MUN = MUN, то из включения (*) получаем MUN MUN Из двух противоположных включений следует равенство MUN = MUN что и требовалось доказать Имеет место следующая Теорема (Куратовского) Пусть на

Подробнее

множества Z = X Y называют произведением полуколец S X и S Y и обозначают S X S Y. Для A S X, B S Y положим A B)= X(A) Y(B).

множества Z = X Y называют произведением полуколец S X и S Y и обозначают S X S Y. Для A S X, B S Y положим A B)= X(A) Y(B). ЛАБОРАТОРНАЯ РАБОТА ТЕОРЕМА ФУБИНИ. ПРОСТРАНСТВА Lp, I. О с н о в н ы е п о н я т и я и т е о р е м ы Определение. Пусть и Y множества, и Y меры, заданные на полукольцах S и S Y подмножеств множеств и

Подробнее

Глава 3. Несобственные интегралы и интегралы, зависящие от параметра.

Глава 3. Несобственные интегралы и интегралы, зависящие от параметра. Глава. Несобственные интегралы и интегралы, зависящие от параметра. Определенный интеграл f ( d ) в главе был введен для случая ко нечного промежутка [, ] и ограниченной функции f (). Теперь это понятие

Подробнее

Функции нескольких переменных

Функции нескольких переменных Функции нескольких переменных Функции нескольких переменных Поверхности второго порядка. Определение функции х переменных. Геометрическая интерпретация. Частные приращения функции. Частные производные.

Подробнее

ЧИСЛО ВРАЩЕНИЯ КАК ПОЛНАЯ ХАРАКТЕРИСТИКА УСТОЙЧИВОСТИ УРАВНЕНИЯ ХИЛЛА

ЧИСЛО ВРАЩЕНИЯ КАК ПОЛНАЯ ХАРАКТЕРИСТИКА УСТОЙЧИВОСТИ УРАВНЕНИЯ ХИЛЛА 26 Вестник СамГУ Естественнонаучная серия. 2009. 2(68) УДК 519.923.52 ЧИСЛО ВРАЩЕНИЯ КАК ПОЛНАЯ ХАРАКТЕРИСТИКА УСТОЙЧИВОСТИ УРАВНЕНИЯ ХИЛЛА c 2009 А.А. Жукова 1 Рассматривается уравнение Хилла. После перехода

Подробнее

а соответствующая характеристика, как видим, представляет собой площадь поперечного сечения элемента.

а соответствующая характеристика, как видим, представляет собой площадь поперечного сечения элемента. Понятие о геометрических характеристиках однородных поперечных сечений Центр тяжести; статические моменты; моменты инерции осевые, центробежный, полярный; моменты сопротивления; радиусы инерции Главные

Подробнее

ДОСТАТОЧНЫЕ УСЛОВИЯ ОПТИМАЛЬНОСТИ ЭКСТРЕМАЛЬНЫХ УПРАВЛЕНИЙ НА ОСНОВЕ ПРИНЦИПА МАКСИМУМА

ДОСТАТОЧНЫЕ УСЛОВИЯ ОПТИМАЛЬНОСТИ ЭКСТРЕМАЛЬНЫХ УПРАВЛЕНИЙ НА ОСНОВЕ ПРИНЦИПА МАКСИМУМА 780 УДК 517.97 ДОСТАТОЧНЫЕ УСЛОВИЯ ОПТИМАЛЬНОСТИ ЭКСТРЕМАЛЬНЫХ УПРАВЛЕНИЙ НА ОСНОВЕ ПРИНЦИПА МАКСИМУМА В. А. Срочко Иркутский государственный университет Россия, 664003, Иркутск, ул. К. Маркса, 1 E-mail:

Подробнее

Алгоритм решения систем линейных уравнений в кольцах вычетов

Алгоритм решения систем линейных уравнений в кольцах вычетов Авдошин С.М., Савельева А.А. Алгоритм решения систем линейных уравнений в кольцах вычетов Разработан эффективный алгоритм решения систем линейных уравнений в кольцах вычетов [], эквивалентный по сложности

Подробнее

Исчисление параметров выпуклости суммы Минковского сильно и слабо выпуклых множеств относительно неограниченного квазишара

Исчисление параметров выпуклости суммы Минковского сильно и слабо выпуклых множеств относительно неограниченного квазишара 26 Высшая и прикладная математика ТРУДЫ МФТИ. 2014. Том 6, 2 УДК 517.982.252 Г. Е. Иванов, М. С. Лопушански Московский физико-технический институт (государственный университет) Исчисление параметров выпуклости

Подробнее